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Abstract 

Recent levels of structural integrity of components built in the Aeroswift high-speed laser powder bed fusion machine have
led to the decision to produce a structural aircraft component through this technology. The Aeroswift machine is capable of
building larger Ti6Al4V parts at a more rapid pace than current commercial laser metal powder bed fusion systems. As
prototype component, the nose-wheel fork of the AHRLAC aircraft, which was conventionally machined in aluminum
alloy 7050, was selected. This paper describes the design, topology optimisation and the manufacturing approach taken in
this project.

Given the design space, loads, strength requirements and boundary conditions prescribed by the AHRLAC engineers,
topology optimisation was performed on the nose-wheel fork to design a lightweight component for production in
Ti6Al4V. Different topology optimisation software suites were used, to establish their capabilities and fit-for-purpose
features. The optimised design and percentage of weight saving are presented. An assessment based on the experience with
the different software suites is offered. 
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 1. Introduction 

AHRLAC (Advanced High Performance Reconnaissance Light Aircraft) is an unusual two-person cockpit pusher propeller
plane, designed by engineers of the South African company Aerosud and manufactured in partnership between the
Paramount Group and Aerosud. The AHRLAC company considers additive manufacturing (AM) as a technology fitting
well in their manufacturing strategy [1] [2]. 

The Aeroswift high-speed laser powder bed fusion machine was designed to manufacture metallic parts from alloy
powders, such as titanium and stainless steel [1] [3]. This system’s large build volume of 2 m x 0.6 m x 0.6 m allows
production of large parts, as well as large batches of small parts. Parts can be produced up to ten times faster than current
commercial AM systems [1]. Recent levels of structural integrity of components built in the Aeroswift high-speed laser
powder bed fusion machine have led to the decision to produce a structural aircraft component through this technology. As
prototype component, the nose-wheel fork of the AHRLAC aircraft, which was conventionally machined in aluminum
alloy 7050, was selected.

Given the design space, loads, strength requirements and boundary conditions prescribed by the AHRLAC engineers,
topology optimisation was performed on the nose-wheel fork to redesign a lightweight nose-wheel fork for production in
Ti6Al4V. Different topology optimisation software suites were used to establish their capabilities and fit-for-purpose
features.

Topology optimisation concentrates on the distribution of the material and structural connectivity in the design domain
(space) [4]. The optimisation problem consists of the determination of the optimal distribution of a material in the design
domain using a user defined objective function under the given constrains. Two main methods of topology optimisation are
the gradient based and non-gradient based methods. In the non-gradient based method material is gradually removed from
the structure using a sensitivity function to evolve towards an optimum [5]. For the gradient-based method a mathematical
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Materials

 

Elastic Modulus

(GPa)

Poisson’s

ratio

Density

(kg/m3)

Yield

Strength (MPa)

Ti6Al4V (ELI) 110 0.31 4429 787

Al 7050 71 0.33 2830 450

model (material-indicator function) is derived to calculate the sensitivities of the design variation [6]. The gradient-based
optimisation method is used by the structural analysis software solvers MSC Nastran® and Altair OptiStruct®. The
gradient-based method Solid Isotropic with Material Penalisation (SIMP), which makes it easy to be implemented in the
finite element analysis (FEA) framework, is often used [5]. The SIMP method implements the principle of a panelising
density variable to converge to zero (void) or one (solid). In practice, low-density elements experience high levels of stress
and are not removed from the design domain [7]. In this way the optimal shape (load path) is generated from the
optimisation software.

 The topology optimisation process has been applied successfully to minimise weight of aircraft parts. The applications
include the design of inboard and outer fixed leading edge ribs, the fuselage door intercostal of the Airbus A380 aircraft,
wing box rib and internal structure, spar structures under aeroelastic loads and aircraft structures flutter suppression [8] [9]
[10]. It has been demonstrated that the use of topology optimisation for minimising the weight of aircraft parts reduce the
fuel consumption and emission gasses, such as carbon dioxide and nitrogen oxide [11]. 

The combination of topology optimisation with AM of Ti6Al4V (ELI) could advance saving production cost and ensuring
positive production in aviation industries [12]. However, this intriguing use of metal AM for production of aircraft
structural parts presents great challenges to the designer. Unlike, the conventional method of producing aircraft structural
parts, topology optimisation design for additive manufacturing (DfAM) practices are not sufficiently understood nor
characterised for production of aircraft structural parts [13]. Therefore, there is a need to establish topology optimisation
DfAM as a design tool for manufacturing of aircraft structural parts, with predictable structural performance using
conventional design tools. This paper evaluated the capability and fit-for-purpose feature of the topology optimisation
software used for the redesign of the AHRLAC nose-wheel fork.

2. Material and experimentation 

2.1.  Material properties for AHRLAC nose-wheel fork

The nose-wheel fork of the AHRLAC, which was conventionally machined from Al 7050 and is 8,23 kg in weight, was
redesigned using topology optimisation software. The redesigned component would be manufactured in the Aeroswift
machine from Ti6Al4V (ELI). In Table 1 the material properties used in the design process, as well as the properties of Al
7050 from which the existing nose-wheel fork is produced, are shown.     

   Table 1: Material properties used in the topology optimisation design.

 

 

 

 

 

 

2.2.  Topology optimisation with Altair SolidThinking Inspire® 
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A computer-aided design (CAD) domain, derived from the CAD model of the machined nose-wheel fork shown in Figure
1(a) and (c) was created. The volume of the domain was made larger than the machined fork design to ensure design
freedom. The bushes were separated from the design domain using the Inspire® partition tool. Additionally, the top contour
and dimensions on the design domain, as well as the dimensions of the wheel, shock absorber and torque arm bushes, were
kept the same as in the machined fork design, to ensure zero interference between the end-product and other parts of the
aircraft. Figure 1(b) and (d) show the design domain with bushes. All loads and boundary conditions were set on the
bushes.  

 

Figure 1: Nose-wheel fork design domain with bushes derived from the machined fork CAD model.

In Figure 2 the two main load configurations of the AHRLAC nose-wheel fork are illustrated. A total of 16 loads cases
were provided by the AHRLAC engineers. Four of them were envelope calculated, while twelve conformed to Federal
Aviation Regulations. For the maximum landing load case (Figure 2(a)) the fork experiences the loads through the wheel
axle, while for the ground static case in Figure 2(b), the load acts on the fork through the tyre (Fz and Fy at the tyre radius).
The ground static and maximum load cases are the highest loads experienced by the fork. Therefore, the optimisation was
mainly done for these loads.   
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Figure 2: Configuration of the maximum landing (a) and ground static (b) load cases calculated by the AHRLAC
engineers.

The mid node of the torque arm axle was restricted to translate only in the Z direction. On the mid-point of the shock
absorber axle, only rotation in the Y axis was allowed. Finally, the shape control, symmetric about the Z-X plane as
illustrated in Figure 3, was set.

 

 

Figure 3: The connectors, all load cases, symmetric plane, and boundary conditions as set in the fork for topology
optimisation.
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The Ti6Al4V (ELI) properties given in Table 1 were assigned on the bushes and design domain. Finally, the objective
function was set as maximum stiffness mass target of 30% of the total design domain volume.

2.3.  Topology optimisation with MSC Patran®

Optimisation in the MSC Patran® 2018 software, which uses Nastran® 2018.1 as the solver, was based on the same design
domain shown in Figure 1(b) and (d). For this process, the design domain was created using SolidWorks® because it is
easier to use than Patran® for drawing a complex geometry. The design domain was first imported in the MSC Apex®

software for hexahedral mesh generation. A mesh with global element length of 6 mm was generated and its quality was
evaluated for invalid elements. The Ti6Al4V (ELI) material properties in Table 1 were set on the bush and design domain
generated mesh before the database file (bdf) was exported and imported into the Patran® software. Beam elements were
used to represent the wheel, shock absorber, and torque arm axles. At each end of the beam rigid body elements 3 (RBE 3)
were used to transfer loads from the beam to the fork hex mesh CAD mode (or design domain with bush) as illustrated in
Figure 3.   Boundary conditions and loads were applied in the same way as was done in the Inspire® software. Finally,
minimising the mass an objective function of a mass fraction of 0.3 was applied. Figure 4 illustrates the load, boundary
conditions and mesh for the MSC Patran®-Nastran® optimisation.

  

Figure 4: The load cases, boundary conditions, and mesh generated in the Patran® software, equivalent to that used

with the Inspire® software.

 

3. Results

In Figure 5(a) and (b) the Altair SolidThinking Inspire® and MSC Patran®-Nastran® topology optimisation results,
respectively, are presented. The different views of the results are shown to demonstrate the similarity and the differences
between the Altair and MSC topology optimisation software. These results illustrate the load path or the elements which
experience more load. The top and bottom boundary elements carry more load and, therefore, were not removed from the
design domain. On the other hand, the elements which experience low levels of stress were removed from the design space
as seen for both the Altair and MSC optimisation results.       
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Figure 5: Views of the topology optimisation results. (a) Results from Inspire® software and the (b) from the

Patran®-Nastran® software.

Once the load path was determined, a smooth CAD model was generated to create the final design. The PolyNURB feature
of the Altair SolidThinking Inspire® software was used to trace over the optimisation results with precision to create a
free-form smooth geometry CAD model shown in Figure 6(a). The final design had a mass of 6.62 kg. which is a 20%
mass saving as compared to the machined fork design. Finally, the model was exported as STEP file for FEA. In MSC
Patran® the creation of geometry from elements is not automated, although not impossible, and the elements smoothing
feature does not provide good quality, see Figure 6(b).
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Figure 6: Views of the final design. (a) resulted from Altair SolidThinking Inspire® and (b) from the MSC Patran®-

Nastran®.

The smooth optimal nose-wheel fork CAD model created from the Inspire® software was imported into the Patran®

software for FEA purpose. A tetrahedral solid mesh was generated on the model with global element size of 10 mm. The
beam element, rigid body element 3, Ti6Al4V (ELI) properties together with the loads and boundary conditions were set
on the final design CAD model in the same way as was done in the MSC topology optimisation. The Von Mises stress and
maximum displacement experienced by the fork was computed for the maximum landing and ground static load cases. In
Figure 7(a) and (b) the maximum Von Mises stress and the corresponding displacement are shown. Similarly, Figure 7(c)
and (d) illustrate the stress experienced during the ground static load case with its respective displacement. 

  

Figure 7: FEA results (a) and (b) for maximum load case and (c) and (d) for ground static load case.

The Von Mises stress calculated for the maximum and ground static load cases are 505 MPa and 426 MPa, respectively.
The maximum displacement for these same load cases are 13.2 mm and 12.2 mm, respectively.

 4. Discussion

4.1.  Assessment of the topology optimisation software fit-for-purpose feature 

Topology optimisation is possible with both Inspire® and Patran® software. At the no-design portion (bushes) no elements
were removed to avoid introducing voids in the CAD model. However, elements were removed at portions of the design
domain where the stresses were calculated to be low using FEA. The region of the design domain which experienced
higher stress was kept solid. The connectivity of the solid portion in the design domain provide the load path. In this way
weight is reduced from the design space by the topology optimisation software. 

Different topology optimisation software suites from different vendors have different end user icons and optimisation
approaches. In Table 2 the requirements of optimisation for the design of the landing gear fork are summarised for both
software suites. 

Table 2: The requirements of topology optimisation for the design of the nose-wheel fork.

Topology optimisation
requirements

Altair SolidThinking Inspire® MSC Patran®

1. CAD model Large design domain is necessary.
Creating it from the existing model is
quick and fast using Inspire® geometry
tools such as push-pull, simplifier,
partition. 

The design space creation from the
existing CAD model could be time
consuming for a complex geometry
such as the landing gear fork. It was
best done in SolidWorks®.

2. Mesh Mesh generation is not user based. It is
robust and automatically applied on the
CAD model.

For accurate results fine hexahedral
mesh is necessary. Generation of such
mesh requires decomposition of
complex CAD model in cuboids
and/or primitive shape, which can be
tedious, complex and difficult to
automate. MSC Apex® software was
used for creation of hexahedral
mesh.    

3. Material properties In the material library Ti6Al4V (ELI) is
available. Additionally, a new material
can be added in the library. 

Material properties must be added in.

4. Loads & boundary
conditions

Load and boundary conditions are auto
detected. For example, when applied on
the cylindrical face of the model, bearing
load is automatically suggested.
However, it is still up to the user to
define the desired loads and supports.
Finally, constraints are applied on the
non-design part of the model.   

The definition of the loads and
supports are required from the user.

5. Solver Optistruct® software is integrated in
Inspire® as the solver. It alters material
distribution to optimise the user defined
objective function under given
constraints using the gradient based
optimisation method.   

Nastran® software is based on the
SIMP method for topology
optimisation in which a power-law is
used as penalty function.
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6. Topology optimisation
post-process

Topology optimisation post-process
refers to conversion of the mesh, as
shown in Figure 5, which is rough at
portions where elements with less stress
were removed, into a smooth solid CAD
model. With the PolyNURB® function
available in Inspire® software complex
shapes, which best represent the
optimisation results can be achieved.
Using Inspire® in conjunction with CAD
software such as SolidWorks® a best
design of the nose-wheel fork can be
repeatedly obtained as seen in Figure
6(a).

FEA is an essential post topology
optimisation to verify if the design can
handle all the loads.  

The conversion of elements into
CAD model, is not automated and the
mesh smoothing quality not good as
illustrated in Figure 5(b).  However,
the model can be redrawn to resemble
the optimisation results illustrated.
For this complex geometry the
process is tedious, and mismatch is
highly possible. Several FEA
iterations will be necessary to verify
that the design of the nosewheel fork
can handle all the loads.    

7. Data Storage Single file was generated during
topology optimisation. The size of the
file is 5.5 Mb.

Besides the database file, multiple
files, such as journal, master, session,
were generated. The total file size
amounts to 5.5 Gb. 

4.2.  Success of the topology optimisation design for additive manufacturing 

The yield strength of parts built in the Aeroswift machine from Ti6Al4V is 787 MPa.  The maximum Von Mises stress
computed in both the maximum landing and ground static load cases is less that this yield strength. The total safety factor
calculated was 1.6. The optimised final design was 20% less in weight than the machined fork design.  

5. Conclusions

Topology optimisation design of the nose-wheel fork for production in Ti6Al4V (ELI) using the Aeroswift machine is
possible with both the Altair SolidThinking Inspire® and MSC Patran®-Nastran® software. However, the user features and
processes are different. Inspire® has more user-friendly features than the MCS Patran®-Nastran®software, making it the
better and more time-effective tool for topology optimisation.     

6. Acknowledgements
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