Ex. 7-8 Climbs & Descents

What you will learn to:

- climb at a variety of attitudes and airspeed, taking into account:
 - obstacle clearance visibility engine
 cooling ATC instructions passenger comfort
- accurately level off at desired altitude and establish cruise.
- descend at a variety of airspeed and power settings to a desired altitude.
- Descend to a specified Touch Down Point.

Why learn this?

- Learn to execute appropriate type of climb for a variety of scenarios
 - no one type of climb will work for all situations!
- Accurate Descents are even more important than accurate climbs

Links

You already have understanding of:

attitudes and movements

power control

Today we put all these tools together to make the plane go up.....and everything that goes up.... must come back down.

Climb: Entry from Cruise

Attitude

 pull back on the Control Column to set nose-up attitude

Power

• full power

Trim

- check airspeed at correct value
- retrim airplane

Climbing: Yaw Control

Whenever there is a change of aircraft attitude Yaw has to be controlled.

Step on the BALL.

Climb: Leveling Out

If climbing up to 4500 feet at 500 feet per minute, begin leveling out at...

Begin leveling out at 10% of rate of climb begin leveling out at

Attitude

- push Control Column forward to return to cruise attitude
- allow plane accelerate to cruise speed
- power back to normal cruise setting

Trim

Power

- re-trim airplane
- · lean mixture as appropriate

Leveling: Yaw Control

Yaw

Step on the BALL.

Ex. 7 & 8 - Climbing & Descends

TYPES OF CLIMBS

 Best Angle of Climb (V_x)
 Greatest gain in height in a given distance.

 Best Rate of Climb (V_y)
 Greatest Gain in height in a given time.

Normal Climb

Enroute Climb

Instruments in

Air Density: Effect on Climb

Other Factors: Effect on Climb

-Types of Descents

Power-off Descents (Gliding)

Power-on Descents

Power-on Descent Types

Important assumption: NO WIND

Gliding: Estimating Range

Gliding: Estimating Range

Plane is already flying at best gliding speed!

Raising the nose will:

• shorten your gliding distance

AND

make your airspeed to dangerously low

NEVER TRY TO "STRETCH" A GLIDE.

Power-on Descents

How much power?

Normal descents are power-assisted

Power = more choice for performance

+/- 100 rpm = +/- 100 feet per minute

Power-on Descent Types

	Landing Approach stabilized descent at specific airspeed to touchdown at specific point	 Enroute no hurry to lose altitude more comfortable for passengers
Power setting	Usually below green arc (about 1500-1900 rpm)	Above green arc (100-300 rpm below cruise power)
Carb heat	НОТ	COLD
Airspeed	See POH (55-65 knots in Cessna 150)	Close to cruise speed
Flaps	Down (for better forward visibility and lower safe descent speeds)	Up (enroute descent done at high speed, low rate of descent – no need for additional lift and drag)

Power-off Descent: Entry

Cockpit check: oil T+P in the green, carb heat hot, mixture rich Look-out!

How will power reduction

affect yaw?

Power

 smoothly reduce power to idle

Attitude

 maintain cruise attitude until airspeed reaches best glide

 set descent attitude for that airspeed

Trim

• retrim airplane

You have it down PAT

Approach Descent: Entry

Cockpit check: oil T+P in the green, carb heat hot, mixture rich Look-out!

Power

smoothly reduce power to 1500-1900 rpm

Attitude

- maintain cruise attitude until airspeed enters white arc
- · once airspeed is "in white", extend flaps
- set descent attitude for approach airspeed (see POH)

Trim

• retrim airplane

Effect of Flaps on Descent

More lift

- can safely descend at lower airspeeds
- More drag

.

- steeper descent given same airspeed
- More nose-down attitude
 - better forward visibility given same airspeed

Airspeed must be in white arc before flaps are extended!

Effect of Wind

- In headwind: can glide further by increasing airspeed slightly (offset effect of wind pushing you back)
- In tailwind: can glide further by decreasing airspeed slightly (take advantage of lower rate of descent at slightly lower airspeed)

SAFETY

- Cockpit check before all climbs and Descents
- Look-out before and during climb
 - lower nose every 500 feet to check for traffic
- Avoid excessive pitching up, especially near the ground
 - may lead to a stall
- Avoid climbs at V_x for long periods of time
 - inadequate engine cooling

Review For Climbs:

Q What is the difference between best rate of climb, best angle of climb, and normal climb?

Should be memorized!

- Q What are your plane's airspeed for those climbs?
- Q What is the procedure for entering a climb from cruise?
- Q What is the procedure for leveling out?
- Q Why do we keep full power for several seconds after leveling out?

Review for Descents:

Q What is your airplane's best glide speed?

What is its significance?

- Q During an approach to landing your intended touchdown spot is drifting up. What does that mean and how do you fix the situation?
- Q Same as above, but the spot is drifting down.