

737-8

Flight Crew Operations Manual Volume 1

Flair Airlines Ltd

This document has EAR data with Export Control Classification Numbers (ECCN) of: 9E991. Export of this technology is controlled under the United States Export Administration Regulations (EAR) (15 CFR 730-774). An export license may be required before it is used for development, production or use by foreign persons from specific countries. The controller of this data has the individual responsibility to abide by all export laws.

BOEING PROPRIETARY

Copyright © 2021-2021 The Boeing Company. All rights reserved.

Boeing claims copyright in each page of this document only to the extent that the page contains copyrightable subject matter. Boeing also claims copyright in this document as a compilation and/or collective work.

This document includes proprietary information owned by The Boeing Company and/or one or more third parties. Treatment of the document and the information it contains is governed by contract with Boeing. For more information, contact The Boeing Company, P.O. Box 3707, Seattle Washington 98124.

Document Number D6-27370-MAX-FLR Revision Number: 8 Revision Date: November 15, 2022

Intentionally Blank

Preface Chapter Table of Contents

Chapter 0 Section TOC

Volume 1

Title Page

Preface

Model Identification

Introduction

Abbreviations

Revision Record

VOL1 List of Effective Pages

Company Bulletin Record

Boeing Bulletin Record

Limitations

Normal Procedures

Non-Normal Procedures

Supplementary Procedures

Intentionally Blank

Preface Model Identification

Chapter 0
Section 1

General

The airplanes listed in the table below are covered in this Flight Crew Operations Manual (FCOM). The numbers are used to distinguish data peculiar to one or more, but not all of the airplanes. Where data applies to all airplanes listed, no reference is made to individual airplane numbers. Configuration data reflects the airplane as delivered configuration and is updated for service bulletin incorporations in conformance with the policy stated in the introduction section of this chapter.

Registry and Tail numbers are supplied by the operator as provided by the national regulatory agency. Serial and tabulation numbers are supplied by Boeing.

Registry number(s) reflect the most current information supplied by the operator to the Boeing Company through the SR process and 60 days prior to the subject revision date. Registry numbers received after that date will be incorporated at the next scheduled revision. If a registry number is not provided the FCOM will default to serial number.

Tail Number	Registry Number	Serial Number	Tabulation Number
901	C-FFEL	64942	1J107
902	C-FLEJ	64941	1J104
903	C-FLHI	61804	1J103
904	C-FFBC	61805	1J105
905	C-FLKA	64943	1J106
906	C-FLKC	61807	1J111
907	C-FLKD	61806	1J110
908	C-FLKI	64944	1J108
909	C-FLKJ	64945	1J109
910	C-FLRS	61808	1J114
911	C-FFFX	61809	1J112
912	C-FFLZ	64946	1J113
913	C-FLDX	61803	1C845
914	C-FLER	62874	1L076
915	C-FLKO	62870	1L075

Tail Number	Registry Number	Serial Number	Tabulation Number
916	C-FLKS	62881	1L077
917	C-FLKZ	62883	1L078
918	C-FLUJ	62884	1K003
919	C-FLQZ	44307	1K002
920	C-FLQO	43565	1B392
921	C-FLUT	60134	1J022
922	C-FLQF	43300	1B397
923	C-FLQG	43619	1B390
924	C-FLQP	43566	1B393
925	C-FLBG	60135	1J023
926	C-FLGD	43564	1B391
927	C-GFOF	44302	1K001

Preface Chapter 0
Introduction Section 2

General

This Flight Crew Operations Manual (FCOM) has been prepared by The Boeing Commercial Airplanes, Commercial Aviation Services organization. The purpose of this manual is to:

- provide the necessary operating limitations, procedures, performance, and systems information the flight crew needs to safely and efficiently operate the 737 airplane during all anticipated airline operations
- serve as a comprehensive reference for use during transition training for the 737 airplane
- serve as a review guide for use in recurrent training and proficiency checks
- provide necessary operational data from the FAA approved airplane flight manual (AFM) to ensure that legal requirements are satisfied
- establish standardized procedures and practices to enhance Boeing operational philosophy and policy.

This manual is prepared for the owner/operator named on the title page specifically for the airplanes listed in the "Model Identification" section. It contains operational procedures and information, which apply only to these airplanes. The manual covers the Boeing delivered configuration of these airplanes. Changes to the delivered configuration are incorporated when covered by contractual revision agreements between the owner/operator and The Boeing Company

This manual is not suitable for use for any airplanes not listed in the "Model Identification" section. Further, it may not be suitable for airplanes that have been transferred to other owners/operators.

Owners/operators are solely responsible for ensuring the operational documentation they are using is complete and matches the current configuration of the listed airplanes. This includes the accuracy and validity of all information furnished by the owner/operator or any other party. Owners/operators receiving active revision service are responsible to ensure that any modifications to the listed airplanes are properly reflected in the operational procedures and information contained in this manual.

This manual is structured in a two volume format with a quick reference handbook (QRH). Volume 1 includes operational limitations, normal procedures, supplementary procedures, dispatch performance data, and inflight performance data. Volume 2 contains systems information. The QRH contains all checklists necessary for normal and non-normal procedures as well as inflight performance data.

The manual is periodically revised to incorporate pertinent procedural and systems information. Items of a more critical nature will be incorporated in operational bulletins and distributed in a timely manner. In all cases, such revisions and changes must remain compatible with the approved AFM with which the operator must comply. In the event of conflict with the AFM, the AFM shall supersede.

This manual is written under the assumption that the user has had previous multi-engine jet aircraft experience and is familiar with basic jet airplane systems and basic pilot techniques common to airplanes of this type. Therefore, the FCOM does not contain basic flight information that is considered prerequisite training.

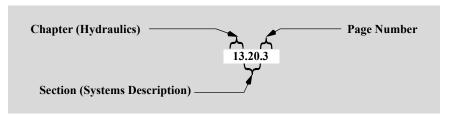
Please send all correspondence regarding content or use of this manual, including bulletin status, to the 737 Manager, Flight Technical Data through the Services Requests (SR) application on the MyBoeingFleet home page.

Organization

The FCOM is organized in the following manner.

Volume 1

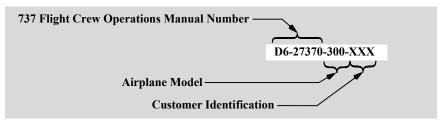
- Preface contains general information regarding the manual's purpose, structure, and content. It also contains lists of abbreviations, a record of revisions, bulletins, and a list of effective pages.
- Limitations and Normal Procedures chapters cover operational limitations and normal procedures. All operating procedures are based on a thorough analysis of crew activity required to operate the airplane, and reflect the latest knowledge and experience available.
- Non-Normal Procedures contain Company specific information.
- Supplementary Procedures chapter covers those procedures accomplished as required rather than routinely on each flight.
- Performance Dispatch (PD) chapter contains performance information necessary for self dispatch.
- Performance Inflight (PI) chapter contains information necessary for inflight use.


Volume 2 – Chapters 1 through 15 contain general airplane and systems information. These chapters are generally subdivided into sections covering controls and indicators and systems descriptions.

Quick Reference Handbook (QRH) – The QRH covers normal checklists, non–normal checklists, operational information, performance information necessary for inflight use (PI) on an expedited basis, and maneuvers.

Page Numbering

The FCOM uses a decimal page numbering system. The page number is divided into three fields; chapter, section, and page. An example of a page number for the hydraulics chapter follows: chapter 13, section 20, page 3.


Example Page Number

Page Identification

Each page is identified by a customer document number and a page date. The customer document number is composed of the general 737 FCOM number, D6–27370–, and is followed by the customer identification. The page date is the date of publication of the manual or the most recent revision date.

Example Page Identification

Warnings, Cautions, and Notes

The following levels of written advisories are used throughout the manual.

WARNING: An operating procedure, technique, etc., that may result in personal injury or loss of life if not carefully followed.

CAUTION: An operating procedure, technique, etc., that may result in damage to equipment if not carefully followed.

Note: An operating procedure, technique, etc., considered essential to emphasize. Information contained in notes may also be safety related.

Flight Crew Operations Manual Configuration

Customer airplane configuration determines the data provided in this manual. The Boeing Company keeps a list of each airplane configuration as it is built and modified through the service bulletin process. The FCOM does not reflect customer originated modifications without special contract provisions.

Customer Configured Airplane Effectivity

Differences in airplane configuration for customer specific documents may be shown by the use of airplane effectivity throughout Volumes 1, 2 and QRH. The following rules are used to express airplane effectivity within customer documents:

- airplane effectivity can be displayed in one of four formats; by tabulation number, serial number, registry number or airplane number (customer defined). The default FCOM/QRH document effectivity display is by serial number
- airplane effectivities are listed in alpha-numeric order. A range of airplanes is defined by a dash, e.g. YZ008 - YZ014. A comma in the effectivity range indicates a break in the range, e.g. YZ008 - YZ014, YZ019, YZ021 - YZ025
- airplane effectivities apply only to the paragraph, illustration, operational note, procedural step, etc. and to subordinate items (if any) just below (except for titles) the specific effectivity range annotation;

Example (with subordinate items):

YZ008 - YZ014	
Tail skid	Check
Verify that the tail skid is not damaged.	
Horizontal stabilizer and elevator	Check

In this example, the effectivity YZ008 - YZ014 applies to the first procedural step (Tail skid.....) and further indented/subordinate step (Verify....). The effectivity does not apply to the next equivalently indented step (Horizontal stabilizer.....).

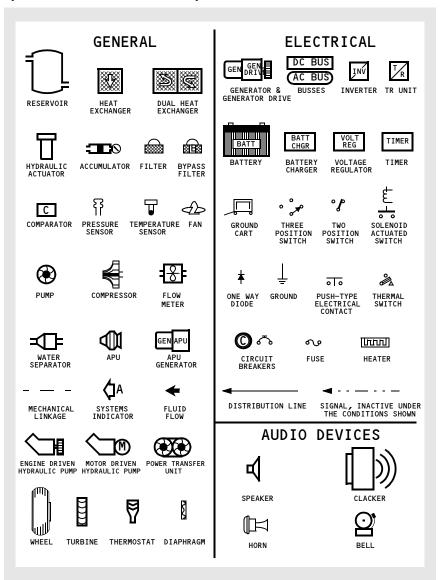
Example (without subordinate items):

YZ008 - YZ014	
CABIN TEMPERATURE selector	As needed
CABIN AIR CONDITIONING	As needed

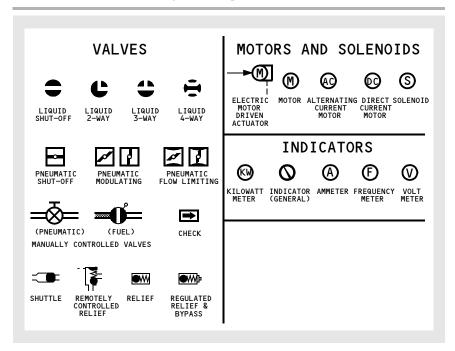
In this example, the effectivity YZ008 - YZ014 applies to the first procedural step (CABIN TEMPERATURE selector.....) only. The effectivity does not apply to the next procedural step (CABIN AIR CONDITIONING.....).

When airplane effectivities are centered immediately below a checklist title, the entire checklist applies to the listed airplanes. In the following example, the PACK checklist is applicable to YZ008 - YZ014 only:

SPECIAL NOTE:


This FCOM contains information which has been included by Flair Airlines Ltd (Flair) on aircraft covered by this manual. This information may differ from Boeing recommended information. Flair has included this information in the manual, and such inclusion does not imply that The Boeing Company in any way endorses or approves such information.

The technical accuracy and validity of all information originated by Flair, and its effect, if any, on other portions of this manual, is the sole responsibility of Flair.



Schematic Symbols

Symbols shown are those which may not be identified on schematic illustrations.

Intentionally Blank

Preface Abbreviations

Chapter 0
Section 3

General

The following abbreviations may be found throughout the manual. Some abbreviations may also appear in lowercase letters. Abbreviations having very limited use are explained in the chapter where they are used. Some abbreviations may not apply to all or any of the aircraft covered in this manual.

	A
A/P	Autopilot
A/T	Autothrottle
AC	Alternating Current
ACARS	Aircraft Communications Addressing and Reporting System
ACP	Audio Control Panel
ACT	Active
ADF	Automatic Direction Finder
ADIRU	Air Data Inertial Reference Unit
ADM	Air Data Module
AED	Automatic External Defibrillator
AFDS	Autopilot Flight Director System
AFE	Above Field Elevation
AFM	Airplane Flight Manual (FAA approved)
AGL	Above Ground Level
AI	Anti-Ice
AIL	Aileron
ALT	Altitude

	1
ALTN	Alternate
AM	Amplitude Modulation
ANP	Actual Navigation Performance
ANT	Antenna
AOA	Angle of Attack
APP	Approach
APU	Auxiliary Power Unit
ARINC	Aeronautical Radio, Incorporated
ARPT	Airport
ARTE	Above Runway Threshold Elevation
ATA	Actual Time of Arrival
ATC	Air Traffic Control
ATT	Attitude
AUTO	Automatic
AUX	Auxiliary
AVAIL	Available
В	
B/C or BCRS	Back Course
BARO	Barometric
BAT/BATT	Battery

BRT	Bright
BTL DISCH	Bottle Discharge (fire extinguishers)
BTP	Bromotrifluropropene (fire extinguishers)
	С
С	Captain Celsius Center
CANC/ RCL	Cancel/Recall
СВ	Circuit Breaker
CDU	Control Display Unit
CG	Center of Gravity
CHKL	Checklist
CLB	Climb
COMM	Communication
CON	Continuous
CONFIG	Configuration
CRZ	Cruise
CTL	Control
D	
DC	Direct Current
DDG	Dispatch Deviations Guide
DEP ARR	Departure Arrival
DES	Descent
DISC	Disconnect
DME	Distance Measuring Equipment
DPC	Display Processing Computer
DSPL	Display

Е		
E/D	End of Descent	
E/E	Electrical and Electronic	
EASA	European Aviation Safety Agency	
EBAW	Enhanced Bank Angle Warning	
ECS	Environmental Control System	
EEC	Electronic Engine Control	
EFIS	Electronic Flight Instrument System	
EGPWS	Enhanced Ground Proximity Warning System	
EGT	Exhaust Gas Temperature	
ELEC	Electrical	
ELEV	Elevator	
ENG	Engine	
EXEC	Execute	
EXT	Extend	
	F	
F	Fahrenheit	
F/D or FLT DIR	Flight Director	
F/O	First Officer	
FAF	Final Approach Fix. May be used in place of FAP	
FAP	Final Approach Point	
FCTL	Flight Control	
FCTM	Flight Crew Training Manual	

FFM	Force Fight Monitor
FL	Flight Level
FMC	Flight Management Computer
FMS	Flight Management System
FPA	Flight Path Angle
FPV	Flight Path Vector
FSEU	Flap Slat Electronic Unit
	G
G/S	Glide Slope
GA	Go-Around
GBAS	Ground-Based Augmentation System
GEN	Generator
GLS	GPS Landing System or GNSS Landing System or GBAS Landing System
GNSS	Global Navigation Satellite System
GP	Glide Path
GPS	Global Positioning System
GPWS	Ground Proximity Warning System
Н	
HDG	Heading
HDG REF	Heading Reference
HDG SEL	Heading Select
HPA	Hectopascals
HUD	Head-Up Display
HYD	Hydraulic
•	

	I		
IAS	Indicated Airspeed		
IASC	Integrated Air Supply Controller		
IDENT	Identification		
IGS	Instrument Guidance System		
ILS	Instrument Landing System		
IN	Inches		
INBD	Inboard Inbound		
IND LTS	Indicator Lights		
INOP	Inoperative		
INTC CRS	Intercept Course		
ISFD	Integrated Standby Flight Display		
ISLN	Isolation		
	K		
K	Knots		
KGS	Kilograms		
	L		
L	Left		
LAM	Landing Attitude Modifier		
LAT	Latitude		
LBS	Pounds		
LDA	Localizer Type Directional Aid		
LDG ALT	Landing Altitude		
LE	Leading Edge		
LIM	Limit		
LNAV	Lateral Navigation		

LOM	Locator Outer Marker
LONG	Longitude
LVL CHG	Level Change
	M
MAG	Magnetic
MAN	Manual
MCAS	Maneuver Characteristics Augmentation System
MCP	Mode Control Panel
MDA	Minimum Descent Altitude
MDS	MAX Display System
MEL	Minimum Equipment List
MFD	Multi-Function Display
MIN	Minimum
MKR	Marker
MLA	Maneuver Load Alleviation
MMO	Maximum Mach Operating Speed
MOD	Modify
MTRS	Meters
	N
N1	Low Pressure Rotor Speed
N2	High Pressure Rotor Speed
NAV RAD	Navigation Radio
ND	Navigation Display
NDB	Non-Directional Beacon
NGS	Nitrogen Generation System

Nautical Miles
Normal
0
Overhead Unit
Overhead
Override
P
Passenger
Power Control Unit
Performance Initialization
Pilot Flying
Primary Flight Computers
Pilot Monitoring
Panel
Position
Position Initialization
Primary
Perspective Runway
Power Transfer Unit
Predictive Windshear System
R
Right
Radio Altitude Resolution Advisory
Runway Awareness and Advisory System
Recirculation
Reference
Retract

RF	Refill
RH	Right Hand
RNP	Required Navigation Performance
RVSM	Reduced Vertical Separation Minimum
RVFP	Visual Flight Procedure
	S
S/C	Step Climb
SDF	Simplified Directional Facility
SEL	Select
SMYD	Stall Management Yaw Damper
SPD	Speed
SPLR	Spoiler
STA	Station
STAB	Stabilizer
STAT	Status
STD	Standard
STS	Speed Trim System
	T
T/D	Top of Descent
T or TK or TRK	Track
T or TRU	True
TA	Traffic Advisory
TAI	Thermal Anti-Ice
TAT	Total Air Temperature

TCAS	Traffic Alert and Collision Avoidance System
TDZE	Touch Down Zone Elevation
TE	Trailing Edge
TFC	Traffic
THR HLD	Throttle Hold
ТО	Takeoff
TO/GA	Takeoff/Go-Around
	U
UTC	Universal Time Coordinated
	V
V/S	Vertical Speed
V1	Takeoff Decision Speed
V2	Takeoff Safety Speed
VA	Design Maneuvering Speed
VHF	Very High Frequency
VMO	Maximum Operating Speed
VNAV	Vertical Navigation
VOR	VHF Omnidirectional Range
VOX	Voice Operated Transmission
VR	Rotation Speed
VREF	Reference Speed
VSD	Vertical Situation Display
VTK	Vertical Track

W			
WPT Waypoint			
WXR Weather Radar			
X			
XTK Cross Track			

PrefaceChapter 0Revision RecordSection 4

Revision Transmittal Letter

To: All holders of Flair Airlines Ltd 737 Flight Crew Operations Manual (FCOM), Boeing Document Number D6-27370-MAX-FLR.

Subject: Flight Crew Operations Manual Revision.

This revision reflects the most current information available to The Boeing Company 60 days before the subject revision date. The following revision highlights explain changes in this revision. General information below explains the use of revision bars to identify new or revised information.

Revision Record

No.	Revision Date	No.	Revision Date
0	March 21, 2021	1	May 20, 2021
2	August 1, 2021	3	November 4, 2021
4	March 15, 2022	5	May 5, 2022
6	July 15, 2022	7	August 15, 2022
8	November 15, 2022		

General

The Boeing Company issues FCOM revisions to provide new or revised procedures and information. Formal revisions also incorporate appropriate information from previously issued FCOM bulletins.

The revision date is the approximate date the manual is approved for printing. The revision is mailed a few weeks after this date. This manual is effective upon receipt and supersedes any manual (with the same document number) with a previous revision number.

Formal revisions include a Transmittal Letter, a new Revision Record, Revision Highlights, and a current List of Effective Pages. Use the information on the new Revision Record and List of Effective Pages to verify the FCOM content.

Pages containing revised technical material have revision bars associated with the changed text or illustration. Editorial revisions (for example, spelling corrections) may have revision bars with no associated highlight.

The Revision Record should be completed by the person incorporating the revision into the manual.

Filing Instructions

Consult the List of Effective Pages (0.5). Pages identified with an asterisk (*) are either replacement pages or new (original) issue pages. Remove corresponding old pages and replace or add new pages. Remove pages that are marked DELETED; there are no replacement pages for deleted pages.

Be careful when inserting changes not to throw away pages from the manual that are not replaced. Using the List of Effective Pages (0.5) can help determine the correct content of the manual.

Revision Highlights

This section (0.4) replaces the existing section 0.4 in your manual.

Throughout the manual, airplane effectivity may be updated to reflect coverage as listed on the Preface - Model Identification page, or to show service bulletin airplane effectivity. Highlights are not supplied.

This manual is published from a database; the text and illustrations are marked with configuration information. Occasionally, because the editors rearrange the database markers, or mark items with configuration information due to the addition of new database content, some customers may receive revision bars on content that appears to be unchanged. Pages may also be republished without revision bars due to slight changes in the flow of the document.

Distribution List

The Flair Document Standards Coordinator is responsible for maintaining the following circulation list of this manual in order to facilitate accurate revision/recall action.

The following manual holders are responsible for the currency of manuals issued to them.

Digital: Manual holders are responsible for maintaining any and all printed copies to ensure the manual is up to date.			
Master	Document Standards Coordinator		
Transport Canada Principal Operations Inspector			
FlairConnect	Document Standards Coordinator		
Airwatch	Document Standards Coordinator		

This manual in the most current approved version is available to all Flair employees on the FlairConnect intranet.

Intentionally Blank

Preface Revision Highlights Chapter 0
Section 4

Revision 8 Highlights

Chapter, Section	Page No.	Description of Changes	
		NOTE: addition of a/c 920 (1B392) due to delivery date change from 2023 to 2022.	
Chp 0, Sec 1 Chp PD, Sec ModID Chp PI, Sec ModID	0.1.1, PD.ModID.10.1, PI.ModID.10.1	ModID tables updated to same format and added the following a/c: • 920 (C-FLQO / 1B392) • 922 (C-FLQF / 1B397) • 923 (C-FLQG / 1B390) • 924 (C-FLQP / 1B393) • 925 (C-FLBG / 1J023) • 926 (C-FLGD / 1B391) • 927 (C-GFOF / 1K001)	
Chp L, Sec 10	L.10.2, L.10.7, L.10.8	Added a/c 1B392.	
	L.10.8 L.10.8	Removed a/c tail numbers from ACARS Non-AFM Operational Information per Boeing Rev7. Updated a/c tail numbers for	
	L.10.11, L.10.12	Electrical. Updated a/c tail numbers for ORW Alerting System.	
Chp NP, Sec 11	NP.11.3	Added "entering required information in Mission+ app" to PM phase of flight responsibilities	
	NP.11.5	Changed: • "Skybook" to "Mission+"; • "Transmit Skybook OFP" to "Close and Export Mission+ Flight".	
Chp NP, Sec 21	NP.21.2	Preliminary Preflight Procedure - Captain or First Officer - added a/c 1B392.	

Chapter, Section	Page No.	Description of Changes	
	NP.21.17, NP.21.18	Preflight Procedure - First Officer - added a/c effectivity for Passenger Signs.	
	NP.21.20	Added "USB Power switch (as installed)Verify on" as USB Charging outlets have been installed in the flight deck.	
	NP.21.25	Preflight Procedure - Captain: added "USB Power switch (as installed)Verify on" as USB Charging outlets have been installed in the flight deck.	
	NP.21.36	Before Taxi Procedure: • added Warning re: verifying the required takeoff flap setting against the required selection as displayed on the CDU before calling "FLAPS	
	NP.21.37	• added a/c 1B392. Before Taxi Procedure - added a/c 1B392.	
	NP.21.38	Before Takeoff Procedure: added Warning that both pilots must verify the required takeoff flap setting against the required selection as displayed on the CDU when challenging and responding in the BEFORE TAKEOFF checklist.	
	NP.21.48	Descent Procedure - updated a/c effectivity.	
	NP.21.64	Landing Procedure - ILS CAT I: updated step to indicate autopilot to be disengaged in accordance with aircraft limitations.	
	NP.21.69	Landing Procedure - RNAV (RNP) AR - changed "as installed" to "as needed".	

Chapter, Section	Page No.	Description of Changes	
	NP.21.71	Landing Procedure - RNAV (RNP) AR: updated step to indicate autopilot to be disengaged in accordance with aircraft limitations.	
	NP.21.75	Landing Procedure - Instrument Approach Using VNAV - per Boeing Rev7, updated instructions for when a suitable visual reference at DA(H), MDA(H) or the missed approach point is established.	
Chp SP, Sec 2	SP.2.4, SP.2.5		
Chp SP, Sec 6	SP.6.1		
Chp SP, Sec 7	SP.7.3	Added or updated a/c effectivity.	
Chp SP, Sec 11	SP.11.1, SP.11.2		
Chp SP, Sec 12	SP.12.2		
Chp SP, Sec 15	SP.15.1, SP.15.2	Per Boeing Rev7:	
		 removed "RAAS database version (RCD xxxxx) shows on navigation displays" per Boeing Rev7; changed "1K003" to "1K002". 	
Chp SP, Sec 16	SP.16.1	Takeoff Procedure - removed PF and PM from procedures per Boeing Rev7. Editorial change.	

Intentionally Blank

Preface			Chapter 0	
VOL1 Lis	t of Effective Pages		Section 5	
0.TOC.1	November 4, 2021	0.5.8	November 15, 2022	
0.TOC.2	November 4, 2021	Comp	oany Bulletin Record	
Mo	del Identification	0.6a.1	July 15, 2022	
0.1.1	May 5, 2022	0.6a.2	November 4, 2021	
0.1.2	November 15, 2022	Roei	ing Bulletin Record	
	Introduction	0.6b.1		
0.2.1	March 1, 2021	0.6b.2	May 5, 2022	
0.2.2	March 1, 2021		•	
0.2.3	March 1, 2021		Limitations	
0.2.4	March 1, 2021	L.TOC.1	May 5, 2022	
0.2.5	July 15, 2022	L.TOC.2	May 5, 2022	
0.2.6	March 1, 2021	L.10.1	March 1, 2021	
0.2.7	March 1, 2021	L.10.2	November 15, 2022	
0.2.8	March 1, 2021	L.10.3	November 4, 2021	
	411	L.10.4	November 4, 2021	
	Abbreviations	L.10.5	March 1, 2021	
0.3.1	May 20, 2021	L.10.6	July 15, 2022	
0.3.2	May 20, 2021	L.10.7	November 15, 2022	
0.3.3	May 20, 2021	L.10.8	November 15, 2022	
0.3.4	November 4, 2021	L.10.9	May 5, 2022	
0.3.5	May 5, 2022	L.10.10	May 5, 2022	
0.3.6	May 5, 2022	L.10.11	November 15, 2022	
R	evision Record	L.10.12	November 15, 2022	
0.4.1	November 15, 2022	L.10.13	November 4, 2021	
0.4.2	May 20, 2021	L.10.14	November 4, 2021	
0.4.3	July 15, 2022	No	ormal Procedures	
0.4.4	March 1, 2021	NP.TOC.1	November 15, 2022	
		NP.TOC.2	November 15, 2022	
Re	vision Highlights	NP.11.1	March 1, 2021	
0.4.5	November 15, 2022	NP.11.2	March 1, 2021	
0.4.6	November 15, 2022	NP.11.3	November 15, 2022	
0.4.7	November 15, 2022	NP.11.4	May 5, 2022	
0.4.8	November 15, 2022	NP.11.5	November 15, 2022	
List	of Effective Pages	NP.11.6	May 5, 2022	
0.5.1		NP.11.7	July 15, 2022	
0.5.1	November 15, 2022 November 15, 2022	NP.11.8	July 15, 2022	
0.5.2	November 15, 2022 November 15, 2022	NP.11.9	July 15, 2022	
0.5.4	November 15, 2022	NP.11.10	November 4, 2021	
0.5.5	November 15, 2022	NP.11.11	July 15, 2022	
0.5.6	November 15, 2022	NP.11.12	July 15, 2022	
0.5.7	November 15, 2022	NP.11.13	July 15, 2022	
	1.0.011001 10, 2022			

	757 Fight Crew C	1	
NP.11.14	July 15, 2022	NP.21.43	July 15, 2022
NP.11.15	March 1, 2021	NP.21.44	May 5, 2022
NP.11.16	March 1, 2021	NP.21.45	May 5, 2022
NP.11.17	March 1, 2021	NP.21.46	May 5, 2022
NP.11.18	July 15, 2022	NP.21.47	May 5, 2022
NP.21.1	May 5, 2022	NP.21.48	November 15, 2022
NP.21.2	November 15, 2022	NP.21.49	July 15, 2022
NP.21.3	May 5, 2022	NP.21.50	July 15, 2022
NP.21.4	May 5, 2022	NP.21.51	July 15, 2022
NP.21.5	May 5, 2022	NP.21.52	July 15, 2022
NP.21.6	May 5, 2022	NP.21.53	July 15, 2022
NP.21.7	July 15, 2022	NP.21.54	July 15, 2022
NP.21.8	May 5, 2022	NP.21.55	July 15, 2022
NP.21.9	May 5, 2022	NP.21.56	July 15, 2022
NP.21.10	May 5, 2022	NP.21.57	July 15, 2022
NP.21.11	May 5, 2022	NP.21.58	July 15, 2022
NP.21.12	May 5, 2022	NP.21.59	July 15, 2022
NP.21.13	May 5, 2022	NP.21.60	July 15, 2022
NP.21.14	May 5, 2022	NP.21.61	July 15, 2022
NP.21.15	May 5, 2022	NP.21.62	July 15, 2022
NP.21.16	May 5, 2022	NP.21.63	July 15, 2022
NP.21.17	November 15, 2022	NP.21.64	November 15, 2022
NP.21.18	November 15, 2022	NP.21.65	July 15, 2022
NP.21.19	November 15, 2022	NP.21.66	July 15, 2022
NP.21.20	November 15, 2022	NP.21.67	July 15, 2022
NP.21.21	November 15, 2022	NP.21.68	July 15, 2022
NP.21.22	November 15, 2022	NP.21.69	November 15, 2022
NP.21.23	May 5, 2022	NP.21.70	July 15, 2022
NP.21.24	May 5, 2022	NP.21.71	November 15, 2022
NP.21.25	November 15, 2022	NP.21.72	July 15, 2022
NP.21.26	November 15, 2022	NP.21.73	July 15, 2022
NP.21.27	November 15, 2022	NP.21.74	July 15, 2022
NP.21.28	May 5, 2022	NP.21.75	November 15, 2022
NP.21.29	May 5, 2022	NP.21.76	July 15, 2022
NP.21.30	May 5, 2022	NP.21.77	July 15, 2022
NP.21.31	May 5, 2022	NP.21.78	July 15, 2022
NP.21.32	May 5, 2022	NP.21.79	July 15, 2022
NP.21.33	May 5, 2022	NP.21.80	July 15, 2022
NP.21.34	May 5, 2022	NP.21.81	July 15, 2022
NP.21.35	May 5, 2022	NP.21.82	July 15, 2022
NP.21.36	November 15, 2022	NP.21.83	July 15, 2022
NP.21.37	November 15, 2022	NP.21.84	July 15, 2022
NP.21.38	November 15, 2022	NP.21.85	July 15, 2022
NP.21.39	May 5, 2022	NP.21.86	July 15, 2022
NP.21.40	July 15, 2022	NP.40.1	March 1, 2021
NP.21.41	May 5, 2022	NP.40.2	May 5, 2022
NP.21.42	May 5, 2022	NP.40.3	May 5, 2022
		I	

NP.40.4	May 5, 2022	SP.3.3	November 4, 2021
NP.40.5	May 5, 2022	SP.3.4	November 4, 2021
NP.40.6	May 5, 2022	SP.4.1	March 1, 2021
Non No	um al Ducas dunas	SP.4.2	March 1, 2021
	ormal Procedures	SP.4.3	March 1, 2021
NNP.TOC.1	March 1, 2021	SP.4.4	March 1, 2021
NNP.TOC.2	March 1, 2021	SP.4.5	March 1, 2021
NNP.22.1	August 1, 2021	SP.4.6	July 15, 2022
NNP.22.2	March 1, 2021	SP.4.7	July 15, 2022
NNP.22.3	March 1, 2021	SP.4.8	August 1, 2021
NNP.22.4	March 1, 2021	SP.5.1	November 4, 2021
NNP.22.5	March 1, 2021	SP.5.2	March 1, 2021
NNP.22.6	March 1, 2021	SP.6.1	November 15, 2022
NNP.22.7	November 4, 2021	SP.6.2	November 4, 2021
NNP.22.8	March 1, 2021	SP.6.3	November 4, 2021
NNP.22.9	March 1, 2021	SP.6.4	November 4, 2021
NNP.22.10	March 1, 2021	SP.6.5	November 4, 2021
NNP.22.11	March 1, 2021	SP.6.6	March 1, 2021
NNP.22.12	March 1, 2021	SP.7.1	March 1, 2021
NNP.22.13	July 15, 2022	SP.7.2	March 1, 2021
NNP.22.14	March 1, 2021	SP.7.3	November 15, 2022
Cumplem	antow: Duo andurung	SP.7.4	May 5, 2022
	entary Procedures	SP.8.1	March 1, 2021
SP.TOC.1	November 15, 2022	SP.8.2	March 1, 2021
SP.TOC.2	November 15, 2022	SP.10.1	March 1, 2021
SP.TOC.3	November 15, 2022	SP.10.2	March 1, 2021
SP.TOC.4	November 15, 2022	SP.10.3	March 1, 2021
SP.TOC.5	November 15, 2022	SP.10.4	March 1, 2021
SP.TOC.6	November 15, 2022	SP.10.5	March 1, 2021
SP.TOC.7	November 15, 2022	SP.10.6	March 1, 2021
SP.TOC.8	November 15, 2022	SP.11.1	November 15, 2022
SP.05.1	March 1, 2021	SP.11.2	November 15, 2022
SP.05.2	March 1, 2021	SP.11.3	July 15, 2022
SP.1.1	March 1, 2021	SP.11.4	July 15, 2022
SP.1.2	March 1, 2021	SP.11.5	July 15, 2022
SP.1.3	March 1, 2021	SP.11.6	July 15, 2022
SP.1.4	March 1, 2021	SP.11.7	July 15, 2022
SP.2.1	March 1, 2021	SP.11.8	July 15, 2022
SP.2.2	March 1, 2021	SP.11.9	July 15, 2022
SP.2.3	March 1, 2021	SP.11.10	July 15, 2022
SP.2.4	November 15, 2022	SP.11.11	July 15, 2022
SP.2.5	November 15, 2022	SP.11.12	July 15, 2022
SP.2.6	May 5, 2022	SP.11.13	July 15, 2022
SP.2.7	May 5, 2022	SP.11.14	July 15, 2022
SP.2.8	May 5, 2022	SP.11.15	July 15, 2022
SP.3.1	November 4, 2021	SP.11.16	July 15, 2022
SP.3.2	November 4, 2021	SP.11.17	July 15, 2022
		[• •
L			

SP.11.18 July 15, 2022 SP.11.20 July 15, 2022 SP.11.21 May 5, 2022 SP.11.22 May 5, 2022 SP.12.2 November 15, 2022 SP.12.3 May 5, 2022 SP.12.3 May 5, 2022 SP.15.1 November 15, 2022 SP.15.2 November 15, 2022 SP.15.2 November 15, 2022 SP.15.2 November 15, 2022 SP.15.4 May 5, 2022 SP.15.4 May 5, 2022 SP.16.1 March 21, 2021 SP.16.3 March 21, 2021 SP.16.6 March 21, 2021 SP.16.6 November 4, 2021 SP.16.6 November 4, 2021 SP.16.8 November 4, 2021 SP.16.1 March 21, 2021 SP.16.2 March 21, 2021 SP.16.3 Marc				
SP.11.20 July 15, 2022 SP.11.21 May 5, 2022 SP.11.21 May 5, 2022 SP.11.21 March 1, 2021 SP.12.2 March 1, 2021 SP.12.3 May 5, 2022 SP.12.3 May 5, 2022 SP.15.1 November 15, 2022 SP.15.2 November 15, 2022 SP.15.2 November 15, 2022 SP.15.3 May 5, 2022 SP.15.4 May 5, 2022 SP.15.4 March 21, 2021 SP.16.2 March 21, 2021 SP.16.3 March 21, 2021 SP.16.6 November 4, 2021 SP.16.6 November 4, 2021 SP.16.8 November 4, 2021 SP.16.1 March 21, 2021 SP.16.3 November 4, 2021 SP.16.1 March 21, 2021 SP.16.2 March 21, 2021 SP.16.3 March 21, 2021 SP.16.2 March 21, 2021 SP.16.3 March 21,			Performance Dispatch	
SP.11.21 May 5, 2022 PD.0.2 July 15, 2022 SP.11.22 May 5, 2022 SP.12.3 May 5, 2022 SP.12.3 May 5, 2022 SP.15.1 November 15, 2022 SP.15.1 November 15, 2022 PD.TOC.10.1 July 15, 2022 SP.15.2 November 15, 2022 PD.ModID.10.1 November 15, 2022 SP.15.3 May 5, 2022 SP.16.1 March 21, 2021 SP.16.4 March 21, 2021 PD.ModID.10.2 November 15, 2022 SP.16.3 March 21, 2021 PD.10.2 July 15, 2022 SP.16.4 March 21, 2021 PD.10.2 July 15, 2022 SP.16.3 March 21, 2021 PD.10.2 July 15, 2022 SP.16.4 March 21, 2021 PD.10.5 July 15, 2022 SP.16.5 March 21, 2021 PD.10.6 July 15, 2022 SP.16.6 November 4, 2021 PD.10.7 July 15, 2022 SP.16.7 May 5, 2022 PD.10.8 July 15, 2022 SP.16.8 November 4, 2021 PD.10.9 July 15, 2022 SP.16.9				•
SP.11.22				•
SP.12.1 March 1, 2021 SP.12.2 November 15, 2022 SP.12.3 May 5, 2022 SP.15.1 November 15, 2022 SP.15.1 November 15, 2022 SP.15.3 May 5, 2022 SP.15.3 May 5, 2022 SP.15.3 May 5, 2022 SP.15.4 May 5, 2022 SP.16.1 March 21, 2021 SP.16.2 March 21, 2021 SP.16.6 November 4, 2021 SP.16.6 November 4, 2021 SP.16.6 November 4, 2021 SP.16.1 March 21, 2021 SP.16.2 March 21, 2021 SP.16.3 March 21,			PD.0.2	July 15, 2022
SP.12.1 March 1, 2021 SP.12.2 November 15, 2022 SP.12.3 May 5, 2022 SP.12.4 May 5, 2022 SP.15.1 November 15, 2022 SP.15.2 November 15, 2022 SP.15.2 SP.15.3 May 5, 2022 SP.15.4 May 5, 2022 SP.15.4 May 5, 2022 SP.16.1 March 21, 2021 SP.16.2 March 21, 2021 SP.16.6 March 21, 2021 SP.16.6 November 4, 2021 SP.16.6 November 4, 2021 SP.16.6 November 4, 2021 SP.16.8 November 4, 2021 SP.16.1 March 21, 2021 SP.16.2 March 21, 2021 SP.16.3 March 21, 2021 SP.16.3			737-8 LEAP-1B2	7 KG C M FAA CATB
SP.12.2 November 15, 2022 SP.12.3 May 5, 2022 SP.12.4 May 5, 2022 SP.15.1 November 15, 2022 SP.15.2 November 15, 2022 SP.15.3 May 5, 2022 SP.15.4 May 5, 2022 SP.16.1 March 21, 2021 SP.16.2 March 21, 2021 SP.16.6 November 4, 2021 SP.16.6 November 4, 2021 SP.16.8 November 4, 2021 SP.16.1 March 21, 2021 SP.16.10 March 21, 2021 SP.16.11 March 21, 2021 SP.16.12 March 21, 2021 SP.16.14 March 21, 2021 SP.16.15 March 21, 2021 SP.16.16 March 21, 2021 SP.16.16 March 21, 2021 SP.16.16 March 21, 2021 SP.16.17 March 21, 2021 SP.16.18 March 21, 2021 SP.16.19 March 21, 2021 SP.16.20 March 21, 2021 SP.16.20 March 21, 2021 SP.16.21 March 21, 2021 SP.16.22 March 21, 2021 SP.16.23 March 21, 2021 SP.16.24 March 21, 2021 SP.16.25 March 21, 2021 SP.16.26 March 21, 2021 SP.16.28 March 21, 2021 SP.16.29 March 21, 2021 SP.16.29 March 21, 2021 SP.16.29 March 21, 2021 SP.16.30 March 21, 2021 SP.16.31 March 21, 2021 SP.16.31 March 21, 2021 SP.16.32 March 21, 2021 SP.16.30 March 21, 2021 SP.16.31 March 21, 2021 SP.16.31 March 21, 2021 SP.16.32 March 21, 2021 SP.16.31 March 21, 2021 SP.16.32 March 21, 2021 SP.16.33 March 21, 2021 SP.16.34 March 21, 2021 SP.16.35 March 21, 2021 SP.16.36 March 21, 2021 SP.16.30 March 21, 2021 SP.16.31 March 21, 2021 SP.16.31 March 21, 2021 SP.16.32 March 21, 2021 SP.16.33 March 21, 2021 SP.16.34 March 21, 2021 SP.16.35 March 21, 2021 SP.16.30 March 21, 2021 SP.16.31 March				
SP.12.4				
SP.15.1 November 15, 2022 PD.ModID.10.1 November 15, 2022 SP.15.2 November 15, 2022 PD.ModID.10.2 November 15, 2022 SP.15.3 May 5, 2022 PD.10.1 July 15, 2022 SP.16.1 March 21, 2021 PD.10.2 July 15, 2022 SP.16.2 March 21, 2021 PD.10.3 July 15, 2022 SP.16.3 March 21, 2021 PD.10.5 July 15, 2022 SP.16.5 March 21, 2021 PD.10.6 July 15, 2022 SP.16.6 November 4, 2021 PD.10.7 July 15, 2022 SP.16.8 November 4, 2021 PD.10.9 July 15, 2022 SP.16.9 November 15, 2022 PD.10.10 July 15, 2022 SP.16.10 March 21, 2021 PD.10.11 July 15, 2022 SP.16.13 November 4, 2021 PD.10.12 July 15, 2022 SP.16.14 March 21, 2021 PD.10.13 July 15, 2022 SP.16.15 March 21, 2021 PD.10.15 July 15, 2022 SP.16.16 March 21, 2021 PD.10.16 July 15, 2022				
SP.15.2 November 15, 2022 SP.15.3 May 5, 2022 SP.15.4 May 5, 2022 SP.16.1 March 21, 2021 SP.16.2 March 21, 2021 SP.16.3 March 21, 2021 SP.16.4 March 21, 2021 SP.16.6 November 4, 2021 SP.16.6 November 4, 2021 SP.16.8 November 4, 2021 SP.16.9 November 15, 2022 SP.16.11 March 21, 2021 SP.16.11 March 21, 2021 SP.16.12 March 21, 2021 SP.16.13 November 4, 2021 SP.16.14 March 21, 2021 SP.16.16 March 21, 2021 SP.16.17 March 21, 2021 SP.16.18 March 21, 2021 SP.16.19 March 21, 2021 SP.16.10 March 21, 2021 SP.16.11 March 21, 2021 SP.16.12 March 21, 2021 SP.16.13 November 4, 2021 SP.16.14 March 21, 2021 SP.16.15 March 21, 2021 SP.16.16 March 21, 2021 SP.16.16 March 21, 2021 SP.16.17 March 21, 2021 SP.16.18 March 21, 2021 SP.16.19 March 21, 2021 SP.16.19 March 21, 2021 SP.16.20 March 21, 2021 SP.16.21 March 21, 2021 SP.16.22 March 21, 2021 SP.16.23 March 21, 2021 SP.16.24 March 21, 2021 SP.16.25 March 21, 2021 SP.16.26 March 21, 2021 SP.16.26 March 21, 2021 SP.16.26 March 21, 2021 SP.16.27 March 21, 2021 SP.16.28 March 21, 2021 SP.16.29 March 21, 2021 SP.16.30 March 21, 2021 SP.16.30 March 21, 2021 SP.16.31 March 21, 2021 S		•		• '
SP.15.3 May 5, 2022 PD.10.1 July 15, 2022 SP.15.4 May 5, 2022 PD.10.2 July 15, 2022 SP.16.1 March 21, 2021 PD.10.3 July 15, 2022 SP.16.2 March 21, 2021 PD.10.4 July 15, 2022 SP.16.3 March 21, 2021 PD.10.5 July 15, 2022 SP.16.4 March 21, 2021 PD.10.6 July 15, 2022 SP.16.5 March 21, 2021 PD.10.7 July 15, 2022 SP.16.6 November 4, 2021 PD.10.7 July 15, 2022 SP.16.8 November 4, 2021 PD.10.9 July 15, 2022 SP.16.9 November 15, 2022 PD.10.10 July 15, 2022 SP.16.10 March 21, 2021 PD.10.11 July 15, 2022 SP.16.11 March 21, 2021 PD.10.12 July 15, 2022 SP.16.13 November 4, 2021 PD.10.13 July 15, 2022 SP.16.14 March 21, 2021 PD.10.14 July 15, 2022 SP.16.15 March 21, 2021 PD.10.14 July 15, 2022 SP.16.16 Mar				
SP.15.4 May 5, 2022 PD.10.2 July 15, 2022 SP.16.1 March 21, 2021 PD.10.3 July 15, 2022 SP.16.2 March 21, 2021 PD.10.4 July 15, 2022 SP.16.3 March 21, 2021 PD.10.5 July 15, 2022 SP.16.5 March 21, 2021 PD.10.6 July 15, 2022 SP.16.6 November 4, 2021 PD.10.7 July 15, 2022 SP.16.7 May 5, 2022 PD.10.8 July 15, 2022 SP.16.8 November 4, 2021 PD.10.9 July 15, 2022 SP.16.9 November 4, 2021 PD.10.10 July 15, 2022 SP.16.10 March 21, 2021 PD.10.11 July 15, 2022 SP.16.11 March 21, 2021 PD.10.12 July 15, 2022 SP.16.12 March 21, 2021 PD.10.13 July 15, 2022 SP.16.13 November 4, 2021 PD.10.12 July 15, 2022 SP.16.16 March 21, 2021 PD.10.14 July 15, 2022 SP.16.17 March 21, 2021 PD.10.14 July 15, 2022 SP.16.18 Ma				
SP.16.1 March 21, 2021 PD.10.3 July 15, 2022 SP.16.2 March 21, 2021 PD.10.4 July 15, 2022 SP.16.3 March 21, 2021 PD.10.5 July 15, 2022 SP.16.5 March 21, 2021 PD.10.6 July 15, 2022 SP.16.6 November 4, 2021 PD.10.7 July 15, 2022 SP.16.7 May 5, 2022 PD.10.8 July 15, 2022 SP.16.8 November 4, 2021 PD.10.9 July 15, 2022 SP.16.9 November 15, 2022 PD.10.10 July 15, 2022 SP.16.11 March 21, 2021 PD.10.12 July 15, 2022 SP.16.12 March 21, 2021 PD.10.12 July 15, 2022 SP.16.13 November 4, 2021 PD.10.13 July 15, 2022 SP.16.14 March 21, 2021 PD.10.15 July 15, 2022 SP.16.15 March 21, 2021 PD.10.15 July 15, 2022 SP.16.16 March 21, 2021 PD.10.19 July 15, 2022 SP.16.18 March 21, 2021 PD.10.19 July 15, 2022 SP.16.29		•		• •
SP.16.2 March 21, 2021 PD.10.4 July 15, 2022 SP.16.3 March 21, 2021 PD.10.5 July 15, 2022 SP.16.4 March 21, 2021 PD.10.6 July 15, 2022 SP.16.5 March 21, 2021 PD.10.7 July 15, 2022 SP.16.6 November 4, 2021 PD.10.8 July 15, 2022 SP.16.7 May 5, 2022 PD.10.9 July 15, 2022 SP.16.8 November 4, 2021 PD.10.9 July 15, 2022 SP.16.9 November 15, 2022 PD.10.10 July 15, 2022 SP.16.10 March 21, 2021 PD.10.12 July 15, 2022 SP.16.11 March 21, 2021 PD.10.12 July 15, 2022 SP.16.13 November 4, 2021 PD.10.13 July 15, 2022 SP.16.14 March 21, 2021 PD.10.15 July 15, 2022 SP.16.15 March 21, 2021 PD.10.16 July 15, 2022 SP.16.16 March 21, 2021 PD.10.18 July 15, 2022 SP.16.19 March 21, 2021 PD.10.19 July 15, 2022 SP.16.20				• •
SP.16.3				• '
SP.16.4 March 21, 2021 SP.16.5 March 21, 2021 SP.16.6 November 4, 2021 SP.16.7 May 5, 2022 SP.16.9 November 15, 2022 SP.16.10 March 21, 2021 SP.16.11 March 21, 2021 SP.16.12 March 21, 2021 SP.16.13 November 4, 2021 SP.16.14 March 21, 2021 SP.16.16 March 21, 2021 SP.16.16 March 21, 2021 SP.16.17 March 21, 2021 SP.16.18 March 21, 2021 SP.16.19 March 21, 2021 SP.16.20 March 21, 2021 SP.16.20 March 21, 2021 SP.16.21 March 21, 2021 SP.16.22 SP.16.22 SP.16.23 March 21, 2021 SP.16.23 March 21, 2021 SP.16.25 March 21, 2021 SP.16.25 March 21, 2021 SP.16.26 March 21, 2021 SP.16.27 March 21, 2021 SP.16.28 March 21, 2021 SP.16.29 SP.16.20 SP.16.20 SP.16.21 March 21, 2021 SP.16.23 March 21, 2021 SP.16.24 March 21, 2021 SP.16.25 March 21, 2021 SP.16.25 March 21, 2021 SP.16.26 March 21, 2021 SP.16.27 March 21, 2021 SP.16.28 March 21, 2021 SP.16.29 SP.16.20 SP.16.20 SP.16.21 March 21, 2021 SP.16.25 March 21, 2021 SP.16.25 March 21, 2021 SP.16.26 March 21, 2021 SP.16.27 March 21, 2021 SP.16.28 March 21, 2021 SP.16.30 March 21, 2021 SP.16.31 March 21, 2021 SP.16.32 March 21, 2021 SP.16.31 March 21, 2021 SP.16.32 March 21, 2021 SP.16.31 March 21, 2021 SP.16.31 March 21, 2021 SP.16.32 March 21, 2021 SP.16.31 March 21, 2021 SP.16.31 March 21, 2021 SP.16.32 March 21, 2021 SP.16.32 March 21, 2021 SP.16.33 March 21, 2021 SP.16.31 March 21, 2021 SP.16.32 March 21, 2021 SP.16.33 March 21, 2021 SP.16.33 March 21, 2021 SP.16.30 March 21, 2021 SP.16.31 March 21, 2021 SP.16.32 March 21, 2021 SP.16.33 March 21, 2021 SP.16.33 March 21, 2021 SP.16.34 March 21, 2021 SP.16.35 March 21, 2021 SP.16.30 March 21, 2021 SP.16.30 March 21, 2021 SP.16.30 March 21, 2021				•
SP.16.5 March 21, 2021 PD.10.7 July 15, 2022 SP.16.6 November 4, 2021 PD.10.8 July 15, 2022 SP.16.7 May 5, 2022 PD.10.8 July 15, 2022 SP.16.8 November 4, 2021 PD.10.9 July 15, 2022 SP.16.9 November 4, 2021 PD.10.10 July 15, 2022 SP.16.10 March 21, 2021 PD.10.11 July 15, 2022 SP.16.11 March 21, 2021 PD.10.12 July 15, 2022 SP.16.12 March 21, 2021 PD.10.13 July 15, 2022 SP.16.13 November 4, 2021 PD.10.14 July 15, 2022 SP.16.14 March 21, 2021 PD.10.15 July 15, 2022 SP.16.15 March 21, 2021 PD.10.16 July 15, 2022 SP.16.16 March 21, 2021 PD.10.17 July 15, 2022 SP.16.18 March 21, 2021 PD.10.18 July 15, 2022 SP.16.29 March 21, 2021 PD.10.20 July 15, 2022 SP.16.20 March 21, 2021 PD.10.21 July 15, 2022 SP.16.23				
SP.16.6 November 4, 2021 PD.10.8 July 15, 2022 SP.16.7 May 5, 2022 PD.10.9 July 15, 2022 SP.16.8 November 4, 2021 PD.10.9 July 15, 2022 SP.16.9 November 15, 2022 PD.10.10 July 15, 2022 SP.16.10 March 21, 2021 PD.10.11 July 15, 2022 SP.16.11 March 21, 2021 PD.10.12 July 15, 2022 SP.16.12 March 21, 2021 PD.10.13 July 15, 2022 SP.16.13 November 4, 2021 PD.10.14 July 15, 2022 SP.16.14 March 21, 2021 PD.10.15 July 15, 2022 SP.16.15 March 21, 2021 PD.10.16 July 15, 2022 SP.16.16 March 21, 2021 PD.10.17 July 15, 2022 SP.16.17 March 21, 2021 PD.10.18 July 15, 2022 SP.16.18 March 21, 2021 PD.10.20 July 15, 2022 SP.16.20 March 21, 2021 PD.10.20 July 15, 2022 SP.16.21 March 21, 2021 PD.10.22 July 15, 2022 SP.16.23	SP.16.4			• •
SP.16.7 May 5, 2022 PD.10.9 July 15, 2022 SP.16.8 November 4, 2021 PD.10.10 July 15, 2022 SP.16.9 November 15, 2022 PD.10.11 July 15, 2022 SP.16.10 March 21, 2021 PD.10.12 July 15, 2022 SP.16.11 March 21, 2021 PD.10.13 July 15, 2022 SP.16.12 March 21, 2021 PD.10.14 July 15, 2022 SP.16.13 November 4, 2021 PD.10.15 July 15, 2022 SP.16.14 March 21, 2021 PD.10.16 July 15, 2022 SP.16.15 March 21, 2021 PD.10.17 July 15, 2022 SP.16.16 March 21, 2021 PD.10.18 July 15, 2022 SP.16.17 March 21, 2021 PD.10.18 July 15, 2022 SP.16.18 March 21, 2021 PD.10.19 July 15, 2022 SP.16.19 March 21, 2021 PD.10.20 July 15, 2022 SP.16.20 March 21, 2021 PD.10.22 July 15, 2022 SP.16.21 March 21, 2021 PD.10.22 July 15, 2022 SP.16.22				
SP.16.8 November 4, 2021 PD.10.10 July 15, 2022 SP.16.9 November 15, 2022 PD.10.11 July 15, 2022 SP.16.10 March 21, 2021 PD.10.12 July 15, 2022 SP.16.11 March 21, 2021 PD.10.13 July 15, 2022 SP.16.12 March 21, 2021 PD.10.14 July 15, 2022 SP.16.13 November 4, 2021 PD.10.15 July 15, 2022 SP.16.14 March 21, 2021 PD.10.15 July 15, 2022 SP.16.15 March 21, 2021 PD.10.16 July 15, 2022 SP.16.16 March 21, 2021 PD.10.18 July 15, 2022 SP.16.17 March 21, 2021 PD.10.18 July 15, 2022 SP.16.18 March 21, 2021 PD.10.19 July 15, 2022 SP.16.19 March 21, 2021 PD.10.20 July 15, 2022 SP.16.20 March 21, 2021 PD.10.21 July 15, 2022 SP.16.21 March 21, 2021 PD.10.22 July 15, 2022 SP.16.22 March 21, 2021 PD.10.24 July 15, 2022 SP.16.23				•
SP.16.9 November 15, 2022 PD.10.11 July 15, 2022 SP.16.10 March 21, 2021 PD.10.12 July 15, 2022 SP.16.11 March 21, 2021 PD.10.13 July 15, 2022 SP.16.12 March 21, 2021 PD.10.14 July 15, 2022 SP.16.13 November 4, 2021 PD.10.15 July 15, 2022 SP.16.14 March 21, 2021 PD.10.15 July 15, 2022 SP.16.15 March 21, 2021 PD.10.16 July 15, 2022 SP.16.16 March 21, 2021 PD.10.17 July 15, 2022 SP.16.17 March 21, 2021 PD.10.18 July 15, 2022 SP.16.18 March 21, 2021 PD.10.19 July 15, 2022 SP.16.19 March 21, 2021 PD.10.20 July 15, 2022 SP.16.20 March 21, 2021 PD.10.21 July 15, 2022 SP.16.21 March 21, 2021 PD.10.22 July 15, 2022 SP.16.22 March 21, 2021 PD.10.23 July 15, 2022 SP.16.23 March 21, 2021 PD.10.25 July 15, 2022 SP.16.29<	SP.16.7			•
SP.16.10 March 21, 2021 PD.10.12 July 15, 2022 SP.16.11 March 21, 2021 PD.10.13 July 15, 2022 SP.16.12 March 21, 2021 PD.10.14 July 15, 2022 SP.16.13 November 4, 2021 PD.10.15 July 15, 2022 SP.16.14 March 21, 2021 PD.10.16 July 15, 2022 SP.16.15 March 21, 2021 PD.10.17 July 15, 2022 SP.16.16 March 21, 2021 PD.10.17 July 15, 2022 SP.16.17 March 21, 2021 PD.10.18 July 15, 2022 SP.16.18 March 21, 2021 PD.10.19 July 15, 2022 SP.16.19 March 21, 2021 PD.10.20 July 15, 2022 SP.16.20 March 21, 2021 PD.10.20 July 15, 2022 SP.16.21 March 21, 2021 PD.10.22 July 15, 2022 SP.16.22 March 21, 2021 PD.10.23 July 15, 2022 SP.16.23 March 21, 2021 PD.10.25 July 15, 2022 SP.16.26 March 21, 2021 PD.11.2 July 15, 2022 SP.16.28 <td>SP.16.8</td> <td>November 4, 2021</td> <td></td> <td>•</td>	SP.16.8	November 4, 2021		•
SP.16.11 March 21, 2021 PD.10.13 July 15, 2022 SP.16.12 March 21, 2021 PD.10.14 July 15, 2022 SP.16.13 November 4, 2021 PD.10.15 July 15, 2022 SP.16.14 March 21, 2021 PD.10.16 July 15, 2022 SP.16.15 March 21, 2021 PD.10.17 July 15, 2022 SP.16.16 March 21, 2021 PD.10.18 July 15, 2022 SP.16.17 March 21, 2021 PD.10.18 July 15, 2022 SP.16.18 March 21, 2021 PD.10.19 July 15, 2022 SP.16.19 March 21, 2021 PD.10.20 July 15, 2022 SP.16.20 March 21, 2021 PD.10.21 July 15, 2022 SP.16.21 March 21, 2021 PD.10.22 July 15, 2022 SP.16.22 March 21, 2021 PD.10.23 July 15, 2022 SP.16.23 March 21, 2021 PD.10.24 July 15, 2022 SP.16.25 March 21, 2021 PD.11.2 July 15, 2022 SP.16.26 March 21, 2021 PD.11.2 July 15, 2022 SP.16.29	SP.16.9	November 15, 2022		
SP.16.12 March 21, 2021 PD.10.14 July 15, 2022 SP.16.13 November 4, 2021 PD.10.15 July 15, 2022 SP.16.14 March 21, 2021 PD.10.16 July 15, 2022 SP.16.15 March 21, 2021 PD.10.17 July 15, 2022 SP.16.16 March 21, 2021 PD.10.18 July 15, 2022 SP.16.17 March 21, 2021 PD.10.19 July 15, 2022 SP.16.18 March 21, 2021 PD.10.19 July 15, 2022 SP.16.19 March 21, 2021 PD.10.20 July 15, 2022 SP.16.20 March 21, 2021 PD.10.21 July 15, 2022 SP.16.21 March 21, 2021 PD.10.22 July 15, 2022 SP.16.22 March 21, 2021 PD.10.23 July 15, 2022 SP.16.23 March 21, 2021 PD.10.24 July 15, 2022 SP.16.24 March 21, 2021 PD.10.25 July 15, 2022 SP.16.25 March 21, 2021 PD.11.2 July 15, 2022 SP.16.26 March 21, 2021 PD.11.3 July 15, 2022 SP.16.29	SP.16.10	March 21, 2021		•
SP.16.13 November 4, 2021 PD.10.15 July 15, 2022 SP.16.14 March 21, 2021 PD.10.16 July 15, 2022 SP.16.15 March 21, 2021 PD.10.16 July 15, 2022 SP.16.16 March 21, 2021 PD.10.17 July 15, 2022 SP.16.17 March 21, 2021 PD.10.18 July 15, 2022 SP.16.18 March 21, 2021 PD.10.19 July 15, 2022 SP.16.19 March 21, 2021 PD.10.20 July 15, 2022 SP.16.20 March 21, 2021 PD.10.21 July 15, 2022 SP.16.21 March 21, 2021 PD.10.22 July 15, 2022 SP.16.22 March 21, 2021 PD.10.23 July 15, 2022 SP.16.23 March 21, 2021 PD.10.24 July 15, 2022 SP.16.24 March 21, 2021 PD.10.25 July 15, 2022 SP.16.25 March 21, 2021 PD.10.26 July 15, 2022 SP.16.26 March 21, 2021 PD.11.1 July 15, 2022 SP.16.28 March 21, 2021 PD.11.2 July 15, 2022 SP.16.30	SP.16.11	March 21, 2021		-
SP.16.14 March 21, 2021 PD.10.16 July 15, 2022 SP.16.15 March 21, 2021 PD.10.17 July 15, 2022 SP.16.16 March 21, 2021 PD.10.18 July 15, 2022 SP.16.17 March 21, 2021 PD.10.18 July 15, 2022 SP.16.18 March 21, 2021 PD.10.19 July 15, 2022 SP.16.19 March 21, 2021 PD.10.20 July 15, 2022 SP.16.20 March 21, 2021 PD.10.21 July 15, 2022 SP.16.21 March 21, 2021 PD.10.22 July 15, 2022 SP.16.22 March 21, 2021 PD.10.23 July 15, 2022 SP.16.23 March 21, 2021 PD.10.24 July 15, 2022 SP.16.24 March 21, 2021 PD.10.25 July 15, 2022 SP.16.25 March 21, 2021 PD.10.26 July 15, 2022 SP.16.26 March 21, 2021 PD.11.1 July 15, 2022 SP.16.28 March 21, 2021 PD.11.2 July 15, 2022 SP.16.29 March 21, 2021 PD.11.4 July 15, 2022 SP.16.31	SP.16.12	March 21, 2021		•
SP.16.15 March 21, 2021 PD.10.17 July 15, 2022 SP.16.16 March 21, 2021 PD.10.18 July 15, 2022 SP.16.17 March 21, 2021 PD.10.19 July 15, 2022 SP.16.18 March 21, 2021 PD.10.20 July 15, 2022 SP.16.19 March 21, 2021 PD.10.20 July 15, 2022 SP.16.20 March 21, 2021 PD.10.21 July 15, 2022 SP.16.21 March 21, 2021 PD.10.22 July 15, 2022 SP.16.22 March 21, 2021 PD.10.23 July 15, 2022 SP.16.23 March 21, 2021 PD.10.24 July 15, 2022 SP.16.24 March 21, 2021 PD.10.25 July 15, 2022 SP.16.25 March 21, 2021 PD.10.26 July 15, 2022 SP.16.26 March 21, 2021 PD.11.1 July 15, 2022 SP.16.27 March 21, 2021 PD.11.2 July 15, 2022 SP.16.28 March 21, 2021 PD.11.3 July 15, 2022 SP.16.30 March 21, 2021 PD.11.6 July 15, 2022 SP.16.31	SP.16.13	November 4, 2021		•
SP.16.16 March 21, 2021 PD.10.18 July 15, 2022 SP.16.17 March 21, 2021 PD.10.19 July 15, 2022 SP.16.18 March 21, 2021 PD.10.20 July 15, 2022 SP.16.19 March 21, 2021 PD.10.20 July 15, 2022 SP.16.20 March 21, 2021 PD.10.21 July 15, 2022 SP.16.21 March 21, 2021 PD.10.22 July 15, 2022 SP.16.22 March 21, 2021 PD.10.23 July 15, 2022 SP.16.23 March 21, 2021 PD.10.24 July 15, 2022 SP.16.24 March 21, 2021 PD.10.25 July 15, 2022 SP.16.25 March 21, 2021 PD.10.26 July 15, 2022 SP.16.26 March 21, 2021 PD.11.1 July 15, 2022 SP.16.27 March 21, 2021 PD.11.2 July 15, 2022 SP.16.28 March 21, 2021 PD.11.3 July 15, 2022 SP.16.29 March 21, 2021 PD.11.4 July 15, 2022 SP.16.31 March 21, 2021 PD.11.6 July 15, 2022 SP.16.32	SP.16.14	March 21, 2021		•
SP.16.17 March 21, 2021 PD.10.19 July 15, 2022 SP.16.18 March 21, 2021 PD.10.20 July 15, 2022 SP.16.19 March 21, 2021 PD.10.21 July 15, 2022 SP.16.20 March 21, 2021 PD.10.22 July 15, 2022 SP.16.21 March 21, 2021 PD.10.23 July 15, 2022 SP.16.22 March 21, 2021 PD.10.23 July 15, 2022 SP.16.23 March 21, 2021 PD.10.24 July 15, 2022 SP.16.24 March 21, 2021 PD.10.25 July 15, 2022 SP.16.25 March 21, 2021 PD.10.26 July 15, 2022 SP.16.26 March 21, 2021 PD.11.1 July 15, 2022 SP.16.27 March 21, 2021 PD.11.2 July 15, 2022 SP.16.28 March 21, 2021 PD.11.3 July 15, 2022 SP.16.29 March 21, 2021 PD.11.4 July 15, 2022 SP.16.31 March 21, 2021 PD.11.6 July 15, 2022 SP.16.32 March 21, 2021 PD.11.8 July 15, 2022 PD.11.9	SP.16.15	March 21, 2021		•
SP.16.18 March 21, 2021 PD.10.20 July 15, 2022 SP.16.19 March 21, 2021 PD.10.21 July 15, 2022 SP.16.20 March 21, 2021 PD.10.22 July 15, 2022 SP.16.21 March 21, 2021 PD.10.23 July 15, 2022 SP.16.22 March 21, 2021 PD.10.24 July 15, 2022 SP.16.23 March 21, 2021 PD.10.25 July 15, 2022 SP.16.24 March 21, 2021 PD.10.26 July 15, 2022 SP.16.25 March 21, 2021 PD.10.26 July 15, 2022 SP.16.26 March 21, 2021 PD.11.1 July 15, 2022 SP.16.27 March 21, 2021 PD.11.2 July 15, 2022 SP.16.28 March 21, 2021 PD.11.3 July 15, 2022 SP.16.29 March 21, 2021 PD.11.4 July 15, 2022 SP.16.30 March 21, 2021 PD.11.5 July 15, 2022 SP.16.31 March 21, 2021 PD.11.6 July 15, 2022 SP.16.32 March 21, 2021 PD.11.8 July 15, 2022 SP.16.32	SP.16.16	March 21, 2021		
SP.16.19 March 21, 2021 PD.10.21 July 15, 2022 SP.16.20 March 21, 2021 PD.10.22 July 15, 2022 SP.16.21 March 21, 2021 PD.10.23 July 15, 2022 SP.16.22 March 21, 2021 PD.10.24 July 15, 2022 SP.16.23 March 21, 2021 PD.10.25 July 15, 2022 SP.16.24 March 21, 2021 PD.10.26 July 15, 2022 SP.16.25 March 21, 2021 PD.11.1 July 15, 2022 SP.16.26 March 21, 2021 PD.11.2 July 15, 2022 SP.16.27 March 21, 2021 PD.11.2 July 15, 2022 SP.16.28 March 21, 2021 PD.11.3 July 15, 2022 SP.16.29 March 21, 2021 PD.11.4 July 15, 2022 SP.16.30 March 21, 2021 PD.11.5 July 15, 2022 SP.16.31 March 21, 2021 PD.11.6 July 15, 2022 SP.16.32 March 21, 2021 PD.11.8 July 15, 2022 PD.11.9 July 15, 2022	SP.16.17	March 21, 2021		• •
SP.16.20 March 21, 2021 PD.10.22 July 15, 2022 SP.16.21 March 21, 2021 PD.10.23 July 15, 2022 SP.16.22 March 21, 2021 PD.10.23 July 15, 2022 SP.16.23 March 21, 2021 PD.10.25 July 15, 2022 SP.16.24 March 21, 2021 PD.10.25 July 15, 2022 SP.16.25 March 21, 2021 PD.10.26 July 15, 2022 SP.16.26 March 21, 2021 PD.11.1 July 15, 2022 SP.16.27 March 21, 2021 PD.11.2 July 15, 2022 SP.16.28 March 21, 2021 PD.11.3 July 15, 2022 SP.16.29 March 21, 2021 PD.11.4 July 15, 2022 SP.16.30 March 21, 2021 PD.11.5 July 15, 2022 SP.16.31 March 21, 2021 PD.11.6 July 15, 2022 SP.16.32 March 21, 2021 PD.11.8 July 15, 2022 PD.11.9 July 15, 2022	SP.16.18			•
SP.16.21 March 21, 2021 PD.10.23 July 15, 2022 SP.16.22 March 21, 2021 PD.10.24 July 15, 2022 SP.16.23 March 21, 2021 PD.10.25 July 15, 2022 SP.16.24 March 21, 2021 PD.10.25 July 15, 2022 SP.16.25 March 21, 2021 PD.10.26 July 15, 2022 SP.16.26 March 21, 2021 PD.11.1 July 15, 2022 SP.16.27 March 21, 2021 PD.11.2 July 15, 2022 SP.16.28 March 21, 2021 PD.11.3 July 15, 2022 SP.16.29 March 21, 2021 PD.11.4 July 15, 2022 SP.16.30 March 21, 2021 PD.11.5 July 15, 2022 SP.16.31 March 21, 2021 PD.11.6 July 15, 2022 SP.16.32 March 21, 2021 PD.11.8 July 15, 2022 PD.11.9 July 15, 2022	SP.16.19	March 21, 2021		•
SP.16.22 March 21, 2021 PD.10.24 July 15, 2022 SP.16.23 March 21, 2021 PD.10.25 July 15, 2022 SP.16.24 March 21, 2021 PD.10.26 July 15, 2022 SP.16.25 March 21, 2021 PD.10.26 July 15, 2022 SP.16.26 March 21, 2021 PD.11.1 July 15, 2022 SP.16.27 March 21, 2021 PD.11.2 July 15, 2022 SP.16.28 March 21, 2021 PD.11.3 July 15, 2022 SP.16.29 March 21, 2021 PD.11.4 July 15, 2022 SP.16.30 March 21, 2021 PD.11.5 July 15, 2022 SP.16.31 March 21, 2021 PD.11.6 July 15, 2022 SP.16.32 March 21, 2021 PD.11.8 July 15, 2022 PD.11.9 July 15, 2022	SP.16.20	March 21, 2021		• •
SP.16.23 March 21, 2021 PD.10.25 July 15, 2022 SP.16.24 March 21, 2021 PD.10.26 July 15, 2022 SP.16.25 March 21, 2021 PD.11.2 July 15, 2022 SP.16.26 March 21, 2021 PD.11.2 July 15, 2022 SP.16.27 March 21, 2021 PD.11.3 July 15, 2022 SP.16.28 March 21, 2021 PD.11.4 July 15, 2022 SP.16.29 March 21, 2021 PD.11.5 July 15, 2022 SP.16.30 March 21, 2021 PD.11.6 July 15, 2022 SP.16.31 March 21, 2021 PD.11.7 July 15, 2022 SP.16.32 March 21, 2021 PD.11.8 July 15, 2022 PD.11.9 July 15, 2022	SP.16.21			•
SP.16.24 March 21, 2021 PD.10.26 July 15, 2022 SP.16.25 March 21, 2021 PD.11.1 July 15, 2022 SP.16.26 March 21, 2021 PD.11.2 July 15, 2022 SP.16.27 March 21, 2021 PD.11.3 July 15, 2022 SP.16.28 March 21, 2021 PD.11.3 July 15, 2022 SP.16.29 March 21, 2021 PD.11.4 July 15, 2022 SP.16.30 March 21, 2021 PD.11.5 July 15, 2022 SP.16.31 March 21, 2021 PD.11.6 July 15, 2022 SP.16.32 March 21, 2021 PD.11.8 July 15, 2022 PD.11.9 July 15, 2022	SP.16.22	March 21, 2021		•
SP.16.25 March 21, 2021 PD.11.1 July 15, 2022 SP.16.26 March 21, 2021 PD.11.2 July 15, 2022 SP.16.27 March 21, 2021 PD.11.3 July 15, 2022 SP.16.28 March 21, 2021 PD.11.4 July 15, 2022 SP.16.29 March 21, 2021 PD.11.5 July 15, 2022 SP.16.30 March 21, 2021 PD.11.5 July 15, 2022 SP.16.31 March 21, 2021 PD.11.6 July 15, 2022 SP.16.32 March 21, 2021 PD.11.8 July 15, 2022 PD.11.9 July 15, 2022				• •
SP.16.26 March 21, 2021 PD.11.2 July 15, 2022 SP.16.27 March 21, 2021 PD.11.3 July 15, 2022 SP.16.28 March 21, 2021 PD.11.4 July 15, 2022 SP.16.29 March 21, 2021 PD.11.5 July 15, 2022 SP.16.30 March 21, 2021 PD.11.6 July 15, 2022 SP.16.31 March 21, 2021 PD.11.7 July 15, 2022 SP.16.32 March 21, 2021 PD.11.8 July 15, 2022 PD.11.9 July 15, 2022 PD.11.9 July 15, 2022	SP.16.24			
SP.16.27 March 21, 2021 PD.11.3 July 15, 2022 SP.16.28 March 21, 2021 PD.11.4 July 15, 2022 SP.16.29 March 21, 2021 PD.11.5 July 15, 2022 SP.16.30 March 21, 2021 PD.11.6 July 15, 2022 SP.16.31 March 21, 2021 PD.11.7 July 15, 2022 SP.16.32 March 21, 2021 PD.11.8 July 15, 2022 PD.11.8 July 15, 2022 PD.11.8 July 15, 2022 PD.11.9 July 15, 2022	SP.16.25	March 21, 2021		•
SP.16.28 March 21, 2021 PD.11.4 July 15, 2022 SP.16.29 March 21, 2021 PD.11.5 July 15, 2022 SP.16.30 March 21, 2021 PD.11.6 July 15, 2022 SP.16.31 March 21, 2021 PD.11.7 July 15, 2022 SP.16.32 March 21, 2021 PD.11.8 July 15, 2022 PD.11.9 July 15, 2022 PD.11.9 July 15, 2022	SP.16.26	March 21, 2021		• •
SP.16.29 March 21, 2021 PD.11.5 July 15, 2022 SP.16.30 March 21, 2021 PD.11.6 July 15, 2022 SP.16.31 March 21, 2021 PD.11.7 July 15, 2022 SP.16.32 March 21, 2021 PD.11.8 July 15, 2022 PD.11.8 July 15, 2022 PD.11.9 July 15, 2022	SP.16.27	March 21, 2021		
SP.16.30 March 21, 2021 SP.16.31 March 21, 2021 SP.16.32 March 21, 2021 PD.11.6 July 15, 2022 PD.11.7 July 15, 2022 PD.11.8 July 15, 2022 PD.11.9 July 15, 2022	SP.16.28	March 21, 2021		• •
SP.16.31 March 21, 2021 PD.11.7 July 15, 2022 PD.11.8 PD.11.9 July 15, 2022 PD.11.9 July 15, 2022	SP.16.29			•
SP.16.32 March 21, 2021 PD.11.8 July 15, 2022 PD.11.9 July 15, 2022	SP.16.30	March 21, 2021		•
PD.11.9 July 15, 2022	SP.16.31	March 21, 2021		•
	SP.16.32	March 21, 2021		•
PD.11.10 July 15, 2022				•
			PD.11.10	July 15, 2022

PD.11.11	July 15, 2022	727 O L E A D 1 D	27 VC C M EAA CATD	
PD.11.12	July 15, 2022	737-8 LEAP-1B27 KG C M FAA CATB		
PD.12.1	July 15, 2022	TO1-10% TO2-20% ALT-AB		
PD.12.2	July 15, 2022	PI.TOC.10.1	July 15, 2022	
PD.12.3	July 15, 2022	PI.TOC.10.2	July 15, 2022	
PD.12.4	July 15, 2022	PI.TOC.10.3	July 15, 2022	
PD.12.5	July 15, 2022	PI.TOC.10.4	July 15, 2022	
PD.12.6	July 15, 2022	PI.TOC.10.5	July 15, 2022	
PD.12.7	July 15, 2022	PI.TOC.10.6	July 15, 2022	
PD.12.8	July 15, 2022	PI.ModID.10.1	November 15, 2022	
PD.12.9	July 15, 2022	PI.ModID.10.2	November 15, 2022	
PD.12.10	July 15, 2022	PI.10.1	July 15, 2022	
PD.12.11	July 15, 2022	PI.10.2	July 15, 2022	
PD.12.12	July 15, 2022	PI.10.3	July 15, 2022	
PD.12.13	July 15, 2022	PI.10.4	July 15, 2022	
PD.12.14	July 15, 2022	PI.10.5	July 15, 2022	
PD.12.15	July 15, 2022	PI.10.6	July 15, 2022	
PD.12.16	July 15, 2022	PI.10.7	July 15, 2022	
PD.12.17	July 15, 2022	PI.10.8	July 15, 2022	
PD.12.18	July 15, 2022	PI.10.9	July 15, 2022	
PD.13.1	July 15, 2022	PI.10.10	July 15, 2022	
PD.13.2	July 15, 2022	PI.10.11	July 15, 2022	
PD.13.3	July 15, 2022	PI.10.12	July 15, 2022	
PD.13.4	July 15, 2022	PI.10.13	July 15, 2022	
PD.13.5	July 15, 2022	PI.10.14	July 15, 2022	
PD.13.6	July 15, 2022	PI.10.15	July 15, 2022	
PD.13.7	July 15, 2022	PI.10.16	July 15, 2022	
PD.13.8	July 15, 2022	PI.10.17	July 15, 2022	
PD.13.9	July 15, 2022	PI.10.18	July 15, 2022	
PD.13.10	July 15, 2022	PI.10.19	July 15, 2022	
PD.13.11	July 15, 2022	PI.10.20	July 15, 2022	
PD.13.12	July 15, 2022	PI.10.21	July 15, 2022	
PD.13.13	July 15, 2022	PI.10.22	July 15, 2022	
PD.13.14	July 15, 2022	PI.10.23	July 15, 2022	
PD.14.1	July 15, 2022	PI.10.24	July 15, 2022	
PD.14.2	July 15, 2022	PI.10.25	July 15, 2022	
PD.14.3	July 15, 2022	PI.10.26	July 15, 2022	
PD.14.4	July 15, 2022	PI.10.27	July 15, 2022	
PD.14.5	July 15, 2022	PI.10.28	July 15, 2022	
PD.14.6	July 15, 2022	PI.10.29	July 15, 2022	
PD.14.7	July 15, 2022	PI.10.30	July 15, 2022	
PD.14.8	July 15, 2022	PI.10.31	July 15, 2022	
	•	PI.10.32	July 15, 2022	
Performance Inflight		PI.10.33	July 15, 2022	
PI.TOC.1	July 15, 2022	PI.10.34	July 15, 2022	
PI.TOC.2	July 15, 2022	PI.10.35	July 15, 2022	
		PI.10.36	July 15, 2022	

	757 Flight Crew C	•	
PI.10.37	July 15, 2022	PI.10.84	July 15, 2022
PI.10.38	July 15, 2022	PI.10.85	July 15, 2022
PI.10.39	July 15, 2022	PI.10.86	July 15, 2022
PI.10.40	July 15, 2022	PI.10.87	July 15, 2022
PI.10.41	July 15, 2022	PI.10.88	July 15, 2022
PI.10.42	July 15, 2022	PI.11.1	July 15, 2022
PI.10.43	July 15, 2022	PI.11.2	July 15, 2022
PI.10.44	July 15, 2022	PI.11.3	July 15, 2022
PI.10.45	July 15, 2022	PI.11.4	July 15, 2022
PI.10.46	July 15, 2022	PI.11.5	July 15, 2022
PI.10.47	July 15, 2022	PI.11.6	July 15, 2022
PI.10.48	July 15, 2022	PI.11.7	July 15, 2022
PI.10.49	July 15, 2022	PI.11.8	July 15, 2022
PI.10.50	July 15, 2022	PI.11.9	July 15, 2022
PI.10.51	July 15, 2022	PI.11.10	July 15, 2022
PI.10.52	July 15, 2022	PI.12.1	July 15, 2022
PI.10.53	July 15, 2022	PI.12.2	July 15, 2022
PI.10.54	July 15, 2022	PI.12.3	July 15, 2022
PI.10.55	July 15, 2022	PI.12.4	July 15, 2022
PI.10.56	July 15, 2022	PI.12.5	July 15, 2022
PI.10.57	July 15, 2022	PI.12.6	July 15, 2022
PI.10.58	July 15, 2022	PI.12.7	July 15, 2022
PI.10.59	July 15, 2022	PI.12.8	July 15, 2022
PI.10.60	July 15, 2022	PI.12.9	July 15, 2022
PI.10.61	July 15, 2022	PI.12.10	July 15, 2022
PI.10.62	July 15, 2022	PI.12.11	July 15, 2022
PI.10.63	July 15, 2022	PI.12.12	July 15, 2022
PI.10.64	July 15, 2022	PI.12.13	July 15, 2022
PI.10.65	July 15, 2022	PI.12.14	July 15, 2022
PI.10.66	July 15, 2022	PI.12.15	July 15, 2022
PI.10.67	July 15, 2022	PI.12.16	July 15, 2022
PI.10.68	July 15, 2022	PI.12.17	July 15, 2022
PI.10.69	July 15, 2022	PI.12.18	July 15, 2022
PI.10.70	July 15, 2022	PI.12.19	July 15, 2022
PI.10.71	July 15, 2022	PI.12.20	July 15, 2022
PI.10.72	July 15, 2022	PI.12.21	July 15, 2022
PI.10.73	July 15, 2022	PI.12.22	July 15, 2022
PI.10.74	July 15, 2022	PI.12.23	July 15, 2022
PI.10.75	July 15, 2022	PI.12.24	July 15, 2022
PI.10.76	July 15, 2022	PI.12.25	July 15, 2022
PI.10.77	July 15, 2022	PI.12.26	July 15, 2022
PI.10.78	July 15, 2022	PI.12.27	July 15, 2022
PI.10.79	July 15, 2022	PI.12.28	July 15, 2022
PI.10.80	July 15, 2022	PI.12.29	July 15, 2022
PI.10.81	July 15, 2022	PI.12.30	July 15, 2022
PI.10.82	July 15, 2022	PI.12.31	July 15, 2022
PI.10.83	July 15, 2022	PI.12.32	July 15, 2022

PI.12.33	July 15, 2022	PI.17.6	July 15, 2022
PI.12.34	July 15, 2022	PI.18.1	July 15, 2022
PI.12.35	July 15, 2022	PI.18.2	July 15, 2022
PI.12.36	July 15, 2022	PI.18.3	July 15, 2022
PI.12.37	July 15, 2022	PI.18.4	July 15, 2022
PI.12.38	July 15, 2022	PI.18.5	July 15, 2022
PI.12.39	July 15, 2022	PI.18.6	July 15, 2022
PI.12.40	July 15, 2022	PI.18.7	July 15, 2022
PI.12.41	July 15, 2022	PI.18.8	July 15, 2022
PI.12.42	July 15, 2022	PI.18.9	July 15, 2022
PI.13.1	July 15, 2022	PI.18.10	July 15, 2022
PI.13.2	July 15, 2022	PI.18.11	July 15, 2022
PI.13.3	July 15, 2022	PI.18.12	July 15, 2022
PI.13.4	July 15, 2022	PI.18.13	July 15, 2022
PI.13.5	July 15, 2022	PI.18.14	July 15, 2022
PI.13.6	July 15, 2022	PI.18.15	July 15, 2022
PI.13.7	July 15, 2022	PI.18.16	July 15, 2022
PI.13.8	July 15, 2022		
PI.13.9	July 15, 2022		
PI.13.10	July 15, 2022		
PI.13.11	July 15, 2022		
PI.13.12	July 15, 2022		
PI.13.13	July 15, 2022		
PI.13.14	July 15, 2022		
PI.14.1	July 15, 2022		
PI.14.2	July 15, 2022		
PI.14.3	July 15, 2022		
PI.14.4	July 15, 2022		
PI.15.1	July 15, 2022		
PI.15.2	July 15, 2022		
PI.15.3	July 15, 2022		
PI.15.4	July 15, 2022		
PI.15.5	July 15, 2022		
PI.15.6	July 15, 2022		
PI.15.7	July 15, 2022		
PI.15.8	July 15, 2022		
PI.16.1	July 15, 2022		
PI.16.2	July 15, 2022		
PI.16.3	July 15, 2022		
PI.16.4	July 15, 2022		
PI.16.5	July 15, 2022		
PI.16.6	July 15, 2022		
PI.17.1	July 15, 2022		
PI.17.2	July 15, 2022		
PI.17.3	July 15, 2022		
PI.17.4	July 15, 2022		
PI.17.5	July 15, 2022		
		I	

INTENTIONALLY BLANK

Preface Company Bulletin Record

Chapter 0 Section 6a

General

The information contained in the bulletin will be incorporated into the FCOM by amendment and, upon approval by Transport Canada, the bulletin will be removed from the FCOM.

Bulletin status is defined as follows:

- In Effect (IE) the bulletin contains pertinent information not otherwise covered in the Flight Crew Operations Manual. The bulletin remains active and should be retained in the manual
- Incorporated (INC) information has been incorporated in the Flight Crew Operations Manual. The bulletin has been removed from the manual.
- Cancelled (CANC) time restricted bulletin no longer in effect. The bulletin has been removed from the Flight Crew Operations Manual.

Number	Subject	Date	Status
FCMAX22-002	Revised Weight Limitations	July 06, 2022	INC

Intentionally Blank

Preface Boeing Bulletin Record

Chapter 0
Section 6b

General

The Boeing Company issues Flight Crew Operations Manual Bulletins to provide important information to flight crews prior to the next formal revision of the Flight Crew Operations Manual. The transmitted information may be of interest to only specific Operators or may apply to all Operators of this model airplane. Each bulletin will vary.

Bulletins are dated and numbered sequentially for each operator. Each new bulletin is recorded in this record when received and filed as instructed. A bulletin may not apply to all airplane models. When appropriate, the next formal FCOM revision will include an updated bulletin record page to reflect current bulletin status.

Temporary information is normally incorporated into the manual at the next formal revision. When the condition remains temporary after a bulletin incorporation, the temporary paragraphs are identified by a heading referencing the originating bulletin. When the temporary condition no longer exists, the bulletin is cancelled and the original manual content is restored.

Bulletin status is defined as follows:

- In Effect (IE) the bulletin contains pertinent information not otherwise covered in the Flight Crew Operations Manual. The bulletin remains active and should be retained in the manual
- Incorporated (INC) the bulletin operating information has been incorporated into the Flight Crew Operations Manual. However, the bulletin remains active and should be retained in the manual
- Cancelled (CANC) the bulletin is no longer active and should be removed from the Flight Crew Operations Manual. All bulletins previously cancelled are no longer listed in the Bulletin Record.

The person filing a new or revised bulletin should amend the Bulletin Record as instructed in the Administrative Information section of the bulletin. When a bulletin includes replacement pages for the Flight Crew Operations Manual or QRH, the included pages should be filed as instructed in the Flight Crew Operations Manual Information section of the bulletin.

Number	Subject	Date	Status
FLR-1	Cabin Pressurization Panel Blanking/Dimming Issues	March 1, 2021	CANC
FLR-2	Bleed System Oscillations	March 1, 2021	IE
FLR-3 R1	START VALVE OPEN Alert Blinking at Starter Cutout	March 1, 2021	IE
FLR-4	Elevator Jam Landing Assist Switch	March 1, 2021	IE
FLR-5	Localizer Overshoot When Using LNAV to Intercept the Localizer	May 21, 2021	IE
FLR-6	Incorrect FMC Constraint Altitude on a Standard Terminal Arrival Route (STAR) with a Common Waypoint, after Selection of another Approach	July 27, 2021	IE
FLR-7	VNAV INVALID-PERF Scratchpad Message	July 27, 2021	IE
FLR-8	Overrun Warning (ORW) System Restriction if a Landing Runway is Not Selected or Available in the FMC	July 27, 2021	IE
FLR-9	737 MAX Integrated ADIRU(I-ADIRU) and Automatic Navigation Realign (ANR) Mode	July 27, 2021	IE
FLR-10	Lateral Path Exceedance on Approach Procedures with a Course Reversal	July 27, 2021	IE
FLR-11	737 MAX Approach Data Block Anomaly with GLS Channel Selected	November 4, 2021	IE
FLR-12	737-8/-9 Airplanes with Honeywell IMMR Hardware Part Number 69002600-0101.	November 4, 2021	CANC
FLR-13	Predictive Windshear System Anomaly	November 4, 2021	IE
FLR-14R1	Radio Altimeter Anomalies Due to 5G C-Band Wireless Broadband Interference in the United States	February 4, 2022	IE

The Boeing Company Seattle, Washington 98124-2207

Number: FLR-2

IssueDate: March 1, 2021

Subject: Bleed System Oscillations

Reason: To inform the crew of bleed system oscillations with Engine Anti-Ice

ON and Wing Anti-Ice OFF.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

During flight test the 737-8 has exhibited bleed system pressure oscillations. These oscillations were observed with takeoff or climb thrust set with Engine or Wing Anti-Ice ON or OFF. The oscillations have also been observed at reduced thrust settings during cruise or descent with Engine Anti-Ice ON and Wing Anti-Ice OFF. During the bleed system oscillations the L and R needles on the Bleed Air DUCT PRESSURE Indicator, located on the forward overhead panel, can fluctuate approximately plus or minus 10 psi out of phase with one another. This condition does not have any adverse effects on aircraft systems.

The oscillations are caused by unanticipated interaction of both the engine bleed air valves and the electronically controlled Flow Control Valves (eFCV). Boeing is working on the fix to these oscillations and will communicate appropriate implementation instructions as soon as possible.

737-7/8/-9 models are affected by this bulletin.

Operating Instructions

If bleed system oscillations are observed as described above, no crew action is needed.

Administrative Information

Insert this bulletin behind the Bulletin Record page in Volume 1 of your Flight Crew Operations Manual (FCOM). Amend the FCOM Bulletin Record page to show bulletin FLR-2 "In Effect" (IE).

BOEING

Flight Crew Operations Manual Bulletin for Flair Airlines Ltd

The Boeing Company Seattle, Washington 98124-2207

Number: FLR-3 R1

IssueDate: March 15, 2022

Subject: START VALVE OPEN Alert Blinking at Starter Cutout

Reason: This bulletin informs flight crews of nuisance blinking of the START

VALVE OPEN alert after reaching starter cutout speed.

This bulletin is being revised to update the release date of MDS software

Blockpoint 2.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

At starter cutout speed, momentary blinking of the START VALVE OPEN alert has occurred on 737 MAX flight tests.

The START VALVE OPEN alert and the entire crew alert block begins to blink if the start valve is still open 5 seconds after being commanded to close. In some cases, the timing of the command signal plus the time to close the start valve is slightly over the 5 second threshold, causing the alert to blink momentarily.

After starter cutout speed is reached, if the START VALVE OPEN alert blinks momentarily then extinguishes, the blinking can be considered a nuisance. Continued blinking for up to 10 seconds followed by steady illumination of the START VALVE OPEN alert is indication of a start valve malfunction.

This anomaly affects 737-7/-8/-9 airplanes with MDS software prior to Blockpoint (BP) 2. MDS software BP2, scheduled for release 4Q2022, changes the threshold of the alert from 5 seconds to 7 seconds eliminating the nuisance alerts. Boeing will communicate appropriate fix instructions as soon as they become available.

Operating Instructions

After starter cutout speed is reached:

If the START VALVE OPEN alert blinks momentarily then extinguishes, no flight crew or maintenance action is needed.

If the START VALVE OPEN alert continues to blink for up to 10 seconds then illuminates steady, do the START VALVE OPEN Non-Normal Checklist.

Administrative Information

This bulletin replaces bulletin FLR-3, dated March 1, 2021. Revise the Flight Crew Operations Manual Bulletin Record Page to show bulletin FLR-3 as "CANCELLED" (CANC).

Insert this bulletin behind the Bulletin Record page in Volume 1 of your Flight Crew Operations Manual (FCOM). Amend the FCOM Bulletin Record page to show bulletin FLR-3 R1 "In Effect" (IE).

This bulletin will be cancelled after Boeing is notified that all affected airplanes in your fleet have been modified with MDS software BP 2.

The Boeing Company Seattle, Washington 98124-2207

Number: FLR-4

IssueDate: March 1, 2021

Airplane Effectivity: 737-7 / -8 / -9

Subject: Elevator Jam Landing Assist Switch

Reason: To inform flight crews of the possibility that the Elevator Jam Landing

Assist switch installed on some airplanes is a 3 position switch instead

of the correct 2 position switch.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

The Elevator Jam Landing Assist switch on the 737 MAX is supposed to be a guarded 2 position switch. The 2 positions are ON and OFF with the switch guard closed to the OFF position. During production testing on a 737-8 airplane, it was discovered that the Elevator Jam Landing Assist switch installed on some airplanes has a 3 position switch, an ON position, an OFF position and a middle position. The middle position is not wired and is therefore equivalent to the OFF position. Regardless of whether the correct 2 position switch or incorrect 3 position switch is installed, the panel is only labeled for a 2 position switch and labeled with ON and OFF. When the guard is closed, the switch can only be in the middle or OFF positions.

Boeing has worked with the switch manufacturer, Honeywell, to identify the issue. Service Letter 737-27-275 has been released to provide a switch replacement process.

Boeing has determined that airplanes from line number 7065 to line number 7278 might have the incorrect 3 position switch installed. However, airplanes outside of this line number range might also be affected since spare switches may have been sent directly from Honeywell to operators.

Operating Instructions

Normal Procedures

During the Preliminary Preflight Procedure – Captain or First Officer, ensure the guard is closed.

Non-Normal Procedures

In the event a non-normal checklist (NNC) directs the crew to use the Elevator Jam Landing Assist switch, ensure complete movement of the switch to either the ON or OFF position as directed by the NNC. The following NNCs have steps for the Elevator Jam Landing Assist switch:

- · ASSIST ON
- · Jammed or Restricted Flight Controls

Administrative Information

Insert this bulletin behind the Bulletin Record page in Volume 1 of your Flight Crew Operations Manual (FCOM). Amend the FCOM Bulletin Record page to show bulletin FLR-4 "In Effect" (IE).

This Bulletin will be canceled after Boeing is notified that:

- all airplanes in your fleet have been confirmed to have the correct 2 position Elevator Jam Landing Assist switch, and
- any spare switches in your inventory have been confirmed to be the correct 2 position Elevator Jam Landing Assist switch.

The Boeing Company Seattle, Washington 98124-2207

Number: FLR-5

IssueDate: May 21, 2021

Airplane Effectivity: All 737-7/-8/-8200/-9 with Rockwell Collins FCC

P12.1.2 or Newer

Subject: Localizer Overshoot When Using LNAV to Intercept the Localizer

Reason: This bulletin informs flight crews of affected 737-7/-8/-8200/-9

airplanes with Rockwell Collins FCC 12.1.2 or newer of the potential for localizer overshoot by the Autopilot Flight Director System (AFDS)

when using LNAV to intercept the localizer.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Boeing has received reports from operators of the affected 737-7/-8/-8200/-9 airplanes with Rockwell Collins FCC 12.1.2 or newer that the AFDS did not provide proper guidance when capturing a localizer from certain transitions flown in the LNAV roll mode. These incidents have occurred on transitions with large intercept angles (60 degrees or more) and have resulted in flight through the localizer path (overshoot) during capture.

Flight data have confirmed that during these overshoot events, the AFDS initially banks up to 30 degrees but then reduces bank angle during localizer capture and continues through the final approach course, even when VOR/LOC is the engaged roll mode as shown by the Flight Mode Annunciation (FMA). AFDS correction back to the localizer course may not occur within the distance available to establish a stabilized final approach.

Flight Crew Operations Manual Bulletin No. - , Dated (continued)

Most overshoot events have been reported on ILS approaches with transition segments which intercept the localizer at 90-degree angles. However, some overshoots have also occurred with intercept angles less than 90 degrees. In these events, LNAV is the engaged roll mode prior to engagement of VOR/LOC during localizer capture.

In all reported overshoot events, deviation from the localizer was accurately shown by the localizer pointer and scale on the primary flight display (PFD) and the navigation display (ND), and by the airplane symbol on the ND.

Boeing has been able to reproduce the overshoot behavior in an engineering simulator and has determined the root cause. Boeing plans to correct the undesired localizer capture behavior in future Rockwell Collins FCC Operational Program Software (OPS).

Operating Instructions

When conducting an approach using LNAV to intercept a localizer-based final approach course, monitor localizer raw data and call out deviations. If an overshoot occurs that exceeds or is likely to exceed stabilized approach criteria, go-around.

Administrative Information

Insert this bulletin behind the Bulletin Record page in Volume 1 of your Flight Crew Operations Manual (FCOM). Amend the FCOM Bulletin Record page to show bulletin FLR-5 "In Effect" (IE).

This undesired localizer capture behavior will be corrected with a future Rockwell Collins FCC OPS.

This FCOM Bulletin will be canceled after Boeing is notified that all of the affected airplanes in your fleet have been retrofitted with the appropriate Rockwell Collins FCC OPS when available.

The Boeing Company Seattle, Washington 98124-2207

Number: FLR-6

IssueDate: July 27, 2021

Airplane Effectivity: 737-8/-9 Airplanes with FMC U13

Subject: Incorrect FMC Constraint Altitude on a Standard Terminal Arrival

Route (STAR) with a Common Waypoint, after Selection of another

Approach

Reason: To inform crews about the incorrect FMC Constraint Altitude, when

selecting another approach that has a common waypoint with the

original STAR in the active flight plan.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

For airplanes with FMC U13, when a selected approach is changed to another approach that has a common waypoint with the original STAR, the FMC will use the higher constraint altitude for the common waypoint.

Operating Instructions

When a selected approach is changed for another approach that has a common waypoint with the original STAR, verify the waypoint constraint altitude after changing the selected approach.

This anomaly will be corrected in FMC software update U14.

Administrative Information

Insert this bulletin behind the Bulletin Record page in Volume 1 of your Flight Crew Operations Manual (FCOM). Amend the FCOM Bulletin Record page to show bulletin FLR-6 "In Effect" (IE).

Flight Crew Operations Manual Bulletin No. - , Dated (continued)

This anomaly will be corrected in FMC software update U14.

The Boeing Company Seattle, Washington 98124-2207

Number: FLR-7

IssueDate: July 27, 2021

Airplane Effectivity: B737-7/8/9 Airplanes with FMC Software U13

Subject: VNAV INVALID-PERF Scratchpad Message

Reason: To inform the Flight Crews of an anomaly in which the VNAV

INVALID-PERF scratchpad message cannot be cleared unless an

approach is selected in the active flight plan.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

During a Boeing flight test the following software exception error was discovered. When certain forecast wind data is entered into the DES FORECAST page and no approach is selected in the active flight plan, FMC predictions stop, VNAV disengages, the VNAV INVALID-PERF scratchpad message shows and the FMC Alert Lights illuminate. This software exception causes the Cost Index (CI) to be replaced with box prompts on the PERF INIT page. The corrective action for VNAV INVALID-PERF scratchpad message is reentering the CI using either the previous or a new value on the PERF INIT page. Following the CI reentry, activating the data modification by pushing the execute (EXEC) key will restart FMC predictions and allow the crew to reengage VNAV.

However, it was discovered that with certain winds entered on the DES FORECAST page, it may not be possible to reenter a CI value on the PERF INIT page until an approach is selected into the active flight plan.

Note: The exact wind data entries that will trigger this anomaly are not known at this time.

Operating Instructions

When wind data is entered into the DES FORECAST page with no approach selected in the active flight plan, and the VNAV INVALID-PERF scratchpad message is shown in flight, an approach should be entered into the active flight plan. This should be followed by reentering the original CI or a new CI on the PERF INIT page. Afterwards, activating the data modification by pushing the execute (EXEC) key will restart FMC predictions and allow the crew to reengage VNAV.

The inability to reenter a CI if the VNAV INVALID-PERF scratchpad message is shown, can be avoided if an approach is selected in the active flight plan prior to the FMC-calculated Top of Descent (TOD), or if winds are not entered on the DES FORECAST page.

Administrative Information

Insert this bulletin behind the Bulletin Record page in Volume 1 of your Flight Crew Operations Manual (FCOM). Amend the FCOM Bulletin Record page to show bulletin FLR-7 "In Effect" (IE).

This anomaly will be corrected in FMC Software Update U14, scheduled to be released in the second quarter of 2019. This FCOM Bulletin will be revised to include Service Bulletin information when available.

This Bulletin will be cancelled after Boeing is notified that all affected airplanes in your fleet have been retrofitted with FMC Software U14.

The Boeing Company Seattle, Washington 98124-2207

Number: FLR-8

IssueDate: July 27, 2021

Airplane Effectivity: B737-7/-8/-9 with Overrun Warning (ORW) system

installed

Subject: Overrun Warning (ORW) System Restriction if a Landing Runway is

Not Selected or Available in the FMC

Reason: To inform flight crews to inhibit the ORW system if a landing runway is

not selected in the FMC and the runway condition is less than dry.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Testing of the ORW system revealed that if a landing runway is not selected in the FMC ARRIVALS page, the ORW system will only use a DRY runway condition in the system's calculation of landing distance. Thus, if the pilot selects a runway condition that is less than DRY on APPROACH REF Page 2/2 without also selecting a landing runway, the ORW system calculation will not compute properly for the degraded runway condition.

Operating Instructions

Select a landing runway in the FMC. If a landing runway is not available in the FMC and the runway condition is less than DRY, disable the ORW system in accordance with the Overrun Warning (ORW) System Inhibit Operation supplementary procedure.

Administrative Information

Insert this bulletin behind the Bulletin Record page in Volume 1 of your Flight Crew Operations Manual (FCOM). Amend the FCOM Bulletin Record page to show bulletin FLR-8 "In Effect" (IE).

This anomaly will be corrected in FMC Software Update U14, scheduled to be released in the second quarter of 2019. This FCOM Bulletin will be revised to include Service Bulletin information when available.

This FCOM Bulletin will be cancelled after Boeing is notified that all affected airplanes in your fleet have been retrofitted with FMC Software U14.

The Boeing Company Seattle, Washington 98124-2207

Number: FLR-9

IssueDate: July 27, 2021

Subject: 737 MAX Integrated ADIRU (I-ADIRU) and Automatic Navigation

Realign (ANR) Mode

Reason: To provide information to the flight crew of the flight deck effects of the

ANR mode.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

The 737 MAX is equipped with I-ADIRU part number HG2050BC04 and it was revealed during flight test that after landing when the I-ADIRU enters the post-flight Auto Navigation Realign (ANR) mode it can cause some unexpected flight deck effects.

The purpose of the ANR mode is to automatically perform an IRS realignment when the airplane is motionless to remove drift errors associated with position and ground speed.

The ANR mode is active when the following conditions are met:

- The airplane is on ground
- The IRS Mode Selectors are in NAV mode
- The airplane remains motionless for 7.5 to 15 minutes depending on the airplane latitude

737 MAX airplanes with I-ADIRU part number HG2050BC04 that have been connected to the Multi-Mode Receiver (MMR) are capable of automatically accepting GPS position for IRS initializations (i.e. full alignment, Fast Realignment, and post-flight ANR mode).

Note: Position entered by the flight crew has priority over automatically accepted GPS position data. Once initialized, whether automatically by GPS or manually by the flight crew, GPS position is no longer automatically accepted by the I-ADIRU until after a flight is completed.

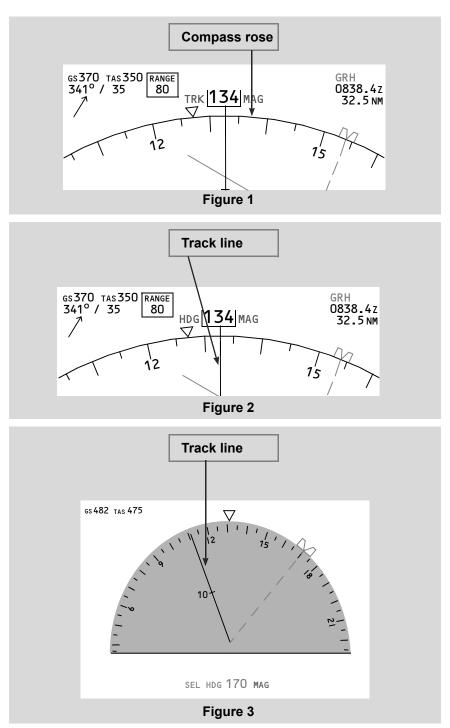
The FMC receives latitude, longitude and ground speed inputs from the I-ADIRU and uses this data to calculate its own FMC ground speed, track and position which are then displayed on the Navigation and Primary Flight Displays (ND and PFD).

The I-ADIRU position can drift over time during flight. In order to remove drift errors, the post-flight ANR mode is automatically activated after completion of a flight when the conditions described above are met. During post-flight ANR mode, the I-ADIRU accepts present GPS position from the MMR to automatically update IRS position and remove drift errors accumulated during flight.

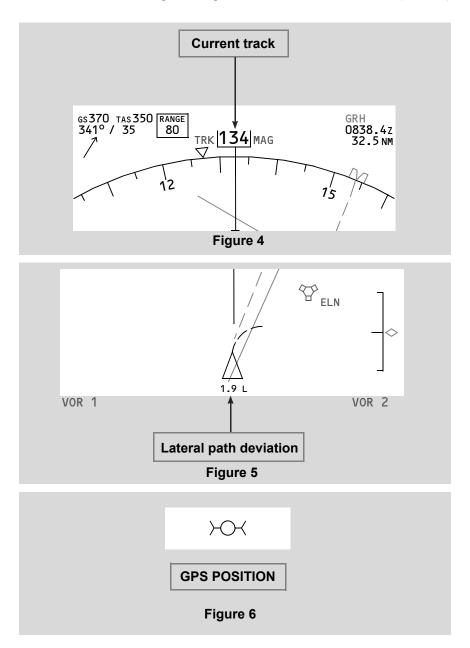
When the I-ADIRU drift errors accumulated during flight are removed by the post-flight ANR mode, the FMC calculation of ground speed, track, and position can be adversely affected. One or more of the following flight deck effects can be observed on the ND and PFD:

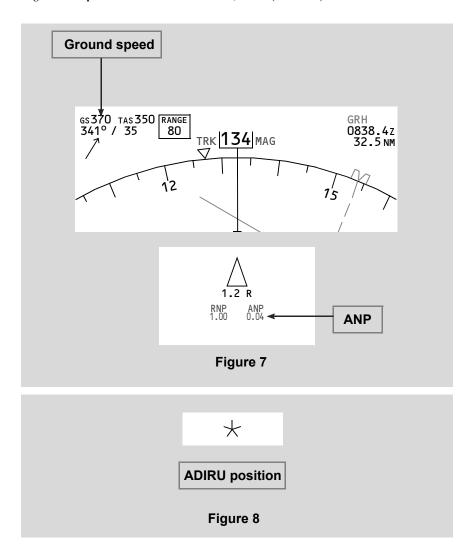
- Slew of the compass rose on the ND for the "Track Up" display option (Figure 1)
- Slew of the track line on the ND for the "Heading Up" display option (Figure 2)
- Slew of the track line on the PFD compass rose (Figure 3)
- Change in the current track (Figure 4)
- Change in FMC position resulting in a map shift (Figure 5)
 - There is a perceived change in GPS position due to the map shift (Figure 6)
- Change in the FMC ANP and ground speed (Figure 7)

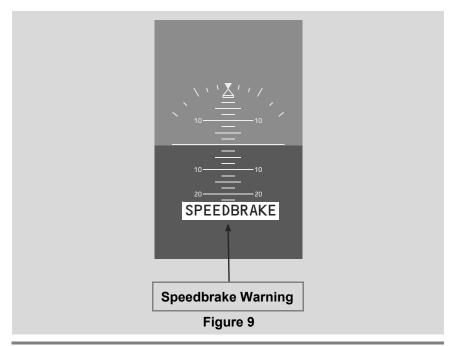
- Change in ADIRU position (Figure 8)
- SPEEDBRAKE Warning (aural and visual) can alert, if this option is installed (figure 9)


Note: These flight deck effects happen post-flight only and are not always present. It depends on how much IRS drift error has occurred during flight (i.e. the difference between IRS position and GPS position) and whether the airplane remains motionless long enough for post-flight ANR mode to complete before IRS mode selectors are set to OFF or a full alignment or Fast Realignment is done. If the difference is small (approximately 1 nm), the FMC position, track, and ground speed transient errors may not be noticeable.

The flight deck effects described above will last approximately 10 - 120 seconds, depending on the IRS position update magnitude, after which the ND and PFD will return to normal and the visual SPEEDBRAKE Warning (if installed) will extinguish. Heading on the PFD and ND is not affected.


It is important to note that the flight deck effects described in the above are only possible when the post-flight ANR mode is active after completion of a flight and valid GPS position is received, i.e., cannot occur during taxi out even if the airplane remains stationary for approximately 7.5 to 15 minutes. Also, if the airplane is moved (motion detected) prior to the ANR mode completing the realignment, the ANR mode is stopped, I-ADIRU position drift errors remain and none of the flight deck effects described above are presented to the flight crew. The ANR mode timer is restarted from the beginning when the airplane again remains stationary (motionless).


The following is more specific information on 737 MAX models affected by this bulletin:


- 737-7 All
- 737-8
 - Line number 6854 and earlier if Service Bulletin 737-34-3141 is incorporated
 - All from line number 6855 and on
- 737-9 All

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

Operating Instructions

Before each flight complete a full IRS alignment and enter the most accurate latitude and longitude to initiate the alignment. If time does not allow a full alignment, do the Fast Realignment Supplementary Procedure.

If after completion of a flight the airplane remains stationary for approximately 7.5 - 15 minutes, the flight crew may observe one or more of the flight deck effects described in the background information. As the IRSs are operating per design no flight crew or maintenance action is needed.

Administrative Information

Insert this bulletin behind the Bulletin Record page in Volume 1 of your Flight Crew Operations Manual (FCOM). Amend the FCOM Bulletin Record page to show bulletin FLR-9 "In Effect" (IE).

This anomaly will be corrected in FMC Software Update U14, scheduled to be released in the second quarter of 2019. This FCOM Bulletin will be revised to include Service Bulletin information when available.

This bulletin will be canceled after Boeing is notified that all affected airplanes in your fleet have been retrofitted with FMC Software U14.

Please send all correspondence regarding Flight Crew Operations Manual Bulletin status, to the 737 Manager, Flight Technical Data, through the Service Requests Application (SR App) on the MyBoeingFleet home page.

Boeing Proprietary. Copyright @ Boeing. May be subject to export restrictions under EAR. See title page for details.

Flight Crew Operations Manual Bulletin No. - , Dated (continued)

Intentionally Blank

The Boeing Company Seattle, Washington 98124-2207

Number: FLR-10

IssueDate: July 27, 2021

Airplane Effectivity: 737 MAX Airplanes with FMC Software U13

Subject: Lateral Path Exceedance on Approach Procedures with a Course

Reversal

Reason: This bulletin informs flight crews of an FMC software U13 anomaly

which generates an LNAV lateral path exceedance when flying an

approach with a course reversal to the inbound leg.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Boeing and GE have received reports from operators of FMC generated LNAV lateral path exceedances when flying an approach with a course reversal to the inbound leg. Some of these approach procedures commence the course reversal at a specified DME and have a lateral limitation not to exceed XX.X DME. In certain instances, the FMC created path may result in exceeding the DME restriction.

This is an original anomaly in FMC U13 for the 737 MAX. This anomaly was introduced when a design change was made to prevent bypasses or discontinuities, based on procedure design of large track changes that are not flyable with high terminal ground speeds.

Operating Instructions

When executing approaches containing distance constrained course reversals on airplanes with FMC Software U13, crews should be aware of this anomaly and pay particular attention that the lateral path on the Navigation Display (ND) does not exceed the limits indicated on the approach procedure. This can be done by reviewing the procedure as displayed on the ND.

To mitigate this issue, it may be necessary to complete the course reversal using Heading Select (HDG SEL) to avoid a lateral path exceedance.

Administrative Information

Insert this bulletin behind the Bulletin Record page in Volume 1 of your Flight Crew Operations Manual (FCOM). Amend the FCOM Bulletin Record page to show bulletin FLR-10 "In Effect" (IE).

This anomaly will be corrected in FMC software update U14.

The Boeing Company Seattle, Washington 98124-2207

Number: FLR-11

IssueDate: November 4, 2021

Subject: 737 MAX Approach Data Block Anomaly with GLS Channel Selected

Reason: To inform the crew of the potential for missing approach data block

information when a GLS channel is selected, and prior to the IMMR

receiving ground station data.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Certification flight tests of the Honeywell Integrated Multi-Mode Receiver (IMMR) revealed an anomaly with the presentation of the GLS channel number on the approach data block on the PFD. The GLS channel number can be temporarily shown but subsequently removed.

This anomaly occurs when both of the following conditions are met:

- A GLS channel is tuned and the Ground Based Augmentation System (GBAS) VHF signals are received by the IMMR.
- A new GLS channel corresponding to a different GBAS is tuned and the VHF signals are not yet received by the IMMR.

In addition to the channel number being removed, GLS deviation scales as well as all of the other information on the approach data block can also be removed, including:

- · Selected GLS identifier / Selected course
- · Runway ID and distance to threshold
- Navigation source reference

Proper GLS approach data block information and GLS deviation scales are restored when the IMMR receives VHF signals from the tuned GBAS.

Flight Crew Operations Manual Bulletin No. - , Dated (continued)

Honeywell is currently working on a software fix. Once the software fix has been determined, Boeing will communicate appropriate fix instructions.

This anomaly affects 737 MAX airplanes equipped with:

- Honeywell IMMR Part Number 69002600-0101 and
- Honeywell software 34 MMR OPS P/N HNR55-2601-0501 or
- Honeywell software 34 MMR OPS P/N HNR56-2601-0601.

Operating Instructions

Do not select a GLS channel until completing the Descent Procedure. If after selecting a GLS channel the approach reference and deviation scales are removed, these indications are restored automatically when the airplane is within range of the newly tuned ground station.

Administrative Information

Insert this bulletin behind the Bulletin Record page in Volume 1 of your Flight Crew Operations Manual (FCOM). Amend the FCOM Bulletin Record page to show bulletin FLR-11 "In Effect" (IE).

The approach data block anomaly is temporary until a fix is implemented. This OMB will be canceled when an operator reports the fix has been installed on all affected airplanes in their fleet.

Ø BOEING

Flight Crew Operations Manual Bulletin for Flair Airlines Ltd

The Boeing Company Seattle, Washington 98124-2207

Number: FLR-13

IssueDate: November 4, 2021

Subject: Predictive Windshear System Anomaly

Reason: This bulletin informs flight crews of the susceptibility of certain airports

to false Predictive Windshear System (PWS) alerts.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Airlines have reported a false Predictive Windshear System (PWS) alert at the Rio de Janeiro airport (SBRJ). The anomaly is only applicable to PWS alerts; all reactive windshear alerts which occur are valid. These false alerts are limited to airplanes equipped with the Honeywell weather radar RDR-4000 with the following PWS weather radar processor part numbers:

- 930-1000-001
- 930-1000-002
- 930-1000-003

Honeywell has reviewed data provided by the affected airlines and has attempted to determine if particular airports and runways may be susceptible to "false alerts". In addition, data have been analyzed to determine if the alerts are more likely during takeoff or on approach.

Honeywell has accumulated sufficient data to suggest that the following runway is susceptible to false PWS alerts:

• SBRJ (Rio de Janeiro), Runway 20L, Approach

Although this particular airport appears to be more susceptible to false alerts, the data indicates the majority of operations at this airport do not experience false PWS alerts.

Flight Crew Operations Manual Bulletin No. - , Dated (continued)

Flight crews should use the following criteria to help determine if windshear exists:

- · reports of windshear from other aircraft
- visual indications
- tower windshear alerts
- differences between computed winds in the airplane and reported winds from the tower.

As Honeywell continues to develop a software solution and to process data, operators are encouraged to continue reporting incidents to Honeywell and Boeing in order to provide the most effective solution possible to this anomaly.

Operating Instructions

If windshear is encountered, perform the Windshear Escape Maneuver.

It is recommended operators establish policies for flight crews operating into the reported runway in the event a PWS alert occurs. The following windshear criteria may be beneficial in establishing policies:

- · reports of windshear from other aircraft
- visual indications
- tower windshear alerts
- differences between computed winds in the airplane and reported winds from the tower.

Administrative Information

Insert this bulletin behind the Bulletin Record page in Volume 1 of your Flight Crew Operations Manual (FCOM). Amend the FCOM Bulletin Record page to show bulletin FLR-13 "In Effect" (IE).

The Boeing Company Seattle, Washington 98124-2207

Number: FLR-14 R1

IssueDate: February 4, 2022

Airplane Effectivity: 737-8 /-8200 /-9

Subject: Radio Altimeter Anomalies Due to 5G C-Band Wireless Broadband

Interference in the United States

Reason: Radio altimeters can be unreliable due to interference from 5G C-Band

wireless broadband.

This bulletin is being revised to update the background information and to provide guidance when operating at an airport/runway with an

AMOC.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Frequency spectrum, power levels, tower location, and antenna direction used by new 5G C-Band wireless broadband technology in the United States can interfere with radio altimeters, especially at lower altitudes. Radio altimeters can fail or present erroneous information, which affects systems using radio altimeter data.

In response to this, the FAA has issued Airworthiness Directives that prohibit certain operations requiring radio altimeter (RA) data when in the presence of 5G C-Band interference.

Airports and approaches that can be affected by 5G C-Band interference are identified via Notice to Air Missions (NOTAMs) for airports with published instrument approaches.

Background Information (continued)

The FAA is approving Alternative Method of Compliance (AMOCs) specific to airplane model, radio altimeter manufacturer, radio altimeter part number, airport and runway. These have been evaluated for susceptibility to 5G interference at runways where 5G NOTAMs have been issued. The AMOCs provide relief to some or all of the limitations outlined in ADs pertaining to 5G interference. The AMOC may not cover all runways at a given airport. The AMOCs will be updated as the 5G system is deployed, so it is important to reference the most recent revision.

The FAA AD identifies several types of operations that are prohibited when identified by a NOTAM:

- Instrument Landing System (ILS) Instrument Approach Procedures (IAP)
 SA CAT I, SA CAT II, CAT II, and CAT III
- Required Navigation Performance (RNP) Procedures with Authorization Required (AR), RNP AR IAP
- Automatic Landing Operations
- Manual Flight Control Guidance System operations to landing/head-up display (HUD) to touchdown operation
- Use of Enhanced Flight Vision System (EFVS) to touchdown under 14 CFR Part 91.176(a).

The reference to the Manual Flight Control Guidance System in the 4th bullet above, refers to a HUD mode that provides guidance to touchdown.

5G Interference and Potential Effects on Radio Altimeter Indications

When a radio altimeter is subjected to 5G interference, there are three different possible effects for each radio altimeter:

- Fail Warning: Failure of the radio altimeter results in failure alerts of radio altimeter including flags and other system alerts
- No Computed Data (NCD): No data is generated by the radio altimeter. The
 data shown on the Primary Flight Display (PFD) and HUD (as installed)
 will be removed from view, however this condition does not generate an
 alert since it is a normal condition of the radio altimeter
- Erroneous: Interference causes erroneous data to be sent to airplane systems. The erroneous radio altimeter data in this case will be shown on the PFD and HUD (as installed), however, it can be erroneously high or low.

5G Interference and Potential Effects on Airplane Systems

Flight deck effects may be variable on the 737 and multiple systems can be impacted regardless of the approach type or weather. They include, but are not limited to the following:

5G Interference and Potential Effects on Airplane Systems (continued)

Autopilot Flight Director System

- NO AUTOLAND autopilot status annunciation may be shown on the PFD and the HUD (as installed - fail operational autopilot and HUD)
- NO AUTOLAND advisory message may be shown on the engine display (as installed - fail operational autopilot)
- Autopilot disengagement may occur during ILS/GLS approaches (as installed GLS approach capability)
- · Autopilot may not engage
- Flare mode and runway alignment may not be available or may activate earlier or later than expected (as installed fail operational autopilot)
- Flight director on the PFD and HUD may retract from view during ILS/GLS approach (as installed HUD and GLS approach capability)
- Flight director guidance on the PFD and HUD may be erroneous (as installed HUD)
- LNAV and VNAV may not engage or engage at an erroneous altitude after departure.
- Takeoff or Go-Around (TO/GA) mode may not be available.

Autothrottle System

- Autothrottle (A/T) may not be available
- A/T may remain in MCP SPD mode and may advance to maintain speed during flare instead of reducing the thrust to RETARD at 27 feet RA, or may reduce thrust to RETARD prematurely.

Engines

- Thrust reversers may not deploy during a rejected takeoff or the landing roll
- Engines may be at a higher idle during a rejected takeoff or remain at approach idle after touchdown.

Flight Controls

- Automatic speedbrake deployment may not occur after touchdown
- SPEEDBRAKES EXTENDED amber light may not illuminate or may illuminate erroneously
- SPEEDBRAKE time critical visual and aural warnings may not be available (as installed)
- Spoilers may be limited to their maximum in-flight position during manual deployment during a rejected takeoff or after touchdown
- Landing Attitude Modifier (LAM) may be erroneous.

5G Interference and Potential Effects on Airplane Systems (continued)

Flight Instruments

- The RA indication on the PFD and HUD may not show or may be erroneous (as installed - HUD)
- The RADIO minimums indications (flashing or turning amber) may not be available or may be erroneous on the PFD and HUD (as installed HUD)
- Rising runway symbol may not show on the PFD (as installed)
- The localizer/FAC deviation alert (amber scale on the PFD and flashing pointer on the PFD and HUD) may not show (the deviation indications are still available) (as installed HUD and IAN)
- The glideslope/glidepath deviation alert (amber scale on the PFD and flashing pointer on the PFD and HUD) may not show (the deviation indications are still available) (as installed HUD and IAN).

Traffic Alert and Collision Avoidance System (TCAS)

- TCAS alerts may not be available (TCAS alerts that do occur will be valid)
- TCAS inhibits for resolution advisories may be erroneous.

Ground Proximity Warning System (GPWS)

- GPWS alerts may not be available or may be erroneous. Look-Ahead Terrain Alerting remains available
- In-Air Overrun, On-Ground Overrun and SPEEDBRAKE warnings may not be available or may be erroneous (as installed)
- Radio altitude-based altitude and minimums aural callouts during approach may not be available or erroneous
- Windshear detection systems (predictive and reactive) may be inoperative.

Configuration Warnings

- Erroneous illumination of the red landing gear indicator lights may occur
- · Erroneous steady landing gear warning horn may occur
- Radio Altitude Based Alerts may not be available or may be erroneous.

Warning Systems

• Stall warning test may not be available.

Dispatch To and From Airport/Runway With a 5G C-Band NOTAM With an AMOC

Dispatch using normal procedures.

Dispatch To and From Airport/Runway With a 5G C-Band NOTAM Without an AMOC

In the event of 5G interference, takeoff and landing performance can be impacted. Comply with these performance calculations when operating at an airport identified via NOTAM that restricts operations where 5G interference is possible.

Departure Airport - Takeoff Performance

Stopping distance during a rejected takeoff (RTO) can be significantly increased due to the following potential effects on airplane systems:

- Limited spoiler extension
- · Higher engine idle
- Thrust reversers may not deploy.

In order to account for the increased stopping distance during an RTO, refer to the guidance in the Operating Instructions section below.

Destination or Alternate Airport - Landing Performance

Boeing has determined two methods to calculate the landing performance at the destination or alternate airport in the event of 5G interference during the landing. Either method can be used to approximate the landing distance expected in the event of 5G interference. Either method provides an acceptable margin of safety.

- Method A using normal landing performance and increasing by a predetermined percentage
 - To use method A, refer to how to "Calculate the Required Landing Distance" in the Operating Instructions section below.
- Method B using the Non-Normal Configuration Landing Distance table for SPOILERS.
 - To use method B, refer to the "Dispatch Guidance" section below.

MEL Considerations for Dispatch

Since it is possible that the brakes may provide the only means to slow the airplane, it is not advisable to dispatch to an impacted airport with the following brake system Minimum Equipment List (MELs). This list is not all inclusive and other MELs may want to be considered.

- 32-42-01 Antiskid System
- 32-42-02 Alternate Antiskid Valves
- 32-42-03 Automatic Brake System
- 32-44-01 Parking Brake Valve.

Dispatch To and From Airport/Runway With a 5G C-Band NOTAM Without an AMOC (continued)

Dispatch Guidance

The following table from the Advisory Information section of the Performance Inflight chapter of the QRH, defines runway condition codes. The runway condition codes are used to calculate takeoff and landing performance based on runway surface conditions or reported braking action.

Runway Surface Condition Correlation Table

RUNWAY CONDITION CODE	RUNWAY SURFACE CONDITION DESCRIPTION	REPORTED BRAKING ACTION
6	Dry	
5	Wet (Smooth, Grooved or PFC) or Frost 3 mm (0.12 inches) or less of: Water, Slush, Dry Snow or Wet Snow	Good
4	Compacted Snow at or below -15°C OAT	Good to Medium
3	Wet (Slippery), Dry Snow or Wet Snow (any depth) over Compacted Snow Greater than 3 mm (0.12 inches) of: Dry Snow or Wet Snow Compacted Snow at OAT warmer than -15°C	Medium
2	Greater than 3 mm (0.12 inches) of: Water or Slush	Medium to Poor
1	Ice	Poor
0	Wet Ice, Water on top of Compacted Snow, Dry Snow or Wet Snow over Ice	Nil

Dispatch To and From Airport/Runway With a 5G C-Band NOTAM Without an AMOC (continued)

Calculate the Required Landing Distance (Select Method A or Method B)

- Method A using normal landing performance and increasing by a predetermined percentage
 - To use method A, refer to how to "Calculate the Required Landing Distance" in the Operating Instructions section below.
- Method B using the Non-Normal Configuration Landing Distance table for SPOILERS.
 - Normal dispatch procedures can be used for runway condition codes 6 and 5.

Note: A time of arrival landing distance assessment for runway condition codes 6 and 5 may be greater than the normal dispatch assessment.

- Use the SPOILERS Non-Normal Configuration Landing Distance table in the Performance Inflight-QRH chapter, or other approved source, for flaps 30 or flaps 40, as needed.
 - Use the distance for MAX MANUAL braking configuration with the appropriate runway condition at estimated time of arrival
 - Apply all of the appropriate distance adjustments including the reverse thrust adjustment for no reverse (NO REV).
- For runway condition codes 6 and 5, Boeing recommends obtaining the required landing distance by using the higher of:
 - The resulting unfactored distance increased by 15%, vs
 - The normal dispatch calculations.
- For runway condition codes 4 and 3, increase the resulting unfactored distance by 15% to obtain the required landing distance
- For runway condition code 2, increase the resulting unfactored distance by 30% to obtain the required landing distance
- Verify the landing runway meets this required landing distance.

Note: Dispatch to airports with a runway condition code 1 or lower should not be attempted.

End of Method B

The instrument approach and autoland prohibitions of 5G interference ADs may impact the destination and alternate weather requirements.

Operating Instructions

Airport/Runway With a 5G C-Band NOTAM With an AMOC

Crews operating 737 airplanes with radio altimeters with an AMOC do not have dispatch or operations restrictions when operating to and from runways specified in the AMOC. Plan a normal dispatch, approach, and landing.

During approach and landing, monitor for potential system effects that have been described above. Flight crews encountering potential 5G interference effects should consider discontinuing the approach and:

- · changing to another airport/runway with an AMOC, or
- returning to the same runway using the operating instructions in the following section.

Airport/Runway With a 5G C-Band NOTAM Without an AMOC

When operations are planned at a US airport where the FAA has issued a NOTAM for 5G interference, the flight crew will need to be alert for system anomalies that have been described above.

The flight crew should verify with Company Dispatch that the Dispatch Requirements above have been accounted for in flight planning.

Monitoring and cross checking of barometric and radio altitude indications can provide early indications of 5G interference. If the autopilot or autothrottle is not performing as expected, pilots should disconnect both the autopilot and autothrottle and apply manual inputs to ensure proper control of path and performance.

Radio altimeter anomalies may not be evident until very low altitudes. After touchdown, the flight crew should be aware of the thrust reverser and speedbrake deployment. Landing distances can be longer than normal due to the effect of 5G interference on thrust reverser deployment, automatic speedbrake deployment, and increased idle thrust. Landing on runways with a runway condition code of 4 through 2 can result in a significant increase in landing distance.

Departure Airport - Takeoff Performance (Select Method 1 or Method 2)

In the event of 5G interference during a rejected takeoff (RTO), stopping distance can be significantly increased. Boeing has determined two methods to approximate the accelerate/stop distance required. Both provide an acceptable margin of safety.

Method 1 adjusts the accelerate stop distance available (ASDA) by a predetermined value.

• Adjust the accelerate stop distance available (ASDA) by the following adjustment:

Runway Condition Code	Runway Surface Condition	Subtract from ASDA
6	Dry	950 feet
5	Wet Skid Resistant*	2,600 feet
5, 4 and 3	Wet / Dry Snow / Wet Snow / Compact Snow / Slippery	3,700 feet
2	Slush or Standing Water	4,900 feet

- Use the adjusted ASDA and complete the takeoff performance calculations using:
 - Actual departure runway conditions
 - Actual departure environmental conditions
 - Do not take credit for use of reverse thrust when calculating takeoff performance
 - Verify the departure runway meets this required distance.

Note: Do not use FCOM Volume 1 Performance Dispatch Chapter as it does not provide a method to adjust the ASDA. Use another approved source.

Note: * Provided the operator has received approval to use Wet Skid Resistant data from the appropriate regulatory authority in accordance with the Airplane Flight Manual (AFM).

Note: Takeoffs from runways with a runway condition code 1 or lower should not be attempted.

End of Method 1

Departure Airport - Takeoff Performance (continued)

Method 2 adjusts the accelerate stop distance available (ASDA) by a predetermined factor.

 Multiply the accelerate stop distance available (ASDA) by the following factor:

Runway Condition Code	Runway Surface Condition	ASDA Factor
6	Dry	0.86
5	Wet Skid Resistant*	0.76
5, 4 and 3	Wet / Dry Snow / Wet Snow / Compact Snow / Slippery	0.71
2	Slush or Standing Water	0.65

- Use the adjusted ASDA and complete the takeoff performance calculations using:
 - Actual departure runway conditions
 - Actual departure environmental conditions
 - Do not take credit for use of reverse thrust when calculating takeoff performance
 - Verify the departure runway meets this required distance.

Note: Do not use FCOM Volume 1 Performance Dispatch Chapter as it does not provide a method to adjust the ASDA. Use another approved source.

Note: * Provided the operator has received approval to use Wet Skid Resistant data from the appropriate regulatory authority in accordance with the Airplane Flight Manual (AFM).

Note: Takeoffs from runways with a runway condition code 1 or lower should not be attempted.

End of Method 2

Prior to Takeoff

• Verify normal radio altimeter indications.

Climb Out

- TO/GA mode may not be available
- · Monitor pitch mode engagement
- · Monitor roll mode engagement
- · Autopilot may not engage.

Prior to Descent

Plan on doing a time of arrival (en route) landing distance assessment using one of the two methods described below. Reference the Performance Inflight-QRH chapter or other approved source for runway condition codes 6 to 2.

Note: Landings on runways with a runway condition code 1 or lower should not be attempted.

Calculate the Required Landing Distance (Select Method A or Method B)

Method A using normal landing performance and increasing by a predetermined percentage.

 Select the Normal Configuration Landing Distance table, or other approved source, for flaps 30 or flaps 40, as needed

Note: The distances and adjustments shown in the Normal Configuration Landing Distance table are factored and have been increased by 15%. Use of other approved sources must also account for the 15% increase.

- Select the appropriate runway condition
- Select the distance for MAX MANUAL braking configuration
- Apply all of the appropriate distance adjustments

Note: Do not apply adjustments for reverse thrust.

• To obtain the required landing distance, increase the resulting factored distance by the percentage below based on the runway condition code or runway braking action.

Note: If other approved source already accounts for this percentage increase, there is no need to apply it again.

Runway Condition Code	Braking Action	Percentage
6	Dry	23%
5	Good	53%
4	Good to Medium	56%
3	Medium	65%
2	Medium to Poor	113%

• Verify the landing runway meets this required landing distance.

Note: Landings on runways with a runway condition code 1 or lower should not be attempted.

• Refer to "Determine Autobrake Setting" section below.

End of Method A

Method B using the Non-Normal Configuration Landing Distance table for SPOILERS

- Select the Non-Normal Configuration Landing Distance table for flaps 30 or flaps 40, as needed.
- Select the appropriate runway condition
- Select the distance for MAX MANUAL braking configuration
- Apply all of the appropriate distance adjustments including the reverse thrust adjustment for no reverse (NO REV)
- For runway condition codes 6 to 3, increase the resulting unfactored distance by 15% to obtain the required landing distance
- For runway condition code 2, increase the resulting unfactored distance by 30% to obtain the required landing distance
- Verify the landing runway meets this required landing distance.

Note: Landings on runways with a runway condition code 1 or lower should not be attempted.

• Refer to "Determine Autobrake Setting" section below.

End of Method B

Determine Autobrake Setting

 Use Normal Configuration Landing Distance table in the Performance Inflight-QRH chapter or other approved source to determine the desired autobrake setting.

Note: Normal manual or normal autobrakes can be used. The use of maximum brakes is not needed except as stated in the "During Landing" section below.

During Approach

- Monitor radio altimeters for anomalies
- Monitor performance of autopilot and autothrottle. If the autopilot or autothrottle is not performing as expected, disconnect both the autopilot and autothrottle and apply manual inputs to ensure proper control of path and performance.

At DA(H), MDA(H), or the missed approach point:

- If suitable visual reference is established, disengage the autopilot and autothrottle and continue for a normal manual landing
- If a go-around is needed, do the go-around and the missed approach procedure either in manual or automatic flight.

During Landing

- Radio altitude-based altitude aural callouts during approach may not be available or erroneous
- Manual deployment of the speedbrakes may be needed
- If the thrust reversers do not deploy, immediately ensure the speedbrakes are extended, apply manual braking and modulate as needed for the existing runway conditions.

Note: In some conditions, maximum manual braking may be needed throughout the entire landing roll.

During Go-Around and Missed Approach

- TO/GA mode may not be available
- Monitor thrust and verify that thrust increases
- Monitor pitch mode engagement
- Monitor roll mode engagement
- Autopilot may not engage.

If Radio Altimeter Anomalies are Experienced

Operators and pilots who experience radio altimeter anomalies should notify air traffic control, as soon as practical. Post flight, follow established procedures or policies to document the radio altimeter anomaly so that the radio altimeters can be checked for proper operation. Pilots are encouraged to submit detailed reports of radio altimeter disruptions or interference events, as soon as practical, using the *Radio Altimeter Anomaly Reporting Form* available on the FAA website at https://www.faa.gov/air traffic/nas/RADALT reports/.

Additional References

FAA Safety Alert for Operators SAFO 21007

FAA Special Airworthiness Information Bulletin SAIB AIR-21-18R1

Administrative Information

This bulletin replaces bulletin FLR-14, dated January 17, 2022. Revise the Flight Crew Operations Manual (FCOM) Bulletin Record Page to show bulletin FLR-14 as "CANCELLED" (CANC).

Insert this bulletin behind the Bulletin Record page in Volume 1 of your Flight Crew Operations Manual (FCOM). Amend the FCOM Bulletin Record page to show bulletin FLR-14 R1 "In Effect" (IE).

This Bulletin will be revised when more information becomes available.

Please send all correspondence regarding Flight Crew Operations Manual Bulletin status, to the Flight Technical Data, through the Service Requests Application (SR App) on the MyBoeingFleet home page.

Flight Crew Operations Manual Bulletin No. - , Dated (continued)

Intentionally Blank

Limitations Table of Contents

Chapter L Section TOC

Limitations and Operational Information

General

Airplane General

AFM Limitations

Ground Wind Operating Envelope

Narrow Runway Operation

AFM Operational Information

Non-AFM Operational Information

Takeoff and Landing Crosswind Limitations

Runway Contamination Limitations

Altitude Display Limits For RVSM Operations

Hydraulic Oil

Weight Limitations

AFM Limitations

Maximum Taxi Weight

Maximum Takeoff Weight

Maximum Landing Weight

Maximum Zero Fuel Weight

Alternate Maximum Weight Limitations

AFM Limitations

Maximum Alternate Taxi Weight

Maximum Alternate Takeoff Weight

Air Systems

AFM Limitations

Pressurization

Non-AFM Operational Information

Autopilot / Flight Director System

AFM Limitations

Non-AFM Operational Information

$\overline{}$								٠						
Γ	a	n	11	m	ıī	r	n	1	C	я	ŧ١	10	m	C

AFM Limitations

Non-AFM Operational Information

Aircraft Communications Addressing and Reporting System (ACARS)

Electrical

AFM Limitations

Engines and APU

AFM Limitations

Engine Limit Display Markings

Engine Ignition

Thrust

Engines - Reverse Thrust

APU

Non-AFM Operational Information

Engine Oil

Flight Controls

AFM Limitations

Non-AFM Operational Information

Flight Management, Navigation

FMS Barometric Altitude Temperature Compensation

AFM Limitations

Air Data Inertial Reference Unit (ADIRU)

Look-Ahead Terrain Alerting (GPWS)

Overrun Warning (ORW) Alerting System

Non-AFM Operational Information

Runway Awareness and Advisory System (RAAS)

Fuel System

AFM Limitations

Fuel Balance

Fuel Loading

Landing Gear

Non-AFM Operational Information

Limitations Limitations and Operational Information

Chapter L Section 10

General

This chapter contains:

- Airplane Flight Manual (AFM) limitations
- Non-AFM operational information.

Limitations and operational information are included if they are:

- · operationally significant
- · required by FAA Airworthiness Directive
- · required by another regulatory requirement.

Limitations and operational information are not included if they are:

- incorporated into FCOM normal, supplementary, or non-normal procedures, with a few exceptions
- · shown on a placard, display, or other marking.

Limitations and operational information listed in this chapter that must be memorized (memory items) are marked with a (#) symbol. Memory items must meet the following criterion – flight crew access by reference cannot assure timely compliance; e.g., Maximum Takeoff and Landing Tailwind Component. Memory items need only be memorized to the extent that compliance is assured. Knowing the exact wording of the limitation is not required.

Assuming that the remaining items are available to the flight crew by reference, they do not need to be memorized.

Airplane General

AFM Limitations

Runway slope	±2%
# Maximum Takeoff and Landing Tailwind Component	15 knots
Maximum Speeds	Observe gear and flap placards
Maximum Operating Altitude	41,000 feet pressure altitude
Maximum Takeoff and Landing Altitude	1C845 - 1K003 8,400 feet pressure altitude
	1B392, 1L075 - 1L078 10,000 feet pressure altitude

Maximum flight operating latitude is dependent on the configuration of the Magnetic Variation tables in the ADIRU as follows: 82° North and 82° South, except for the region between 80° West and 170° West longitude, the maximum flight operating latitude is 73° North, and the region between 120° East and 160° East longitude, the maximum flight operating latitude is 60° South.

Installation of handle covers on the overwing exits must be verified prior to departure whenever passengers are carried.

Verify that an operational check of the flight deck door access system has been accomplished according to approved procedures once each flight day.

Ground Wind Operating Envelope

- For crosswinds greater than 43 knots, limit thrust to a setting normally used for taxi.
- Except when setting takeoff thrust on the runway, limit engine thrust to idle for winds greater than 58 knots.

Narrow Runway Operation

Narrow Runway Operations applies to runways with widths less than 148 ft (45 m) and not less than 98 ft (30 m).

The maximum crosswind component at 10 meter (32.8 feet) height for takeoff and landing is as shown in the <u>Takeoff and Landing Crosswind Limitations</u> section.

Runway centerline shall be clearly visible in the prevailing conditions.

Limitations -

Information

737 Flight Crew Operations Manual

The dispatch from / to runways less than 148 ft (45 m) wide is not allowed in case of nose gear steering inoperative or one thrust reverser inoperative. If an alternate airport is available with a runway at least 148 ft (45 m) wide, diversion to that alternate shall be performed in case of jammed or restricted flight controls, trailing edge flap asymmetry, leading edge flap/slat asymmetry, or loss of system A or B hydraulics.

Note: Adjustment to V1(MCG) based on a 20-foot deviation from runway centerline is automatically applied within the OPT computation for takeoff from a narrow runway. An adjustment to Maximum Takeoff Weight and Takeoff Speeds may also be required.

Note: Use of an engine thrust derate when allowed will help reduce airplane lateral deviation in the unlikely event of an engine failure below V1 on takeoff.

AFM Operational Information

Severe Turbulent Air Penetration speed is 280 KIAS / .76M, whichever is lower. Applicable to Climb and Descent only. During Cruise, refer to SP.16, Severe Turbulence Supplementary Procedure.

Non-AFM Operational Information

Takeoff and Landing Crosswind Limitations

	TAKEOFF**					
Runway Condition	Crosswind Components (knots)* Applies to runways 148 ft (45m) or greater in width	Crosswind Components (knots)* Applies to runways with widths less than 148 ft (45m) and not less than 98 ft (30m				
Dry	34	34				
Wet	25	25				
Standing Water	15	15				
Slush	15	15				
Compact Snow	20	20				
Dry Snow	20	20				
Wet Snow	20	20				
Good	25	25				
Good to Medium	22	22				
Medium	20	20				
Medium to Poor	15	15				
Poor	13	13				

^{*} These crosswind guidelines are based on steady wind (no gust) conditions and include all engines operating and engine inoperative. Gust effects increase pilot workload without significantly affecting the provided guidelines.

^{**} Takeoff or Landing on untreated ice or snow should only be attempted when no melting is present.

	LANDING**					
Braking Action (Runway Condition Code)	Crosswind Components (knots)* Applies to runways 148 ft (45m) or greater in width	Crosswind Components (knots)* Applies to runways with widths less than 148 ft (45m) and not less than 98 ft (30m)				
Dry (6)	37	32				
Good (5)	37	32				
Good to Medium (4)	35	32				
Medium (3)	25	25				
Medium to Poor (2)	17	17				
Poor (1)	15	15				
Nil (0)***	0	0				

Runway Contamination Limitations

Maximum allowable precipitation depth for takeoff:

- Dry Snow 102mm (4")
- Standing water, wet snow, or slush 13mm (1/2")

Minimum CRFI: .25 (Braking Action better than Nil).

On revenue flights, the escape slide retention bar (girt bar) must be installed during taxi, takeoff and landing.

Do not operate HF radios during refueling operations.

Altitude Display Limits For RVSM Operations

Standby altimeters do not meet altimeter accuracy requirements of RVSM airspace.

The maximum allowable in-flight difference between Captain and First Officer altitude displays for RVSM operations is 200 feet.

The maximum allowable on-the-ground altitude display differences for RVSM operations are:

Field Elevation	Max Difference Between Captain & F/O	Max Difference Between Captain or F/O & Field Elevation		
Sea Level to 5,000 feet	50 feet	75 feet		
5,001 to 10,000 feet	60 feet	75 feet		

Hydraulic Oil

Minimum 76% and Maximum 100%. If the Hydraulic Oil level exceeds 100%, contact Maintenance.

Note: Operations with overfilled hydraulic fluid can lead to contamination of the packs.

Limitations -

Information

^{*} These crosswind guidelines are based on steady wind (no gust) conditions and include all engines operating and engine inoperative. Gust effects increase pilot workload without significantly affecting the provided guidelines.

^{**} Sideslip only (zero crab) landings are not recommended with crosswind components in excess of 15 kts at flaps 15, 18 kts at flaps 30, or 21 kts at flaps 40. This recommendation ensures adequate ground clearance and is based on maintaining adequate control margin.

^{***} Landings are prohibited when braking action is Nil (CRFI <.25).

Weight Limitations

AFM Limitations

Note: The maximum weight limitations can be further limited as referenced in

the WEIGHT LIMITATIONS section of the CERTIFICATE

LIMITATIONS chapter of the AFM.

Note: Possible conflicts between the AFM and the FCOM may occur due to separate publication release dates. In the event of a conflict between the FCOM and the AFM, the AFM shall govern.

Maximum Taxi Weight

82,871 Kilograms

Maximum Takeoff Weight

82,644 Kilograms

Maximum Landing Weight

69,308 Kilograms

Maximum Zero Fuel Weight

65,952 Kilograms

Alternate Maximum Weight Limitations

1C845, 1J103 - 1J114

Note: Alternate weights are applicable only when operating under Alternate Weights appendices specified in the AFM. Alternate weight limitations are associated with Service Bulletins and are placarded on the flight deck.

Note: Possible conflicts between the AFM and the FCOM may occur due to separate publication release dates. In the event of a conflict between the FCOM and the AFM, the AFM shall govern.

AFM Limitations

Maximum Alternate Taxi Weight

75,069 Kilograms

Maximum Alternate Takeoff Weight

74,842 Kilograms

Air Systems

AFM Limitations

Pressurization

The maximum cabin differential pressure (relief valves) is 9.1 psi.

Non-AFM Operational Information

With either one or both engine bleed air switches ON, do not operate the air conditioning packs in HIGH for takeoff, approach or landing.

Note: The fire protection Non-Normal procedures take precedence over the statement regarding no air conditioning pack in HIGH during takeoff, approach, or landing. The CARGO FIRE and SMOKE/ FUMES REMOVAL checklists require the operating PACK switch(es) HIGH. Switch(es) need to be placed in HIGH in order to increase ventilation for smoke removal.

Autopilot / Flight Director System

AFM Limitations

- # Use of aileron trim with the autopilot engaged is prohibited.
- # Do not engage the autopilot for takeoff below 400 feet AGL.
- # For single channel operation during approach, the autopilot shall not remain engaged below 50 feet AGL.

1B392, 1L075 - 1L078

- # Do not use the autopilot below 100 feet radio altitude at airport pressure altitudes above 8.400 feet.
- # Maximum allowable wind speeds when landing weather minima are predicated on autoland operations:
 - Headwind 25 knots
 - · Crosswind 20 knots
 - · Tailwind 15 knots.
- # Maximum and minimum glideslope angles for autoland are 3.25 degrees and 2.5 degrees, respectively.
- # Autoland capability may only be used with Flaps 30 or 40 and both engines operative.

Limitations -

Information

1B392, 1L075 - 1L078

Autoland capability may only be used to runways at or below 8,400 feet pressure altitude.

Use of autoland system on runways with a width less than 148 ft (45 m) is not approved.

Non-AFM Operational Information

Do not use LVL CHG on final approach below 1000 feet AFE.

Communications

AFM Limitations

1K002, 1K003

Flights predicated on the use of the following HF frequencies are prohibited: 29.489 and 29.490 (MHz).

Non-AFM Operational Information

Use the VHF radio connected to the top of fuselage antenna for primary ATC communications on the ground.

Aircraft Communications Addressing and Reporting System (ACARS)

The ACARS is limited to the transmission and receipt of messages that will not create an unsafe condition if the message is improperly received, such as the following:

- the message or parts of the message are delayed or not received;
- the message is delivered to the wrong recipient; or
- the message content may be frequently corrupted.

However, Pre-Departure Clearance, Digital Automatic Terminal Information Service, Oceanic Clearances, Weight and Balance, and Takeoff Data messages can be transmitted and received over ACARS if they are verified per approved operational procedures.

Electrical

1B392 - 1J203, 1K001 - 1L078

AFM Limitations

The use of Flight Deck Auxiliary Power outlets in the flight deck requires operational regulatory approval.

Limitations -Limitations and Operational Information

Engines and APU

AFM Limitations

Engine Limit Display Markings

Maximum and minimum limits are red.

Caution limits are amber

Engine Ignition

Engine ignition must be on for:

- · takeoff
- landing
- · operation in heavy rain
- · anti-ice operation.

Thrust

Derated takeoff thrust: Use of derated takeoff thrust is not allowed for alternate EEC mode operation.

Reduced takeoff thrust: Operation at reduced takeoff thrust based on an assumed temperature is referenced to the takeoff thrust, which in turn can be either full rated takeoff thrust or derated takeoff thrust. Reduced thrust based on an assumed temperature is allowed on a wet runway if suitable performance accountability is made for the increased stopping distance on the wet surface. Use of assumed temperature reduced thrust procedures is not allowed when the runway is contaminated with standing water, ice, slush, or snow. Assumed temperature reduced thrust is not allowed for alternate EEC mode operation. Assumed temperature reduced takeoff thrust is not permitted with anti-skid inoperative.

Engines - Reverse Thrust

Use for ground operation only.

Intentional selection of reverse thrust in flight is prohibited.

Backing the airplane with the reverse thrust is prohibited.

Do not attempt go-around after thrust reverser deployment on landing.

APU

- # Inflight APU bleed + electrical load: Maximum altitude 10,000 feet.
- # Ground only APU bleed + electrical load: Maximum altitude 15,000 feet.
- # APU bleed: Maximum altitude 17,000 feet.
- # APU electrical load: Maximum altitude 41,000 feet.

Non-AFM Operational Information

APU bleed valve must be closed when:

- ground air connected and isolation valve is open
- engine no. 1 bleed valve is open
- isolation and engine no. 2 bleed valves open.

APU bleed valve may be open during engine start, but avoid engine power above idle.

After three consecutive aborted start attempts, a 15-minute cooling period is required.

Run the APU for two full minutes before using it as a bleed air source.

Engine Oil

Minimum dispatch quantity (engine not in operation): 69% (14.5 litres).

Note: 62% is the minimum acceptable as per the Aircraft Maintenance Manual (AMM). 69% provides an acceptable margin to account for consumption during flight.

Flight Controls

AFM Limitations

- # The maximum altitude with flaps extended is 20,000 feet.
- # Holding in icing conditions with flaps extended is prohibited.
- # In flight, do not extend the speed brake lever beyond the FLIGHT detent.
- # In flight, do not extend the speedbrake lever beyond the ARMED detent with flaps 40 selected.
- # Avoid rapid and large alternating control inputs, especially in combination with large changes in pitch, roll, or yaw (e.g., large side slip angles) as they may result in structural failure at any speed, including below VA.

Non-AFM Operational Information

Do not deploy the speedbrakes in flight at radio altitudes less than 1,000 feet.

Alternate flap duty cycle:

- When extending or retracting flaps with the ALTERNATE FLAPS
 position switch, allow 15 seconds after releasing the ALTERNATE
 FLAPS position switch before moving the switch again to avoid damage
 to the alternate flap motor clutch
- After a complete extend/retract cycle, i.e., 0 to 15 and back to 0, allow 5 minutes cooling before attempting another extension.

Limitations -

Information

Flight Management, Navigation

FMS Barometric Altitude Temperature Compensation

Instrument approach operations are prohibited unless altitude corrections are applied to all published procedure altitudes when the temperature at the landing elevation is 0 degrees Celsius or colder.

Vertical Situational Display (VSD) must be selected for display for all approach operations where temperature corrected altitudes are manually entered.

WARNING: Use of published procedures without consideration of cold temperature effects on barometric altitudes does not assure obstacle clearance. The Flight Management System does not provide an automatic approach barometric altitude temperature compensation function.

AFM Limitations

Air Data Inertial Reference Unit (ADIRU)

ADIRU alignment must not be attempted at latitudes greater than 78 degrees 15 minutes.

All flight operations based on magnetic heading or magnetic track angle are prohibited in geographic areas where the installed IRS MagVar table errors are greater than 5 degrees.

Refer to Operating Data/Inertial Reference System (IRS) section of AFM for procedures to determine the geographic areas and magnitude of MagVar errors for the specific MagVar table installed in the IRS and if any of these limitations apply.

Look-Ahead Terrain Alerting (GPWS)

Do not use the terrain display for navigation.

Do not use the look-ahead terrain alerting and terrain display functions:

• within 15 nm of takeoff, approach or landing at an airport or runway not contained in the GPWS terrain database.

Note: Refer to Honeywell Document 060-4267-000 for airports and runways contained in the installed GPWS terrain database.

Overrun Warning (ORW) Alerting System

1B392 - 1J114, 1K003 - 1L078

The ORW alerting system does not replace the requirement to conduct an en route landing distance performance assessment prior to landing. The lack of an overrun alert does not guarantee the airplane can stop prior to reaching the runway end.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

If the In-Air Overrun Warning ("OVERRUN, GO-AROUND") occurs during approach, execute an immediate go-around.

Inhibit the overrun alert when:

1B392, 1L075 - 1L078

- Landing altitude is above 10,000 feet pressure altitude; or
- Landing OAT on the ground is below –40°C or greater than 50°C; or
- Gross Weight is greater than Maximum Landing Weight.

Non-AFM Operational Information

Avoid weather radar operation in a hangar.

Avoid weather radar operation when personnel are within the area normally enclosed by the aircraft nose radome.

Note: The hangar recommendation does not apply to the weather radar test mode.

Runway Awareness and Advisory System (RAAS)

Do not use RAAS callouts or alerts for navigation.

Do not use RAAS callouts or alerts as a substitute for NOTAM or ATIS information.

Fuel System

AFM Limitations

Maximum tank fuel temperature is 49°C.

Minimum tank fuel temperature prior to takeoff and inflight is –43°C, or 3°C above the fuel freezing point temperature, whichever is higher.

Note: The use of Fuel System Icing Inhibitor additives does not change the minimum fuel tank temperature limit.

Intentional dry running of a center tank fuel pump (low pressure light illuminated) is prohibited.

Fuel Balance

The lateral fuel imbalance between main wing tanks must be scheduled to be zero. Fuel imbalance between main wing tanks for taxi, takeoff, flight or landing must not exceed 453 kilograms.

Fuel Loading

Main tanks 1 and 2 must be full if center tank contains more than 453 kilograms.

Limitations -

Information

737 Flight Crew Operations Manual

Landing Gear

Non-AFM Operational Information

Do not apply brakes until after touchdown.

Intentionally Blank

Normal Procedures Table of Contents

Chapter NP
Section TOC

Introduction

General

Normal Procedures Philosophy and Assumptions

Configuration Check

Crew Duties

Crew Duties Reference Chart

Control Display Unit (CDU) Procedures

Sterile Cockpit

Performance Data CDU Entry and Crosscheck

Checklists

Autopilot Flight Director System (AFDS) Procedures

Taxi and Takeoff Briefing / Emergency Procedures Review

Scan Flow and Areas of Responsibility

Preflight and Postflight Scan Flow

Areas of Responsibility - Captain as Pilot Flying or Taxiing

Areas of Responsibility - First Officer as Pilot Flying or Taxiing

Sequence of Events During Pre-Flight

Amplified Procedures

Preliminary Preflight Procedure - Captain or First Officer

Crew Briefing

CDU Preflight Procedure - Captain and First Officer

Exterior Inspection

Preflight Procedure - First Officer

Preflight Procedure - Captain

Before Start Procedure

Pushback or Towing Procedure

Engine Start Procedure

Before Taxi Procedure

Before Takeoff Procedure

Takeoff Procedure

Takeoff Flap Retraction Speed Schedule

MCP Altitude Setting Techniques Using VNAV - Published Departures

Climb and Cruise Procedure

Descent Procedure

MCP Altitude Setting Technique Using VNAV - Published Arrivals and Approaches / Transitions

Approach Briefing

CAT II Operations

RNAV (RNP) AR Operations

RNAV Visual Flight Procedures

Approach Procedure

Flap Extension Schedule

Landing Procedure - ILS CAT I

Landing Procedure - ILS CAT II

Landing Procedure - RNAV (RNP) AR

Landing Procedure - Instrument Approach Using VNAV

Go-Around and Missed Approach Procedure

Landing Roll Procedure

After Landing Procedure

Engine Out Taxi In Procedure

Shutdown Procedure

Secure Procedure

Standard Callouts

General

Standard Callouts

Standard Callouts - Approach

Standard Callouts - Go-Around / Missed Approach

Normal Procedures Introduction

Chapter NP Section 11

General

This chapter gives:

- an introduction to the normal procedures philosophy and assumptions
- step by step normal procedures.

Normal Procedures Philosophy and Assumptions

Normal procedures verify for each phase of flight that:

- the airplane condition is satisfactory
- the flight deck configuration is correct.

Normal procedures are done on each flight. Refer to the Supplementary Procedures (SP) chapter for procedures that are done as needed, for example the adverse weather procedures.

Normal procedures are written for a trained flight crew and assume:

- all systems operate normally
- the full use of all automated features (LNAV, VNAV, autoland, autopilot, and autothrottle). This does not preclude the possibility of manual flight for pilot proficiency where allowed

Normal procedures also assume coordination with the ground crew before:

- · hydraulic system pressurization, or
- flight control surface movement, or
- · airplane movement.

Normal procedures do not include steps for flight deck lighting and crew comfort items.

Normal procedures are done by memory and scan flow. The panel illustration in this section shows the scan flow. The scan flow sequence may be changed as needed.

Configuration Check

It is the crew member's responsibility to verify correct system response. Before engine start, use system lights to verify each system's condition or configuration. After engine start, the master caution system alerts the crew to warnings or cautions away from the normal field of view.

If there is an incorrect configuration or response:

- verify that the system controls are set correctly
- check the respective circuit breaker as needed. Maintenance must first determine that it is safe to reset a tripped circuit breaker on the ground
- · test the respective system light as needed

Before engine start, use individual system lights to verify the system status. If an individual system light indicates an improper condition:

- check the Dispatch Deviations Guide (DDG) or the operator equivalent to decide if the condition has a dispatch effect
- · decide if maintenance is needed

If, during or after engine start, a red warning or amber caution light illuminates:

- do the respective non-normal checklist (NNC)
- on the ground, check the DDG or the operator equivalent

If, during recall, an amber caution illuminates and then extinguishes after a master caution reset:

- check the DDG or the operator equivalent
- the respective non-normal checklist is not needed

Crew Duties

Preflight and postflight crew duties are divided between the captain and first officer. Phase of flight duties are divided between the Pilot Flying (PF) and the Pilot Monitoring (PM.)

Each crewmember is responsible for moving the controls and switches in their area of responsibility:

- the phase of flight areas of responsibility for both normal and non-normal procedures are shown in the Area of Responsibility illustrations in this section. Typical panel locations are shown
- the preflight and postflight areas of responsibility are defined by the "Preflight Procedure - Captain" and "Preflight Procedure - First Officer."

The captain may direct actions outside of the crewmember's area of responsibility.

The general PF phase of flight responsibilities are:

- taxiing
- flight path and airspeed control
- · airplane configuration
- · navigation.

The general PM phase of flight responsibilities are:

- · checklist reading
- · communications

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

- entering required information in Mission+ app
- · tasks asked for by the PF
- monitoring taxiing, flight path, airspeed, airplane configuration and navigation.

PF and PM duties may change during a flight. For example, the captain could be the PF during taxi but be the PM during takeoff through landing.

Normal procedures show who does a step by crew position (C, F/O, PF, or PM):

- in the procedure title, or
- in the far right column, or
- in the column heading of a table

The mode control panel is the PF's responsibility. When flying manually, the PF directs the PM to make the changes on the mode control panel.

The procedures described in this manual assume that the A/P and A/T are engaged and that the PF is making the applicable changes on the mode control panel. When flying manually, the PF directs the PM to make the changes on the mode control panel by first stating "SET" followed by the applicable direction. (e.g. "SET SPEED 230", "SET ALTITUDE 5000" or "SET LNAV").

The PF must guard the flight controls and the thrust levers anytime the aircraft is below 5000 ft AGL in order to be prepared to take immediate control in the event of a malfunction with the autoflight system.

The captain is the final authority for all tasks directed and done.

Crew Duties Reference Chart

Crew Duties	CAPT	F/O	PF	PM
REPORT				
Report and check-in with Dispatch, as	•			
applicable. All crew members present.				
FLIGHT PLANN	ING			
Review Flight Plan, Weather, Route	•	•		
Information, NOTAMs				
Review RNP Availability Predictions when	•	•		
RNP AR Approach procedures are				
planned/required.				
Joint crew briefing	•	•		
COCKPIT PREPAR	ATION			
Exterior Inspection			(●)	•
Check A/C Documents	•	•		
Cockpit preparation / Interior Inspection	•	•		
Check Aircraft Journey Log	•	•		
Set up FMS equipment			•	(•)
Verify FMS equipment			(●)	•
Initialize ACARS			•	(•)
Check final documents (Load Summary, Gen	•	•		
Dec, NOTOC, etc.) on board				
ATC Clearance	•	•		
Takeoff / Taxi briefing	•	•		
TAXI AND BEFORE T	AKEOF	F	L	L
Taxi Clearance		•		
Takeoff briefing if changed			•	
Ensure required fuel for takeoff	•	•		
CLIMB AND CRI	UISE		I	I
FMS changes and updates			•	•
MCP changes and updates				
Autopilot engaged			•	
MCP changes and updates				
Autopilot not engaged				•
PA Announcements			•	•
Update Weather				•
L	1			

Crew Duties	CAPT	F/O	PF	PM
WAYPOINT PASS	AGE			•
Confirm name of next waypoint, desired track,				•
distance and time to next waypoint				
Record data on Operational Flight Plan in				•
Mission+				
BEFORE DESCI	ENT			
Arrival ATIS				•
Calculate Landing Performance			•	
FMS set up for approach			•	•
Approach Briefing			•	
DESCENT, APPROACH A	ND LAN	DING		
MCP changes and updates				
Autopilot engaged			•	
MCP changes and updates				
Autopilot not engaged				•
After Landing Checks and Ground		•		
Communications				
POSTFLIGHT	Γ			
Shutdown checks	•	•		
Aircraft Journey Log Book entries	•	(•)		
Report to Dispatch, as applicable	•			
Close and Export Mission+ Flight				•
Responsible for shutdown and overnight	•			
aircraft security				

Duties as indicated by (•) denote that either pilot may complete the procedure. The Captain may direct actions outside of the crew member's area of responsibility.

Whenever control of the aircraft is relinquished by the PF to the PM, they will state "YOU HAVE CONTROL." The pilot taking control will respond: "I HAVE CONTROL."

When engaging the autopilot, the PF will state "COMMAND A" or "COMMAND B", as applicable. Auto throttle engagement will be announced by: "AUTO THROTTLE ENGAGED."

When disconnecting the autopilot and/or the auto throttle, the PF will state: "AUTOPILOT DISENGAGED" and/or "AUTO THROTTLE DISENGAGED."

Cross Checks:

- Initiation: Calls should be responded to with "CHECK". If the designated pilot fails to initiate a call, the other pilot should then make the call and receive acknowledgment with "CHECK".
- Acknowledgment: It is essential that the recipient acknowledge any calls made. If the call is in reference to speed, pitch or bank the PF must respond with "CORRECTING", and the PM must ensure that the corrections are adequate.

Headsets will normally be worn and used as follows:

- From Start/Taxi to Top of Climb and from Top of Descent to Landing and Taxi-In.
- Worn in a way that will allow normal communications between Flight Crew members.
- It is recommended that headsets be used when in high traffic areas, at times of high workload during cruise, and at any time more than one frequency is being used by the crew members.
- If above 10000 ft and the crew elects to operate without headsets, the speaker volume should be at a level that allows verbal interaction between the crew and also at a level that ATC communications will not be missed.

Flight crews should be diligent and professional, and use proper radio procedures at all times, as follows:

- It is important that crew members respond with the aircraft call sign when making initial calls, responding to an instruction or clearance, and when leaving a frequency.
- VHF 2 must be on 121.5 and monitored at all times while airborne, when not being used for another communication.
- If the PF or PM leave the active frequency, it is important to advise the
 other crew member and have them confirm: "OFF FREQUENCY";
 when returning to the frequency in use, respond: "BACK ON
 FREQUENCY".

Anytime a crew member leaves the Flight Deck for physiological needs, transfer of control must be properly established. The remaining crew member will wear their headset and monitor ATS. Additionally, they must brief the returning crew member on current and any changes in status.

Pilot Incapacitation and the Two-Challenge Rule

Crew members should be attentive to peculiar actions or behaviour, inaction, lack of attentiveness or awareness, or any other abnormal conduct displayed by any crew member.

In the event of an incorrect, or no response to a normal call or challenge, the initial call shall be repeated. If a correct response is not received, incapacitation must be suspected and the appropriate action taken (i.e., assume control of the aircraft).

Control Display Unit (CDU) Procedures

Before taxi, the captain or first officer may make CDU entries. The other pilot must verify the entries.

Make CDU entries before taxi or when stopped, when possible. If CDU entries must be made during taxi, the PM makes the entries. The PF must verify the entries before they are executed.

In flight, the PM usually makes the CDU entries. The PF may also make simple, CDU entries when the workload allows. The pilot making the entries executes the change only after the other pilot verifies the entries.

During high workload times, for example departure or arrival, try to reduce the need for CDU entries. Do this by using the MCP heading, altitude, and speed control modes. The MCP can be easier to use than entering complex route modifications into the CDU.

Below 10000 ft, in flight, the PM usually makes the CDU modifications as directed by PF. The PM calls: "CONFIRM". The PF calls: "CONFIRMED" after verifying the change is correct and the PF calls: "EXECUTE". The PM executes the change only after the PF verifies the entry.

Sterile Cockpit

There will be no engagement in any non-essential communications or tasks unrelated to operational requirements BELOW 10000 ft AAE.

This includes:

- administrative duties:
- PA announcements;
- communication between flight deck and cabin;
- entry or exit from the flight deck;
- interaction with flight deck observers (briefed as per Flair COM).

Performance Data CDU Entry and Crosscheck

The entry of correct performance data into the FMS is critical to the safety of the flight. Flair uses the Onboard Performance Tool (OPT) application for the calculation of weight & balance and takeoff performance. Cross checking the calculated data as well as the entry of that data is fundamental to safe operation. This section describes the procedure that both pilots will use to determine weight and balance and takeoff performance.

1. At the appropriate time in the sequence of events during the pre-flight phase, both pilots will independently complete the WGT & Balance tab utilizing the Preliminary Load Report, if available. If the Final Load Report is available at this stage of the pre-flight, then it must be used in lieu of the Preliminary Load Report.

Note: An ARPT must be selected on the TKO Dispatch tab prior to completing the WGT & Balance tab in order for the Takeoff Weight and CG(%) fields to auto populate.

- a. Setup tab: Verify the aircraft, Flight Deck and FAs field are correct.
- b. FUEL tab: Enter the applicable fuel value in the Total Load, Planned Trip Fuel (exact DEST fuel from the OFP) and Taxi- out Fuel (exact TAXI fuel from the OFP).

Note: Total Load is displayed on the fuel indicators rounded to the nearest 100 kg.

- c. FIXED tab: Select any fixed items as applicable (e.g. MLG Wheel).
- d. CARGO tab: Enter the baggage and/or cargo weight in the applicable pit as indicated on the Load Report.

Note: Baggage weight is determined by multiplying the number of bags in the associated pit by 17 kg/bag.

- e. PAX tab: Select PAX WINTER or PAX SUMMER, as applicable, and enter the passenger distribution by zone as indicated on the Load Report.
- f. Verify that the CG (%MAC) values are all within the CG envelope and that structural weight limits have not been exceeded.

2. When the Weight & Balance inputs are completed on both EFBs, the Captain will select "Compare Calculation" on their EFB. The F/O will then accept the Compare Calculation notification on their iPad.

Note: Both EFBs must be selected to the WGT & Balance tab and have Wi-Fi selected on. If the Wi-Fi connection or the "Compare Calculation" is not functioning, the F/O must verbally read out to the Captain all entries from the WGT & Balance tab for a cross check.

The Compare Calculation function will alert the pilots to any discrepancies by highlighting the affected entry in amber. Any discrepancies must be rectified, and another check done until a "No mismatches found" message is received.

The Captain will then enter the calculated ZFW in the CDU PERF INIT page. Both pilots will verify that the calculated GW on the CDU agrees with that calculated in the OPT.

- The Captain will read aloud the ZFW, FUEL and GW from the CDU and call: "CONFIRM?"
- The F/O will verify the ZFW & GW against the OPT weight and balance, and the Fuel against the Fuel Indicators.
- F/O will call: "CONFIRMED, EXECUTE".
- The Captain will Execute the changes.
- 3. With reference to the OFP the Captain will then verify:
 - a. that the FUEL on the CDU, Flight Plan and fuel quantity indicators all agree; and
 - b. that the planned ZFW and GW on the CDU agree with the planned weights on the OFP.
- 4. With reference to the ATIS, or other method, both pilots will independently complete the TKO Dispatch tab on the OPT.

Both pilots will select "Calculate". When the calculation is complete on both EFBs, the Captain will select "Compare Calculation" on their EFB. The F/O will then accept the Compare Calculation notification on their iPad.

WARNING: Ensure that any applicable NOTAMs and/or MEL/CDL items are entered and accounted for before selecting Calculate.

Note: Both EFBs must be selected to the TKO Dispatch tab and have Wi-Fi selected on. If the Wi-Fi connection or the "Compare Calculation" is not functioning, the F/O must verbally read out to the Captain their OPT output for D-TO, SEL TEMP, FLAP, TRIM, and V speeds.

The Compare Calculation function will alert the pilots to any discrepancies by highlighting the affected output in amber. Any discrepancies must be rectified, and another check done until a "No mismatches found" message is received.

5. Performance data will then be entered directly in the CDU by the Captain as follows:

N1 LIMIT page:

Enter assumed temperature (SEL TEMP) / OAT.

Note: At any time after the temperature values are entered, should the OAT DISAGREE-DELETED and TAKEOFF SPEED DELETED alerting messages be displayed on the FMC CDU, re-enter the OAT and performance data after both engines have been started.

Select a fixed derate takeoff, as needed.

Note: The Optimum thrust derate and assumed temperature as calculated by the OPT should normally be used.

Verify or select a full or derated climb thrust as needed.

Note: The default FMC climb thrust should normally be used.

TAKEOFF REF page:

Make data entries on page 2/2, as applicable, before page 1/2.

Verify or enter an ACCEL HT.

Verify or enter an EO ACCEL HT, as calculated on the OPT.

Verify or enter a THR REDUCTION height.

Enter CG.

Using the OPT data, enter the required flap setting and associated takeoff V Speeds.

Verify that a trim value is shown and set trim for takeoff.

CLB page:

When planning a standard NADP2 departure profile, set or verify a climb speed of Vref 40+80 kts to 3000 ft AAE in the FMC CLIMB page, with a transition speed of 250 kts above that.

The Captain will read aloud the N1 Thrust Target, Flap Setting and Vspeeds from the TAKEOFF REF page on the CDU then call "CONFIRM?". The F/O verifies these values on their OPT and that the stab trim is set and then, if all is correct, calls "CONFIRMED".

Note: FMC calculated N1 should be within 1% of the OPT calculated N1.

Example:

Captain: "N1 88.1, Flaps 1, V1 140, VR 145, V2 150, CONFIRM?" F/O: "CONFIRMED".

6. If the Preliminary Load Report has been used to obtain the performance data to this point, then the flight crew must await receipt of the Final Load Report before moving on to the next steps.

Note: Departure is not authorized based on the Preliminary Load Report. A Final Load Report form must be provided by the airport gate staff.

- 7. Upon receipt of the Final Load Report, the F/O will update the OPT WGT&Balance data and provide the Captain with the final TOW %MAC. The Captain will enter the final CofG in the FMC and set the corresponding trim for takeoff. The F/O will be required to select the TKO Dispatch tab and Calculate in order to activate the Send Output function.
 - **Note:** Performance recalculation by the Captain and FMC update, other than CofG, is not required for a final ZFW that is less than the preliminary ZFW by no more than 500 kg. If the final ZFW is greater than the preliminary or it is more than 500 kg less, then the performance must be recalculated and the performance data CDU entry and crosscheck procedure must be completed again beginning at Step 1 above.
- 8. The F/O will then ensure that the EFB is connected to a network (cellular or Wi-Fi), select Send Output, Send via Email and Send Load Sheet via Email function, complete the CREW SIGNATURE pop-up and select "Done". The OPT will generate an email to be sent to SOCC. The F/O will then Send the (Combined) email.

Note: It is imperative that the sending pilot (normally the FO) ensures that the email has been sent by verifying that it is in their email Sent folder before setting the EFB iPad to Airplane Mode.

 Both pilots will set their EFBs to airplane mode and continue with the normal Before Start Procedure.

Checklists

Normal Checklists are organized by phase of flight with the Captain/PF calling for each checklist as the flight phase dictates.

Normal checklists are used after the flight crew has accomplished all the procedural items using flow and scan in the pilot's area of responsibility.

Checklist use is challenge and response.

If the response is different than the checklist response, the checklist must be discontinued until the item discrepancy is resolved.

It is important that the crew not be interrupted during the checklist procedures, however, if interrupted, when the checks are resumed, the last item called for before the interruption should be repeated.

After completion of each checklist, the pilot reading the checklist calls "_____CHECKLIST COMPLETE".

Autopilot Flight Director System (AFDS) Procedures

The crew must always monitor:

- · airplane course
- · vertical path
- · speed

When selecting a value on the MCP, verify that the respective value changes on the flight instruments, as applicable.

The crew must verify manually selected or automatic AFDS changes. Use the FMA to verify mode changes for the:

- autopilot
- · flight director
- · autothrottle

During LNAV and VNAV operations, verify all changes to the airplane's:

- course
- vertical path
- thrust
- speed

Announcing changes on the FMA and thrust mode display when they occur is a good CRM practice.

FMA changes should be called out by PF and verified by PM, unless PF is unable or misses the call-out. Other FMA recommendations include:

- When operating roll mode is not LNAV, PM should call "LNAV AVAILABLE" when FMC lateral track is available for LNAV engagement as per ATC instructions.
- "COMMAND A" or "COMMAND B" (as applicable) is an FMA change and should be called out when changing from manual to autoflight.

Normally, A/P "A" is used when Captain is PF, and A/P "B" is used when F/O is PF.

Taxi and Takeoff Briefing / Emergency Procedures Review

The taxi briefing is given to ensure both crew members understand the expected taxi route to include Low Vis Coded Taxi routes and Hot Spots. The takeoff briefing is a description of the departure flight path with emphasis on anticipated track and altitude restrictions. It assumes normal operating procedures are used.

Therefore, it is not necessary to brief normal or standard takeoff procedures. Additional briefing items may be required when any elements of the takeoff and/or departure are different from those routinely used. These may include:

- · adverse weather:
- · adverse runway conditions;
- · unique noise abatement requirements;
- dispatch using the MEL;
- · special engine out departure procedures;
- any other situation where it is necessary to review or define crew responsibilities.

The Captain will determine who the PF for the leg is and the PF will brief as follows:

Taxi route and hot spots.

Depart Rwy ()	(SID)	(NADP)
runway	departure procedure	
Special Procedures	Adverse Conditions	
if applicable	if applicable	

Crew's first flight of the day, brief the following:

Captain:

In case of a malfunction below 80 knots, Standard Reject: Above 80, we will reject for Fire, Engine Failure, Loss of Control and/or Windshear.

The crew member noticing the abnormality will clearly state the problem.

I will call: "REJECT" or "CONTINUE".

If the decision is to REJECT, I will:

- close thrust levers / disengage auto throttle
- observe or apply maximum braking
- · raise speedbrakes
- apply maximum amount of reverse thrust consistent with conditions
- bring aircraft to a complete stop on the runway, stow the speedbrake, and set the parking brake

- advise the cabin: "THIS IS THE CAPTAIN SPEAKING. REMAIN SEATED. REMAIN SEATED"
- perform any necessary memory items or checklists as appropriate
- if an evacuation is required, initiate Evacuation Checklist

First Officer:

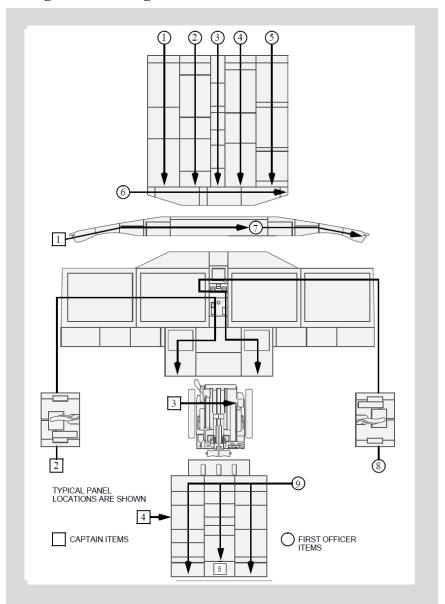
I will:

- Note the reject speed
- Verify thrust levers closed, autothrottle disengaged and maximum brakes applied
- · Call "SPEEDBRAKES UP"
- Call "REVERSERS NORMAL"
- · Call out any omitted action items
- Call out "60 KNOTS" and advise ATC
- When stopped, select the Flap lever to 40 and standby for instructions

Pilot Flying:

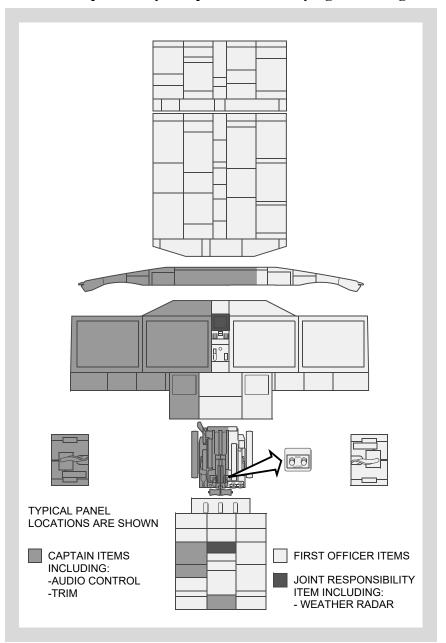
In the event of an engine failure after V1, we will:

- · continue the takeoff
- · rotate at Vr
- · positive rate, gear up
- · cancel Master Caution
- There will be no other calls below 400 ft
- At 400 ft, call for a roll mode, then
- call: "WHAT'S THE PROBLEM?"
- If required, perform any necessary memory items
- climb at V2 to V2+20 to 1000 ft AFL or TOCA, whichever is higher
- Retract flaps on schedule.
- When flaps have been retracted and at or above Flaps Up manoeuvre speed - call for Level Change if VNAV is not engaged.
- · Set max continuous thrust, and
- call for the appropriate emergency checklist.

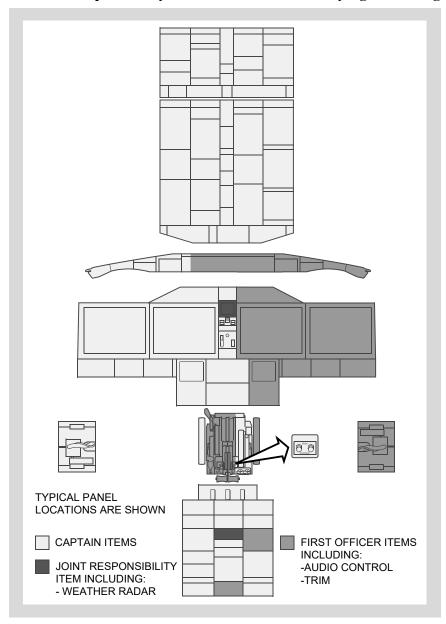

Scan Flow and Areas of Responsibility

The scan flow and areas of responsibility diagrams shown below are representative and may not match the configuration(s) of your airplanes.

The scan flow diagram provides general guidance on the order each flight crew member should follow when doing the preflight and postflight procedures. Specific guidance on the items to be checked are detailed in the amplified Normal Procedures. For example, preflight procedure details are in the Preflight Procedure - Captain and Preflight Procedure - First Officer.


Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

Preflight and Postflight Scan Flow



Areas of Responsibility - Captain as Pilot Flying or Taxiing

Areas of Responsibility - First Officer as Pilot Flying or Taxiing

Sequence of Events During Pre-Flight

The Captain and F/O pre-flight activities will be performed in the following sequence:

- Preliminary Preflight Procedure (PF)
- Exterior Inspection (PM)
- Initial FMC/CDU Setup (PF)
- Initialize ACARS (PF)
- Preflight Flow* (PF)
- Preflight Flow* (PM) (after returning from exterior inspection)
- Checks FMC Entries (PM) (crew compares FMC with Flight Plan)
- Set up EFB/charts, Headsets, Seat and Pedals.
- Call for and complete the Preflight Checklist.
- Obtain ATC Clearance, Captain sets MCP Altitude and Transponder Code.
- (CA) Enter appropriate SID and Departure Routing per clearance and confirm.
- Conduct Taxi and Takeoff Briefing / Emergency Procedures Review.
- Utilizing the Preliminary Load Report, if available, complete the Performance Data CDU Entry and Crosscheck Procedure.
- Arm A/T, Set V2 Speed, Arm LNAV/VNAV (as applicable) on MCP.
- Utilizing the Final Load Report, F/O updates the OPT WGT & Balance data, if applicable, and then provides the Captain with the final TOW %MAC. The Captain will enter the final CofG in the FMC.

Note: Performance recalculation and FMC update, other than CofG, is not required for a final ZFW that is less than the preliminary ZFW by no more than 500 kg.

- When ready, and in consultation with the IFD and Ground Crew, close the doors and call for the Before Start Checklist.
- * As per the Preflight and Postflight Scan Flow diagram.

Normal Procedures Amplified Procedures

Chapter NP Section 21

Preliminary Preflight Procedure - Captain or First Officer

The PF normally completes the Preliminary Preflight Procedure. The Preliminary Preflight Procedure assumes that the Electrical Power Up supplementary procedure is complete.

Upon entering the flight deck, the First Officer must confirm that the QRH, log books and any other required documents are on board.

The PF will begin the interior setup with the Preliminary Preflight checks while the PM is completing the exterior inspection. If the PF is doing the walk around, this item would then fall to the PM.

A full IRS alignment is recommended before each flight. If time does not allow a full alignment, do the Fast Realignment supplementary procedure.

VOICE RECORDER switchAs needed

Verify that the following are sufficient for flight:

- oxygen pressure
- hydraulic quantity
- engine oil quantity

Do the remaining actions after a crew change or maintenance action.

Note: The following oxygen pressure drop test only needs to be performed at one crewmember or observer station.

1C845, 1J103 - 1J114, 1K002, 1K003

Oxygen pressure drop.Test

Note the crew oxygen pressure.

Oxygen mask – Stowed and doors closed

RESET/TEST switch - Push and hold

Verify that the yellow cross shows momentarily in the flow indicator.

EMERGENCY/Test selector - Push and hold

Continue to hold the RESET/TEST switch down and push the EMERGENCY/Test selector for 5 seconds. Verify that the yellow cross shows continuously in the flow indicator.

Verify that the crew oxygen pressure does not decrease more than 100 psig.

If the oxygen cylinder valve is not in the full open position, pressure can:

- decrease rapidly, or
- decrease more than 100 psig, or
- increase slowly back to normal.

Release the RESET/TEST switch and the EMERGENCY/Test selector. Verify that the yellow cross does not show in the flow indicator.

Normal/100% switch – 100%

Crew oxygen pressure - Check.

Verify that the pressure is sufficient for dispatch.

1B392, 1J022, 1J023, 1L075 - 1L078

Oxygen pressure drop Test

Note the crew oxygen pressure.

Oxygen mask – Stowed and doors closed

TEST/RESET switch – Push and hold

Verify that the yellow cross shows momentarily in the flow indicator.

Regulator selector – Rotate to EMER

Continue to hold the TEST/RESET switch down with the regulator selector in the EMER position for 5 seconds. Verify that the yellow cross shows continuously in the flow indicator.

Verify that the crew oxygen pressure does not decrease more than 100 psig.

If the oxygen cylinder valve is not in the full open position, pressure can:

· decrease rapidly, or

- decrease more than 100 psig, or
- increase slowly back to normal.

Release the TEST/RESET switch and rotate the regulator selector to 100%. Verify that the yellow cross does not show in the flow indicator.

Crew oxygen pressure - Check.

Verify that the pressure is sufficient for dispatch.

verify that the pressure is sufficient for dispatch.	
FLIGHT DECK DOOR ACCESS SYSTEM TEST (first flight of the day))
Flight deck access system switch Guard closed	
Flight deck doorOpen	
Flight deck door lock selector	
Emergency access codeEnter	
ENT keyPush Verify alert sounds.	
Verify AUTO UNLK light illuminates.	
Flight deck door lock selector	
Flight deck door lock selector	
Flight deck access system switch OFF	
Emergency equipment	
ELT switch	
ELEVATOR JAM LANDING ASSIST switch Guard closed Verify that the ASSIST ON light is extinguished.	
MAINT light	
and the second s	

GPS lightVerify extinguished

ILS light Verify extinguished
GLS light Verify extinguished
SERVICE INTERPHONE switchOFF
ENGINE panelSet
Verify that the REVERSER COMMAND light is extinguished.
Verify that the REVERSER AIR/GRD light is extinguished.
Verify that the REVERSER LIMITED lights are extinguished.
Verify that the ENGINE CONTROL lights are extinguished.
EEC switches – ON
Oxygen panelSet
Note: PASSENGER OXYGEN switch activation causes deployment of the passenger oxygen masks.
PASSENGER OXYGEN switch - Guard closed
Verify that the PASS OXY ON light is extinguished.
Landing gear indicator lightsVerify illuminated
FLIGHT RECORDER switchGuard closed
Verify that the OFF light is illuminated.
MACH AIRSPEED WARNING TEST switchesPush, one at a time
Verify that the clacker sounds.
STALL WARNING TEST switches Push and hold, one at a time
Verify that each control column vibrates when the respective switch is pushed.
Note: The stall warning test requires that AC transfer busses are powered for up to 4 minutes.
Note: With hydraulic power off, the leading edge flaps can droop enough to cause an asymmetry signal, resulting in a failure of the stall warning system test. Should

repeat the test.

this occur, obtain a clearance to pressurize the hydraulic system, place the "B" system electric pump ON and retract the flaps. When flaps are retracted

Circuit breakers (P6 panel)	Check
Manual gear extension access door	Closed
CAUTION: Do not open the door. Verify that it is so closed. If the door is not securely close landing gear may not retract after take	ed the
Circuit breakers (P18 panel)	Check
Parking brake Set the parking brake if the brake wear indicators ar during the exterior inspection. Tune and adjust radios as required, record the ATIS.	

Crew Briefing

Prior to the completion of the preflight checks (first flight of the day) the Captain will ensure the Crew Member Preflight Briefing has been completed as per COM 3.22.

CDU Preflight Procedure - Captain and First Officer

The PF normally completes the Initial Data and Navigation Data steps in the CDU Preflight Procedure.

Start the CDU Preflight Procedure anytime after the Preliminary Preflight Procedure. The Initial Data and Navigation Data entries must be complete before the flight instrument check during the Preflight Procedure. The Performance Data entries must be complete before the Before Start Checklist.

The captain or first officer may make CDU entries. The other pilot must verify the entries.

Enter data in all the boxed items on the following CDU pages.

Enter data in the dashed items or modify small font items that are listed in this procedure. Enter or modify other items at pilot's discretion.

Failure to enter enroute winds can result in flight plan time and fuel burn errors.

Initial Data	Set
IDENT page:	
Verify that the MODEL is correct.	

Verify that the ENG RATING is correct.

Verify that the navigation data base ACTIVE date range is current.

POS INIT page:

Verify that the time is correct.

Enter the present position on the SET IRS POS line. Use the most accurate latitude and longitude.

ROUTE page:

Enter the ORIGIN.

Enter the route.

Enter the FLIGHT NUMBER.

Activate and execute the route.

DEPARTURES page (after ATC clearance received):

Select the runway and departure routing.

Execute the runway and departure routing.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

LEGS page:

Verify the correct RNP for the departure, as needed.

Verify that the route is correct on the RTE pages. Check the LEGS pages as needed to ensure compliance with the flight plan.

Verify that the distance shown on PROG PAGE 1 is within 20 NM of the OFP total distance (G/C). If not within 20 NM, investigate discrepancy.

Performance DataSet

PERF INIT page:

Enter:

Cost Index

Reserves (from OFP)

CRZ ALT (initial planned altitude)

CRZ wind

Confirm transition altitude.

Note: The Performance Data ZFW entry will be completed after the Load Report form is received, the Weight and Balance is completed and the performance data is verified correct.

CAUTION: Do not enter the ZFW into the GW boxes. The FMC will calculate performance data with significant errors.

Complete the remainder of the CDU weight and performance entries after the Load Report form is available, and as described in the Performance Data CDU Entry and Crosscheck section.

Verify that the preflight is complete.

ACARS Initialization / Pre-flight page:

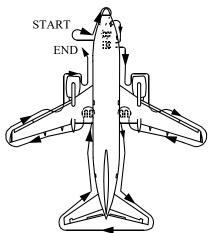
Enter or verify the flight number, departure airport, arrival airport, scheduled, or delayed estimated time of departure, flight time (EET), date and fuel uplift.

Exterior Inspection

Before each flight the captain, first officer, or maintenance crew must verify that the airplane is satisfactory for flight.

The PM normally completes the exterior inspection.

Items at each location may be checked in any sequence.


Use the detailed inspection route below to check that:

- the surfaces and structures are clear, not damaged, not missing parts and there are no fluid leaks *
- the tires are not too worn, not damaged, and there is no tread separation
- the gear struts are not fully compressed
- the engine inlets and tailpipes are clear, the access panels are secured, the fan cowls are latched, the exterior, including the bottom of the nacelles, is not damaged, and the reversers are stowed
- the doors and access panels that are not in use are latched
- look in each hold and take note of what, if any cargo or equipment is on board; the necessary adjustments to the W&B can then be made, if required
- the probes, vents, and static ports are clear and not damaged
- the skin area adjacent to the pitot probes and static ports is not wrinkled
- the antennas are not damaged
- the light lenses are clean and not damaged

For cold weather operations see the Supplementary Procedures.

Note: * Fluid leaks from the engine drains are allowed provided the leaks are less than a continuous stream. Refer to the Engine Start Procedure for additional guidance.

Inspection Route

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

Left Forward Fuselage
Probes, sensors, ports, vents, and drains (as applicable) Check
Doors and access panels (not in use)Latched
Nose
Radome
Forward E and E doorSecure
Nose Wheel Well
Tires and wheels
Gear strut and doors
Nose wheel steering assembly
Nose gear steering lockout pin
Gear pin
Nose wheel spin brake (snubbers)
Right Forward Fuselage
Probes, sensors, ports, vents, and drains (as applicable) Check
Oxygen pressure relief green disc In place
Doors and access panels (not in use)Latched
Right Wing Root, Pack, and Lower Fuselage
Ram air deflector doorExtended
Pack and pneumatic access doors
Probes, sensors, ports, vents, and drains (as applicable) Check
Exterior lights
Leading edge flaps

Number 2 Engine

Exterior surfaces (including the bottom of the nacelles)
Access panels and fan cowl latchesLatched
Probes, sensors, ports, vents, and drains (as applicable)
Fan blades, probes, and spinner
Thrust reverser Stowed
Exhaust area and tailcone
Right Wing and Leading Edge
Access panels Latched
Leading edge flaps and slats
Fuel measuring sticks Flush and secure
Wing Surfaces
Fuel tank vent
Right Wing Tip and Trailing Edge
Position, winglet aft marker, and strobe lights
Static discharge wicks
Aileron and trailing edge flaps
Right Main Gear
Tires, brakes and wheels
Verify that the wheel chocks are in place as needed.
If the parking brake is set, the brake wear indicator pins must extend out of the guides.
Gear strut, actuators, and doors
Hydraulic lines
Gear pin

Right Main Wheel Well	
APU FIRE CONTROL handle	Up
NGS operability indicator light	Check
Wheel well	Check
Right Aft Fuselage	
Doors and access panels (not in use)	Latched
Negative pressure relief door	Closed
Outflow valve	Check
Probes, sensors, ports, vents, and drains (as applicable)	Check
APU air inlet	Check
Tail	
Vertical stabilizer and rudder	Check
Elevator feel probes	Check
Tail skid	Check
Verify that the tail skid is not damaged.	
Horizontal stabilizer and elevator	Check
Static discharge wicks	Check
Position and strobe lights	Check
APU exhaust outlet	Check
Left Aft Fuselage	
Doors and access panels (not in use)	Latched
Probes, sensors, ports, vents, and drains (as applicable)	Check
Left Main Gear	
Tires, brakes and wheels	Check

If the parking brake is set, the brake wear indicator pins must extend out of the guides. Gear pin As needed Left Main Wheel Well **Left Wing Tip and Trailing Edge** Left Wing and Leading Edge **Number 1 Engine** Access panels and fan cowl latches Latched Exterior surfaces

Left Wing Root, Pack, and Lower Fuselage

Leading edge flaps	. Check
Probes, sensors, ports, vents, and drains (as applicable)	. Check
Exterior lights	. Check
Pack and pneumatic access doors	.Secure
Ram air deflector door	xtended

Preflight Procedure - First Officer

The first officer normally does this procedure. The captain may do this procedure as needed.

FLIGHT CONTROL switches - Guards closed

Verify that the flight control LOW PRESSURE lights are illuminated.

Note: If the B ELECTRIC HYDRAULIC PUMP switch is ON, the B System flight control LOW PRESSURE light will be extinguished.

Flight SPOILER switches - Guards closed

YAW DAMPER switch - ON

Verify that the YAW DAMPER light is extinguished.

Verify that the standby hydraulic LOW QUANTITY light is extinguished.

Verify that the standby hydraulic LOW PRESSURE light is extinguished.

Verify that the STBY RUD ON light is extinguished.

ALTERNATE FLAPS master switch - Guard closed

ALTERNATE FLAPS position switch - OFF

Verify that the FEEL DIFF PRESS light is extinguished.

Note: If the B ELECTRIC HYDRAULIC PUMP switch is ON the FEEL DIFF PRESS light will be illuminated.

Verify that the SPEED TRIM FAIL light is extinguished.

Verify that the MACH TRIM FAIL light is extinguished.

Verify that the AUTO SLAT FAIL light is extinguished.
Verify that the SPOILERS light is extinguished.
NAVIGATION panelSet
VHF NAV transfer switch – NORMAL
IRS transfer switch – NORMAL
FMC source select switch – NORMAL
DISPLAYS panelSet
SOURCE selector – AUTO
CONTROL PANEL select switch – NORMAL
Fuel panelSet
Verify that the ENG VALVE CLOSED lights are illuminated dim.
Verify that the SPAR VALVE CLOSED lights are illuminated dim.
Verify that the FILTER BYPASS lights are extinguished.
CROSSFEED selector – Closed
Verify that the VALVE OPEN light is extinguished.
FUEL PUMP switches – OFF
Verify that the center tank fuel pump LOW PRESSURE lights are extinguished.
Verify that the main tank fuel pump LOW PRESSURE lights are illuminated.
Electrical panel
BATTERY switch – Guard closed
CAB/UTIL power switch – ON
IFE/PASS SEAT power switch – ON
STANDBY POWER switch – Guard closed
Verify that the STANDBY PWR OFF light is extinguished.
Verify that the BAT DISCHARGE light is extinguished.
Verify that the TR UNIT light is extinguished.
Verify that the ELEC light is extinguished.
Generator drive DISCONNECT switches - Guards closed
Verify that the DRIVE lights are illuminated.

BUS TRANSFER switch – Guard closed

Verify that the TRANSFER BUS OFF lights are extinguished.

Verify that the SOURCE OFF lights are extinguished.

Verify that the GEN OFF BUS lights are illuminated.

Do this check if the flight crew did not do the Electrical Power Up supplementary procedure. This check is needed once per flight day.

Verify that the engine No. 1, APU, and engine No. 2 fire switches are in.

Alert ground personnel before the following test is accomplished:

OVERHEAT DETECTOR switches – NORMAL

TEST switch – Hold to FAULT/INOP

Verify that the MASTER CAUTION lights are illuminated.

Verify that the OVHT/DET annunciator is illuminated.

Verify that the FAULT light is illuminated.

If the FAULT light fails to illuminate, the fault monitoring system is inoperative.

Verify that the APU DET INOP light is illuminated.

Do not run the APU if the APU DET INOP light does not illuminate.

Note: The fire warning light flashes and the horn sounds on the APU ground control panel when this test is done with the APU running. This can be mistaken by the ground crew as an APU fire.

TEST switch – Hold to OVHT/FIRE

Verify that the fire warning bell sounds.

Verify that the master FIRE WARN lights are illuminated.

Verify that the MASTER CAUTION lights are illuminated.

Verify that the OVHT/DET annunciator is illuminated.

Master FIRE WARN light – Push

Verify that the master FIRE WARN lights are extinguished.

Verify that the fire warning bell cancels.

Verify that the engine No. 1, APU and engine No. 2 fire switches stay illuminated.

Verify that the engine No. 1 and engine No. 2 engine start levers stay illuminated.

Verify that the ENG 1 OVERHEAT and ENG 2 OVERHEAT lights stay illuminated.

Verify that the WHEEL WELL fire warning light stays illuminated.

EXTINGUISHER TEST switch – Check

TEST switch – Position to 1 and hold.

Verify that the three green extinguisher test lights are illuminated.

TEST switch - Release

Verify that the three green extinguisher test lights are extinguished.

Repeat for test position 2.

Note: If extended APU operation is needed on the ground and the airplane busses are powered by AC electrical power, position an AC powered fuel pump ON. This extends the service life of the APU fuel control unit.

Note: If fuel is loaded in the center tank, position the left center tank fuel pump switch ON to prevent a fuel imbalance before takeoff.

CAUTION: Position the center tank fuel pump switches ON only if the fuel quantity in the center tank exceeds 453 kgs.

CAUTION: Do not operate the center tank fuel pumps with the flight deck unattended.

When the APU GEN OFF BUS light is illuminated:

APU GENERATOR bus switches - ON

Verify that the SOURCE OFF lights are extinguished.

Verify that the TRANSFER BUS OFF lights are extinguished.

Note: Run the APU for two full minutes before using it as a bleed air source.

Verify that the APU DOOR light is extinguished.

Verify that the APU LOW OIL PRESSURE light is extinguished.

Verify that the APU FAULT light is extinguished.
Verify that the APU OVERSPEED light is extinguished.
EQUIPMENT COOLING switchesNORM
Verify that the OFF lights are extinguished.
EQUIP SMOKE light
EMERGENCY EXIT LIGHTS switchGuard closed
Verify that the NOT ARMED light is extinguished.
Passenger signs Set
1B392 - 1J114, 1L075 - 1L078 NO SMOKING switch – ON
FASTEN BELTS switch – ON (when fueling is complete)
Windshield WIPER selectors PARK
Verify that the windshield wipers are stowed.
WINDOW HEAT switchesON
Position switches ON at least 10 minutes before takeoff.
Verify that the OVERHEAT lights are extinguished.
Verify that the ON lights are illuminated (except at high ambient temperatures.)
PROBE HEAT switchesAUTO
Verify that all lights are illuminated.
WING ANTI-ICE switch OFF
Verify that the L VALVE and R VALVE lights are extinguished.
ENGINE ANTI-ICE switches OFF
Verify that the ENG ANTI-ICE lights are extinguished.
Verify that the COWL ANTI-ICE lights are extinguished.
Verify that the COWL VALVE lights are extinguished.
Hydraulic panel
ENGINE HYDRAULIC PUMPS switches – ON
Verify that the LOW PRESSURE lights are illuminated.

ELECTRIC HYDRAULIC PUMPS switches – OFF
Verify that the OVERHEAT lights are extinguished.
Verify that the LOW PRESSURE lights are illuminated.
CAUTION: Before selecting any hydraulic pump switch to on, ALERT ground personnel to remain clear of powered controls such as the leading edge flaps or slats.
B ELECTRIC HYDRAULIC PUMP switchON
Verify that the LOW PRESSURE and OVERHEAT lights are extinguished.
1B392, 1L075 - 1L078 High altitude landing switch
The switch is normally off (ON not visible). Verify that the INOP light is extinguished
Air conditioning panelSet
AIR TEMPERATURE source selector – As needed
TRIM AIR switch – ON
Verify that the ZONE TEMP lights are extinguished.
Temperature selectors – As needed
RECIRC FAN switches – AUTO
Air conditioning PACK switches – AUTO or HIGH
ISOLATION VALVE switch – OPEN
Engine BLEED air switches – ON
APU BLEED air switch – ON
Verify that the DUAL BLEED light is illuminated.
Verify that the PACK lights are extinguished.
Verify that the WING-BODY OVERHEAT lights are extinguished.
Verify that the BLEED lights are extinguished.
Cabin pressurization panelSet
Verify that the AUTO FAIL light is extinguished.
Verify that the OFF SCHED DESCENT light is extinguished.
FLIGHT ALTITUDE indicator – Set final (highest) planned flight plan cruise altitude.

LANDING ALTITUDE indicator – Destination field elevation
Pressurization mode selector – AUTO
Verify that the ALTN light is extinguished.
Verify that the MANUAL light is extinguished.
Lighting panelSet
LANDING light switches – OFF
RUNWAY TURNOFF light switches – OFF
TAXI light switch – OFF
Ignition select switch IGN L or R
Alternate the ignition select switch position on subsequent starts.
ENGINE START switches OFF
Lighting panelSet
LOGO light switch – As needed
POSITION light switch – As needed (normally STEADY)
ANTI-COLLISION light switch - OFF
WING illumination switch – As needed
WHEEL WELL light switch - As needed
Mode control panelSet
COURSE(S) – Set
FLIGHT DIRECTOR switch – ON
Move the switch for the pilot flying to ON first.
EFIS control panel
MINIMUMS reference selector – RADIO or BARO
FLIGHT PATH VECTOR switch - As needed
VSD switch – As needed
METERS switch – As needed
BAROMETRIC reference selector – IN or HPA
BAROMETRIC selector – Set local altimeter setting
VOR/ADF switches – As needed
Mode selector – MAP
CENTER switch – As needed

Range se	lector –	As	needed
----------	----------	----	--------

TRAFFIC switch – As needed

WEATHER RADAR – Off

Verify that the weather radar indications are not shown on the MAP.

Map switches – As needed

Note: The oxygen test and set is not needed if the oxygen pressure drop test was done at this crewmember station during the Preliminary Preflight Procedure - Captain or First Officer.

Oxygen Test and set

Oxygen mask - Stowed and doors closed

RESET/TEST switch – Push and hold

Verify that the yellow cross shows momentarily in the flow indicator.

RESET/TEST switch – Release

1C845, 1J103 - 1J114, 1K002, 1K003

Normal/100% switch – 100%

EMERGENCY/TEST selector – Normal (non-emergency)

TAKEOFF CONFIG lightVerify extinguished

CABIN ALTITUDE lightVerify extinguished

Verify that the A/T light is illuminated steady amber.

Verify that the FMC light is illuminated steady amber.

Verify that the A/P light is illuminated steady red.

Verify that the A/T light is illuminated steady red.

Verify that the FMC light is illuminated steady amber.

Do the Initial Data and Navigation Data steps from the CDU Preflight Procedure and verify that the IRS alignment is complete before checking the flight instruments.

CAUTION: At no time are pilots to touch the display screens.

Verify that the flight instrument indications are correct.

Verify that only these flags are shown:

- TCAS OFF
- NO VSPD until V-speeds are selected

Verify that the flight mode annunciations are correct:

- autothrottle mode is blank
- roll mode is blank
- pitch mode is blank
- AFDS status is FD.

Select the map mode.

PFD/MFD selectorNORM

GROUND PROXIMITY panel Check

FLAP INHIBIT switch – Guard closed

GEAR INHIBIT switch - Guard closed

TERRAIN INHIBIT switch - Guard closed

RUNWAY INHIBIT switch - Guard closed

Note: Before departure, if one or more of the following exist:

- the airport or runway is not in the GPWS database;
- a NOTAM applies to the intended runway; or
- airline policy prohibits the use of RAAS for an airport or runway;

complete the Overrun Warning (ORW) System and Runway Awareness and Advisory System (RAAS) Inhibit Operation Supplementary Procedure.

Verify that the GROUND PROXIMITY INOP light is extinguished.

Verify that the RUNWAY INOP light is extinguished

The RUNWAY INOP light can be illuminated until the GPS accuracy is adequate for the Runway Awareness and Advisory System requirements.

Landing gear panel Set
LANDING GEAR lever – DN
Verify that the green landing gear indicator lights are illuminated.
Verify that the red landing gear indicator lights are extinguished.
NOSE WHEEL STEER switch Guard closed
Engine instruments
CAUTION: At no time are pilots to touch the display screens.
Verify that the primary and secondary engine indications show existing conditions.
Verify that no exceedance is shown.
Verify or select the engine indications to the Captain's inboard display unit.
AUTO BRAKE select switchRTO
Verify that the AUTO BRAKE DISARM light is extinguished
ANTISKID INOP lightVerify extinguished
1K002, 1K003 TIRE PRESSURE lightVerify extinguished
SELECTOR switch
CARGO FIRE panelCheck
This check is needed once per flight day.
DETECTOR SELECT switches – NORM
TEST switch – Push
Verify that the fire warning bell sounds.
Verify that the master FIRE WARN lights are illuminated.
Master FIRE WARN light – Push
Verify that the master FIRE WARN lights are extinguished.
Verify that the fire warning bell cancels.
Verify that the green EXTINGUISHER test lights stay illuminated.
Verify that the FWD and AFT cargo fire warning lights stay illuminated.
Verify that the DETECTOR FAULT light stays extinguished.
Verify that the DISCH light stays illuminated.

Radio tuning panel
WARNING: Do not key the HF radio while the airplane is being fueled. Injury to personnel or fire can occur.
Verify that the OFF light is extinguished.
VHF communications radios
VHF #1 – ATC VHF #2 – ATIS or 121.5 VHF #3 – ACARS - ensure "DATA" is selected/displayed
VHF NAVIGATION radios Set for departure
Audio control panel
ADF radiosSet
WEATHER RADAR control panel
Transponder panelSet
Note: For FD "A", set the XPNDR and the ALT source selectors to 1. For FD "B", set the XPNDR and the ALT source selectors to 2.
STABILIZER TRIM override switchGuard closed
WARNING: Do not put objects between the seat and the aisle stand. Injury can occur when the seat is adjusted.
Seat
Use the handhold above the forward window for assistance when pulling the seat forward. Do not use the glareshield as damage can occur.
Adjust the seat for optimum eye reference.
Whenever the seat is adjusted, verify a positive horizontal (fore and aft) seat lock by pushing against the seat.
Rudder pedals
Adjust the rudder pedals to allow full rudder pedal and brake pedal movement.
CAUTION: Turn the rudder pedal adjust crank no faster than approximately one turn per second to avoid damage.

Do not apply force to the pedals during adjustment.

Seat belt and shoulder harness
Do the PREFLIGHT checklist on the captain's command.
Preflight Procedure - Captain
The captain normally does this procedure. The first officer may do this procedure if needed.
LightsTesi
Master LIGHTS TEST and DIM switch – TEST
The fire warning lights are not checked during this test. Use individual test switches or push to test features to check lights which do not illuminate during the light test. Use scan flow to verify that all other lights are flashing or illuminated. Verify that all system annunciator panel lights are illuminated.
Master LIGHTS TEST and DIM switch - As needed
EFIS control panel
MINIMUMS reference selector – RADIO or BARO
FLIGHT PATH VECTOR switch – As needed
VSD switch – As needed
METERS switch – As needed
BAROMETRIC reference selector – IN or HPA
BAROMETRIC selector – Set local altimeter setting
VOR/ADF switches – As needed
Mode selector – MAP
CENTER switch – As needed
Range selector – As needed
TRAFFIC switch – As needed
WEATHER RADAR – Off
Verify that the weather radar indications are not shown on the MAP.
Map switches – As needed
Mode control panel
COURSE(S) - Set

FLIGHT DIRECTOR switch – ON
Move the switch for the pilot flying to ON first.
Bank angle selector – As needed
Autopilot DISENGAGE bar – UP
USB Power switch (as installed)
Note: The oxygen test and set is not needed if the oxygen pressure drop test was done at this crewmember station during the Preliminary Preflight Procedure - Captain or First Officer.
Oxygen Test and set
Oxygen mask - Stowed and doors closed
RESET/TEST switch – Push and hold
Verify that the yellow cross shows momentarily in the flow indicator.
RESET/TEST switch – Release
1C845, 1J103 - 1J114, 1K002, 1K003 Normal/100% switch - 100%
EMERGENCY/TEST selector – Normal (non-emergency)
EMERGENCY/TEST selector – Normal (non-emergency) TAKEOFF CONFIG light
, , , , , , , , , , , , , , , , , , , ,
TAKEOFF CONFIG light Verify extinguished
TAKEOFF CONFIG light

Do the Initial Data and Navigation Data steps from the CDU Preflight Procedure and verify that the IRS alignment is complete before checking the flight instruments.

CAUTION: At no time are pilots to touch the display screens.

Verify that the flight instrument indications are correct.

Verify that only these flags are shown:

- TCAS OFF
- NO VSPD until V-speeds are selected

Verify that the flight mode annunciations are correct:

- autothrottle mode is blank
- roll mode is blank
- pitch mode is blank
- AFDS status is FD

Select the map mode.

PFD/MFD selector
Integrated standby flight display Set
Verify that the approach mode display is blank.
Set the altimeter.
Verify that the flight instrument indications are correct.
Verify that no flags or messages are shown.
FUEL FLOW switch – RATE
Move switch to RESET, then RATE.
SELECTOR switch
SPEED BRAKE leverDOWN detent
Verify that the SPEED BRAKE DO NOT ARM light is extinguished.
Verify that the SPEED BRAKE ARMED light is extinguished.
Verify that the SPEEDBRAKES EXTENDED light is extinguished.
Reverse thrust levers
Forward thrust levers
FLAP lever Set
Set the flap lever to agree with the flap position.

Parking brake	Set
Verify that the parking brake warning light is illuminated	
Note: Do not assume that the parking brake can prevent airplane movement. Accumulator pressure can be insufficient.	
Engine start levers	FF
STABILIZER TRIM cutout switchesNORMA	٩L
Radio tuning panel	Set
WARNING: Do not key the HF radio while the airplane is being fueled. Injury to personnel or fire can occur	r.
Verify that the OFF light is extinguished.	
VHF communications radios	Set
VHF #1 – ATC VHF #2 – ATIS or 121.5 VHF #3 – ACARS - ensure "DATA" is selected/displayed	
VHF NAVIGATION radiosSet for departs	ıre
Audio control panel	Set
ADF radios	Set
Trim	Set
Note: The B ELECTRIC HYDRAULIC PUMP switch must be selected ON prior to completing the trim check.	
Check each trim for freedom of movement. This check is required f the first flight of the day.	or
WARNING: Do not put objects between the seat and the aisle stand. Injury can occur when the seat is adjusted.	
SeatAdjı	ust
Use the handhold above the forward window for assistance when pulling the seat forward. Do not use the glareshield as damage can occur.	l
Adjust the seat for optimum eye reference.	
Whenever the seat is adjusted, verify a positive horizontal (fore an aft) seat lock by pushing against the seat.	ıd

Rudder pedals	just
Adjust the rudder pedals to allow full rudder pedal and brake ped movement.	al
CAUTION: Turn the rudder pedal adjust crank no faster than approximately one turn per second to avoid damage Do not apply force to the pedals during adjustment.	
Seat belt and shoulder harness	just
Call "PREFLIGHT CHECKLIST."	

Before Start Procedure

Start the Before Start Procedure after the Load Report is on board.

EFBAirplane Mode	C, F/O
Papers and Log Books On board	C, F/O
Flight deck door	F/O
Passenger Signs On Do the CDU Preflight Procedure – Performance Data steps be completing this procedure.	F/O efore
CDU display	C, F/O
N1 bugs	C, F/O
IAS bugsSet	C, F/O
MCP Set AUTOTHROTTLE ARM switch – ARM	С

IAS/MACH selector – Set V2

Arm LNAV as needed

Note: Do not arm LNAV if engine out procedure deviates from SID below 400 ft.

Note: For LNAV to be armed on the ground, the departure runway must be selected and the course to the first waypoint must be within 5 degrees of the runway heading.

Arm VNAV

Note: For VNAV to be armed on the ground, verify that ACCEL HT, EO ACCEL HT and THR REDUCTION for CLB thrust is set as applicable for the departure profile. When planning a standard NADP 2 departure profile, set or verify a climb speed of Vref 40+80 kts to 3000 ft AAE in the FMC CLIMB page, with a transition speed of 250 kts above that.

Initial heading – Set

Initial altitude – Set

The pilot who will do the takeoff does the taxi and takeoff briefings.

As part of the Takeoff Briefing for the first flight of the day, and following a change of either flight crew member, cabin altitude warning indications and memory item procedures must be briefed on aircraft in which the CABIN ALTITUDE and TAKEOFF CONFIG lights are not installed, or are installed but not activated. The briefing must contain the following information:

Whenever the intermittent warning horn sounds in flight at an aircraft flight altitude above 10000 feet MSL:

- 1. Immediately don oxygen masks and set regulators to 100%.
- 2. Establish crew communications.
- 3. Do the CABIN ALTITUDE WARNING or Rapid Depressurization non-normal checklist.

Both pilots must verify on the overhead Cabin Altitude Panel that the cabin altitude is stabilized at or below 10,000 feet before removing oxygen masks.

Exterior doors	Verify closed	F/O
Flight deck windows	Closed and locked	C, F/O
Start clearance	Obtain	C, F/O

Establish communications with ground personnel through headset or visual signals.

Confirm: brakes set; chocks removed; doors closed; boarding/loading equipment removed; aircraft clear for start.

Obtain a clearance to pressurize the hydraulic systems.

Note: If a pushback is required, the F/O should commence the Before Start Procedure as soon as the ground crew verifies that the tow bar is connected and the nose gear steering lockout pin is installed.

Obtain a clearance to start the engines.

If the center tank fuel quantity exceeds 453 kilograms:

LEFT and RIGHT CENTER FUEL PUMPS switches - ON

Verify that the LOW PRESSURE lights illuminate momentarily and then extinguish.

If the LOW PRESSURE light stays illuminated turn off the CENTER FUEL PUMPS switch.

CAUTION: Centre tank fuel pump switches should be positioned ON only if the fuel quantity in the center tank exceeds 453 kg.

AFT and FORWARD FUEL PUMPS switches – ON

Verify that the LOW PRESSURE lights are extinguished.

Hydraulic panel Set

F/O

If pushback is needed and the nose gear steering lockout pin is not installed:

WARNING: Do not pressurize hydraulic system A. Unwanted tow bar movement can occur.

System A HYDRAULIC PUMP switches – OFF

Verify that the system A pump LOW PRESSURE lights are illuminated.

System B electric HYDRAULIC PUMP switch - ON

Verify that the system B electric pump LOW PRESSURE light is extinguished.

Verify that the brake pressure is 2,800 psi minimum.

Verify that the system B pressure is 2,800 psi minimum.

If pushback is not needed, or if pushback is needed and the nose gear steering lockout pin is installed:

Electric HYDRAULIC PUMP switches – ON

Verify that the electric pump LOW PRESSURE lights are extinguished.

Verify that the brake pressure is 2,800 psi minimum.

Verify that the system A and B pressures are 2,800 psi minimum.

Set the trim for takeoff.

Verify that the trim is in the green band.

Aileron trim - 0 units

Rudder trim – 0 units

Call "BEFORE START CHECKLIST."

Do the BEFORE START checklist. F/O

Where it is necessary to start an engine or de-ice at the gate prior to taxi, the ACARS OUT time must be manually triggered after all exterior doors are closed and ground crew are confirmed clear of the nose gear area.

Note: If pushback after engine start or de-icing is required, ensure that the towbar is connected and the bypass pin is installed.

Release the parking brake and hold the brakes to prevent aircraft movement. Wait approximately 30 seconds or until the OUT time populates on the ACARS OOOI or FLT LOG page, as applicable, and then re-set the parking brake. Continue with normal engine start or de-ice procedures.

 \mathbf{C}

Pushback or Towing Procedure

The Engine Start procedure may be done during pushback or towing.

Establish communications with ground handling personnel.

CAUTION: Do not hold or turn the nose wheel steering wheel during pushback or towing. This can damage the nose gear or the tow bar.

CAUTION: Do not use airplane brakes to stop the airplane during pushback or towing. This can damage the nose gear or the tow bar.

Transponder As needed F/O

Note: At airports where ground tracking is not available, select STBY on the Mode Selector. At airports equipped to track aircraft on the ground, select XPNDR on the Mode Selector.

Set or release the parking brake as directed by ground handling personnel.

C or F/O

When pushback or towing is complete:

Verify that the tow bar is disconnected

C

Verify that the nose gear steering lockout pin is removed

C

System A HYDRAULIC PUMPS switches – ON

F/O

Verify that the system A pump LOW PRESSURE lights are extinguished

Verify that the system A pressure is 2800 psi minimum.

Engine Start Procedure

Normal starter duty cycle:

- Multiple consecutive start attempts are permitted. Each start attempt is limited to 3 minutes of starter usage.
- A minimum of 10 seconds is needed between start attempts.

Extended engine motorings:

- Starter usage is limited to 5 minutes for all extended engine motorings. A minimum of 5 minutes is needed between the first two extended engine motorings.
- For the third and subsequent extended engine motorings, a minimum of 10 minutes is needed between each engine motoring.

Normal engine start considerations:

- Captain will monitor start timing and FO will monitor ignition timing
- do not move an engine start lever to IDLE detent early or a hot start can occur
- keep a hand on the engine start lever while monitoring RPM, EGT and fuel flow until stable
- if fuel is shutoff accidentally (by closing the engine start lever) do not reopen the engine start lever in an attempt to restart the engine
- failure of the ENGINE START switch to stay in GRD until the starter cutout RPM can cause a hot start. Do not re-engage the ENGINE START switch until engine RPM is below 20% N2.
- If a fluid leak (other than a continuous stream) from any of the engine drains is discovered during the Exterior Inspection, the engine can be started. If during engine start, the ground crew reports a fluid leak from an engine drain, the engine start may be continued.
- If the fluid leak continues after the engine is stable at idle, do one of the following:
 - shut down the engine for maintenance action, or
 - run the engine at idle thrust for up to 5 minutes. If the fluid leak stops during this time, no maintenance action is needed, or
 - shut down and restart the engine. Run the engine at idle thrust for up to 5 minutes. If the fluid leak stops during this time, no maintenance action is needed.
- For the first flight of the day, at airport elevations at or above 2,000 feet MSL, if the temperature is below 5°C/41°F, consider placing the Ignition select switch to BOTH before starting the engines. This may increase the likelihood of a successful engine start on the first attempt.

Do the ABORTED ENGINE START checklist for one or more of the following abort start conditions:

- the N1 or N2 does not increase or increases very slowly after the EGT increases
- there is no oil pressure indication by the time that the engine is stable at idle
- the EGT does not increase by 15 seconds after the engine start lever is moved to IDLE detent
- the EGT quickly nears or exceeds the start limit

Select the secondary engine indications.

F/O

Air conditioning PACK switchesOFF

F/O

Start sequenceAnnounce	C
Call "START # ENGINE"	C
ENGINE START switchGRD	F/O
Verify that the N2 RPM increases.	C, F/O
After MOTORING indication blanks, N1 rotation is seen, and N25%, or (if 25% N2 is not possible), at maximum motoring and minimum of 20% N2:	
Note: Maximum motoring occurs when N2 acceleration is lethan 1% in approximately 5 seconds.	ess
CAUTION: Do not apply rotational force when moving t engine start lever.	he
Engine start lever	C
Note: During the TCMA/EOS test, fuel flow indication will be zero and the ENG VALVE CLOSED light will illuminate bright blue until the test is complete.	
Monitor fuel flow and EGT indications.	C, F/O
At 63% N2, verify that the ENGINE START switch moves to OFF. If not, move the ENGINE START switch to OFF.	F/O
Verify that the START VALVE OPEN alert extinguishes when the ENGINE START switch moves to OFF.	F/O
Call "STARTER CUTOUT."	F/O
Monitor N1, N2, EGT, fuel flow and oil pressure for normal indications while the engine accelerates to a stable idle.	C, F/O
After the engine is stable at idle, start the other engine.	
Note: The engine is stable at idle when the EGT start limit r is no longer shown.	edline
Call "STABLE ENGINES"	С
Refore Taxi Procedure	

Start the Before Taxi Procedure after the engines are stable at idle.

Note: The F/O completes the Before Taxi Procedure as soon as the engines are stable at idle. When getting to the point for selecting flaps, they will rest their hand on the flap lever until the Captain calls "FLAPS _____" as needed for takeoff.

151 Fight Crew Operations Manual		
GENERATOR 1 and 2 switches ON	F/O	
APU switchOFF	F/O	
PROBE HEAT switchesON	F/O	
WING ANTI-ICE switchAs needed	F/O	
ENGINE ANTI-ICE switchesAs needed	F/O	
HYDRAULIC SYSTEM switchesON	F/O	
PACK switches	F/O	
ISOLATION VALVE switch AUTO	F/O	
APU BLEED air switchOFF	F/O	
ENGINE START switchesCONT	F/O	
Engine start leversIDLE detent	C	
Call "FLAPS" as needed for takeoff.	C	
WARNING: Verify the required takeoff flap setting against the required selection as displayed on the CDU before calling "FLAPS".		
Flap lever Set takeoff flaps	F/O	
Verify requested takeoff flap setting against the CDU setting and call "FLAPSCONFIRMED".		
Verify that the LE FLAPS EXT green light is illuminated.		
Flight controls	C	
WARNING: Verify that the ground equipment is clear and t	the	

ground handling person is disconnected.

1B392, 1J022, 1J023, 1L075 - 1L078

Push the MFD SYS switch to display the flight control surface position indications on the selected inboard display unit.

Make slow and deliberate inputs, one direction at a time.

Move the control wheel and the control column to full travel in both directions and verify:

- freedom of movement
- that the controls return to center

1B392, 1J022, 1J023, 1L075 - 1L078

• correct flight control movements are displayed on the selected inboard display unit.

Hold the nose wheel steering wheel during the rudder check to prevent nose wheel movement.

Move the rudder pedals to full travel in both directions and verify:

- freedom of movement
- that the rudder pedals return to center

1B392, 1J022, 1J023, 1L075 - 1L078

• correct flight control movements are displayed on the selected inboard display unit.

Note: At airports where ground tracking is not available, select STBY on the Mode Selector. At airports equipped to track aircraft on the ground, select XPNDR on the Mode Selector.

Verify that all system annunciator panel lights illuminate and then extinguish.

Update changes to the taxi briefing, as needed.

C or PF

Call "BEFORE TAXI CHECKLIST."

C

F/O

F/O

Do the BEFORE TAXI checklist.

F/O

With the pushback and BEFORE TAXI checklist complete, the Captain will call for the F/O to call ground and request taxi clearance.

Copy taxi instructions, read back and clarify any misunderstanding of the route, hold points and direction.

During the taxi, **DO NOT** engage in administrative duties or actions that distract from situational awareness.

Normal taxi speed is approximately 20 knots, adjusted for conditions. On long straight taxi routes, speeds up to 30 knots are acceptable, however, at speeds greater than 20 knots use caution when using the nose wheel steering wheel to avoid over-controlling the nose wheels. When approaching a turn, speed should be slowed to an appropriate speed for conditions. On a dry surface, for turn angles greater than those typically required for high speed runway turnoffs, use approximately 10 knots.

Before Takeoff Procedure

Engine warm up requirement:

• Before setting the takeoff thrust, verify that the engine oil temperature is at or above 31°C. Running the engines for approximately 3 minutes with an OAT 0°C or greater allows the engine oil temperature to rise to 31°C or above.

Engine warm up recommendations:

- run the engines for at least 3 minutes
- use a thrust setting normally used for taxi operations.

	8 7 1	
CAPTAIN	FIRST OFFICER	
	IFD will call the flight deck via interphone and say: "CABIN SECURE".	
The pilot who will do the takeoff updates changes to the takeoff briefing as needed.		
Set the weather radar display as needed.		
Set the terrain display as needed.		
Call "BEFORE TAKEOFF CHECKLIST."	Do the BEFORE TAKEOFF checklist.	
WARNING: Both pilots must verify the required takeoff flap setting against the required selection as displayed on the CDU when challenging and responding in the BEFORE TAKEOFF checklist.		

Takeoff Procedure

CAPTAIN	FIRST OFFICER
	When cleared to position for takeoff on the departure runway make PA from the flight deck: "FLIGHT ATTENDANTS BE SEATED FOR TAKEOFF."
Before entering the departure runway, verify that the runway and runway entry point are correct.	
Verify weather radar/TERRAIN set as required. It is recommended that one pilot	When entering the departure runway, set the transponder to TA/RA and the STROBE light switch to ON.
display TERRAIN.	Verify weather radar/TERRAIN set as required.
	It is recommended that one pilot display TERRAIN.
Verify that the brakes are released.	
Align the aircraft with the runway.	
Verify that the aircraft heading agrees v	with the assigned runway heading.
When cleared for takeoff, set all LANDING light switches to ON and TAXI light switch to OFF.	
Note: For F/O takeoffs - the F/O becomes the PF after the aircraft is aligned on the runway, LANDING light switches are ON, the aircraft is cleared for takeoff and the controls are transferred.	
Pilot Flying	Pilot Monitoring
Immediately prior to advancing the thrust levers call: "TAKEOFF".	 Call: "RUNWAY XXX VERIFIED". Note: Verification requires: 1. Runway number on the ND and runway matches runway cleared for takeoff. 2. Aircraft heading on the runway reconciles with runway number cleared for takeoff (e.g. aircraft heading 332 and cleared for takeoff on Rwy 33L).

Advance the thrust levers to approximately 40% N1.	
Allow the engines to stabilize.	
Push the TO/GA switch.	
Call "N1/TOGA".	
Note: Call roll mode if annunciated.	
Verify the correct takeoff thrust is set.	
	Monitor the engine instruments during the takeoff. Call out any abnormal indications.
	Adjust takeoff thrust before 60 knots as needed.
	During strong headwinds, if the thrust levers do not advance to the planned takeoff thrust by 60 knots, manually advance the thrust levers.
	Call "THRUST SET."
After takeoff thrust is set, the Captain's levers until V1.	hand must be on the thrust
Monitor airspeed and runway centerline.	Monitor airspeed and call out any abnormal indications.
Maintain light forward pressure on the control column.	
	Call "80 KNOTS."
Verify 80 knots and call: "CHECK".	CAUTION: If call is made after 80 KIAS, call out actual IAS.
	Verify required takeoff thrust is set and that THR HLD is annunciated.
Verify V1 speed.	Verify the automatic V1 callout or call "V1".

At VR, rotate toward 15° pitch attitude. After liftoff, follow F/D commands.	At VR, call: "ROTATE". Monitor airspeed and vertical speed.
Establish a positive rate of climb.	
	Verify a positive rate of climb on the altimeter and call: "POSITIVE RATE".
Verify a positive rate of climb on the altimeter and call: "GEAR UP".	Set the landing gear lever to UP.
Above 400 ft radio altitude, call for a roll mode, as needed.	Select or verify the roll mode. Verify VNAV is engaged.
Select autopilot as desired. Call:	
"COMMAND A" or "COMMAND B" as applicable.	

NADP 1 Profile:

Takeoff power, Takeoff flap and climb at V2+10 - 20kts to 1500 feet AAE (Above Airport Elevation).

At 1500 feet AAE, reduce to climb thrust and maintain V2+10 - 20kts to 3000 feet AAE.

At 3000 feet AAE, accelerate to en route climb speed with flap retraction on schedule.

Note: To assist in planning departure spacing at Canadian airports, pilots are to notify ATC Clearance Delivery or Ground Control when intending to use NADP 1.

NADP 2 Profile:

Takeoff power, Takeoff flap and climb at V2+10 - 20kts to 1000 feet AAE.

At 1000 feet AAE (or MFRA if higher), reduce to climb thrust and accelerate to minimum maneuvering speed (Vzf), retracting flaps on schedule.

From 1000 feet AAE to 3000 feet AAE, continue to climb at not greater than Vzf+10 - 20 kts (Vzf is the equivalent of Vref40 + 70 kts).

At 3000 feet AAE transition to en route climb speed.

At thrust reduction height, verify that climb thrust is set.

At acceleration height (minimum 1000 feet AAE), verify acceleration.	
Call: "FLAP " according to the flap retraction schedule.	
	Verify the speed and set the FLAP lever as directed. Monitor flaps and slats retraction.
	When flaps are indicating the selected position, call "FLAP".
	When flaps and slats have fully retracted, call: "FLAPS UP, NO LIGHTS".
	After flap retraction is complete:
	 set or verify engine bleeds and air conditioning packs are operating; set the engine start switches a as needed; set the AUTO BRAKE select switch to OFF;
After flap retraction and above 3000 ft AAE, call "AFTER TAKEOFF CHECKLIST."	Verify or select engine indications to the desired inboard display.
	Do the AFTER TAKEOFF checklist.

Once above 3000 ft AAE, engage VNAV if it is not already the active mode.

Takeoff Flap Retraction Speed Schedule

Takeoff Flaps	At Speed (display)	Select Flaps
	V2 + 15	15
25	"15"	5
	"5"	1
	"1"	UP
	V2 + 15	5
15 or 10	"5"	1
	"1"	UP
5	V2 + 15	1
	"1"	UP
1	"1"	UP
Limit bank angle to 15° until reaching V2 + 15		

Before calling for flap settings, the PF will note and consider the speeds above.

The PM will note and confirm speed in range and set the requested Flap position. If speed is out of limits for flap retraction, PM will call: "SPEED".

MCP Altitude Setting Techniques Using VNAV - Published Departures

Note: Flight crews must be vigilant and aware of FMA annunciation and pitch mode selection. If a pitch mode other than VNAV PTH or VNAV SPD is engaged, there is a risk of violating procedure altitude constraints and the MCP must be set to each successive altitude constraint until VNAV is selected/annunciated.

During climb in VNAV, set the clearance altitude in the MCP. VNAV will ensure that intermediate altitude constraints are satisfied. The FMC alerts the crew with an "UNABLE NEXT ALTITUDE" CDU scratch pad message if an altitude constraint will not be satisfied.

For example, when departing KLAX on the DARRK RNAV SID with VNAV engaged, set the MCP to FL230, or ATC assigned altitude as applicable. If the pitch mode is not VNAV, then the intermediate altitudes for the applicable SID waypoints must be set in the MCP until VNAV is engaged.

Climb and Cruise Procedure

Complete the After Takeoff Checklist before starting the Climb and Cruise Procedure.

Pilot Flying	Pilot Monitoring
	During climb and cruise, verify the RNP as needed.
At or above 10000 ft MSL, Captain selects all LANDING light switches to OFF. If VNAV was engaged prior to takeoff, set or verify that ECON climb is selected in the FMC Climb page.	F/O selects Logo light switch OFF, if applicable. Check pressurization normal. Set the passenger signs as needed. Select the center tank fuel pump switches ON, as applicable.
Climbing or Descending: Call passing through: "10,000", "20,000" and "30,000". e.g. "10000 CLIMBING FL330".	
Climbing or Descending: Call 1000 ft prior to cleared altitude. e.g. "FL270 CLIMBING FL280".	

At transition level, set and cross check the altimeters to standard.

PF calls: "TRANSITION, SET STANDARD"; PM calls: "STANDARD SET AND CROSS CHECKED".

The Captain sets the ISFD to standard.

CAUTION: With a combination of low QNH, high rate of climb and low TA, consider setting STD earlier than fixed TA to preclude a possible ATC altitude violation.

Pilot Flying	Pilot Monitoring
	During climb, set the affected center tank fuel pump switch to OFF when a center tank fuel pump LOW PRESSURE light illuminates.
	Set both center tank fuel pump switches to OFF when a center tank fuel pump LOW PRESSURE light illuminates if the center tank is empty.
	When established in a level flight attitude, if the center tank contains usable fuel and a center tank fuel pump switch(es) is OFF, set the center tank fuel pump switch(es) to ON again.
	Set the affected center tank fuel pump switch to OFF when a center tank fuel pump LOW PRESSURE light illuminates.
	Set both center tank fuel pump switches to OFF when a center tank fuel pump LOW PRESSURE light illuminates if the center tank is empty.
At top of climb, complete panel scan is RECALL check.	n area of responsibility, including a
Ensure altimeters are within RVSM lir	nits.
Setup VHF as follows:	
1) VHF #1 - ATC	
2) VHF #2 - 121.5	
3) VHF #3 - ACARS - leave "DATA" active	
CAUTION: Do not allow the shoulder harness straps to retract quickly. Buckles can pull or damage circuit breakers.	
Ensure the aircraft is in trim.	
CAUTION: Do not fly above Maximum Altitude in the FMC. Fly at or below Optimum Altitude as much as possible.	

Pilot Flying	Pilot Monitoring
	Cross check actual time and fuel remaining with OFP requirements at least once per hour for any flight over 1 hour in duration.
In flight, the PM usually makes the CDU modifications as directed by PF. The PM calls: "CONFIRM". The PF calls "CONFIRMED" after verifying the change is correct and then PF calls: "EXECUTE". The PM executes the change only after the PF verifies the entries.	

Descent Procedure

Normally, the Descent Procedure is commenced sufficiently in advance of the Top of Descent point so as to have the Approach Briefing completed prior to descending from the cruise altitude for arrival at the destination. In any case, the Descent Procedure should be completed by 10000 feet MSL.

NP.21.47

737 Flight Crew Operations Manual

Pilot Flying	Pilot Monitoring
	During the descent, verify the RNP as needed.
	Set the affected center tank fuel pump switch to OFF when a center tank fuel pump LOW PRESSURE light illuminates.
	Set both center tank fuel pump switches to OFF when a center tank fuel pump LOW PRESSURE light illuminates if the center tank is empty.
	If established in a level flight attitude, for an extended period of time with usable fuel in the center tank and a center tank fuel pump switch(es) is OFF, set the center tank fuel pump switch(es) to ON again.
	Set the affected center tank fuel pump switch to OFF when a center tank fuel pump LOW PRESSURE light illuminates.
	Set both center tank fuel pump switches to OFF when a center tank fuel pump LOW PRESSURE light illuminates if the center tank is empty.
	Obtain arrival ATIS.
	Prepare their EFB with the appropriate arrival/approach/taxi charts.
Transfer control to the PM.	
Program the FMC with the applicable STAR and Approach anticipated for arrival.	

, I		
Pilot Flying	Pilot Monitoring	
When planning an RNAV (RNP) AR approach, the approach must be selected from the navigation database. The ACT RTE X LEGS page must match the charted approach and the waypoint sequence, track and distance must be verified.		
If there is an "at or above" altitude restriction before the FAF, it may be changed to an "at" altitude restriction using the same altitude. Speed modifications are permissible provided the maximum published speed is not exceeded.		
	Verify that pressurization is set to landing altitude.	
Calculate the landing performance.* Set the AUTO BRAKE select switch to the needed brake setting.		
1K002 Set the applicable VREF on the APPROACH REF page.	Verify VREF on the APPROACH REF page 1 and appropriate runway condition on page 2, if available.	
1B392 - 1J114, 1K003 - 1L078 Set the applicable VREF on the APPROACH REF page 1/2 and select or verify the appropriate runway condition on page 2/2.		
Set or verify the navigation radios and course for the approach.		

Pilot Flying	Pilot Monitoring

Set the RADIO/BARO minimums and final approach course as needed for the approach.

If planning an RNAV or RNP AR approach set the vertical RNP to 125 ft on FMS page RNP PROGRESS 4/5.

If planning an RNAV approach set the lateral RNP value to 0.3.

If planning an RNP AR approach, set the lateral RNP value according to the required DH suitable for the weather (normally 0.3, but may be lower).

On the NAV OPTIONS page:

- Select VOR UPDATE OFF;
- Verify or select DME UPDATE OFF;
- Verify of select GPS UPDATE ON.

Do the approach briefing with reference to the charted information and the CAT II or RNP AR OPERATIONS Briefing Card, as applicable.	Verify that the information in the FMC correlates to the information being briefed from the charted information during the approach briefing.
Assume control from PF.	Transfer control to PM.
Recall and review the system annunciator lights.	Recall and review the system annunciator lights.
Call: "DESCENT CHECKLIST"	Do the DESCENT checklist.

* Landing Performance Calculation

Landing Performance must be calculated, using the OPT or the appropriate ORH Performance Inflight landing distance table prior to every landing.

Pilots should select an appropriate autobrake setting that will enable them to exit the runway at an appropriate planned taxiway intersection.

Note: The applicable braking action must be selected on APPROACH REF page 2 anytime that the runway condition is not DRY.

MCP Altitude Setting Technique Using VNAV - Published **Arrivals and Approaches / Transitions**

Note: Flight crews must be vigilant and aware of FMA annunciation and pitch mode selection. If a pitch mode other than VNAV PTH or VNAV SPD is engaged, there is a risk of violating procedure altitude constraints and the MCP must be set to each successive altitude constraint until VNAV is selected/annunciated.

During descent in VNAV, set the clearance altitude in the MCP. VNAV will ensure that intermediate altitude constraints are satisfied. The FMC alerts the crew with an "UNABLE NEXT ALTITUDE" CDU scratch pad message if an altitude constraint will not be satisfied.

For example, when the airplane has been cleared from cruise level to 7000 ft, on the CYXX HOPE arrival to cross KEKPO at 9000 ft, set the MCP to 7000 ft.

When cleared for an approach using VNAV, set the MCP to the lowest of the published altitude constraints or the FAP/FAF altitude, whichever is higher.

For example, when the airplane has been cleared for the RNAV (RNP) X Rwy 16 approach, VIVEK transition in CYLW, set the MCP initially to 9500 ft. When the altitude crossing restriction at VIVEK is assured, set 3400 ft (FAP crossing altitude).

Note: The FMC generated path should be checked against each altitude constraint to ensure that the path complies with all constraints.

Approximately 2 NM before the final approach fix and after VNAV PTH, VNAV ALT or ALT HOLD is annunciated:

- set DA(H) on the MCP;
- select or verify VNAV;
- select or verify speed intervention (as installed).

Note: For approach procedures where the vertical angle ("GP" angle shown on the LEGS page) begins earlier in the approach (prior to the FAP/FAF), the MCP may be set to the DA(H) once established on the vertical angle.

Altitude intervention is appropriate during approaches only if the AFDS enters VNAV ALT mode above the approach path and descent must be continued. Entering VNAV ALT mode can occur if passing a waypoint on the descent/approach and the crew has neglected resetting the MCP

altitude to a lower altitude. If this occurs, set the MCP altitude to the next lower altitude constraint or the TDZE, as appropriate, and select altitude intervention. When VNAV altitude intervention is selected, VNAV path deviation indications on the map display disappear momentarily while the path is recalculated but should reappear.

When on-approach logic is active and the airplane is below the VNAV path when altitude intervention is selected, level flight is commanded until reaching the VNAV path, then the airplane captures the VNAV path.

Approach Briefing

The approach briefing will be given by the PF prior to descent after obtaining the arrival ATIS or advisory.

Both pilots will review the approach procedure. The briefing will include the following:

- STAR
- Type of approach State page number and effective date. If applicable, check that the approach plate is current.
- Navigational frequency to be used.
- Final Approach Course.
- Verify that the applicable RNP value has been set for the applicable RNAV (GNSS) or RNAV (RNP) approach procedure.
- Glideslope / FAF minimum altitude crossing fix.
- DA(H) / MDA
- Minimum safe altitude sectors.
- Transition altitude.
- Vertical profile including all minimum altitudes, crossing altitudes, speed restrictions and approach minimums.
- Engine failure and Unable Required RNP procedures.
- Flap setting / Autobrake / Vref / Command speed.
- Weather considerations crosswind/tailwind, visibility, cloud cover, rain, ice and snow effect on braking, windshear, thunderstorms, etc.
- Missed Approach Point and Missed Approach Procedure.
- Management of the AFDS. Set up of NAV SOURCES.
- · Operations, monitoring and standard calls.
- Reminder that if the In-Air Overrun Warning ("OVERRUN, GO-AROUND") occurs during approach, an immediate go-around is required.
- Questions and confirmation of minimum altitudes by PM.

Note: Inhibit the overrun alert when:

- Landing OAT is below -40C or greater than 50C; or
- Gross weight is greater than Maximum Landing Weight.

For CAT II operations, review and verify all CAT II requirements have been met as per pages NP.21.53 - NP.21.54.

Brief the CAT II approach using briefing guide on page NP.21.53 plus any additional considerations listed above.

For RNAV (RNP) AR operations, review and verify all requirements have been met as per page NP.21.55.

CAT II Operations

CAT II Approach Briefing		
ILS CAT II APPROACH RUNWAY, (Airport), (page#), Effective Date		
LOCALIZER FREQ, APPROACH COURSE, CROSS FIX @ (altitude).		
FLAPS AUTOBRAKE		
DECISION HEIGHT IS FEET, SET ON THE RADIO ALTIMETER.		
AFTER APPROACH IS ARMED, I WILL ENGAGE THE 2nd AUTOPILOT.		

ON THE GLIDESLOPE AND PRIOR TO THE FAF, WE WILL BE FULLY CONFIGURED FOR LANDING.

WE WILL BOTH MONITOR THE INSTRUMENTS WHILE ON APPROACH. YOU WILL REMAIN HEADS DOWN THROUGHOUT THE APPROACH, LANDING, ROLL OUT AND/OR GO-AROUND.

AT THE 1000 FOOT CALL, YOU WILL CALL "STABLE" OR "GO-AROUND".

AT THE 500 FOOT CALL, YOU WILL CALL: "FLARE ARMED".

I WILL GO HEADS UP AND SCAN FOR VISUAL CUES.

AT MINIMUMS, I WILL CALL EITHER: "CONTINUE" OR "GO-AROUND".

IN THE EVENT OF A GO-AROUND: [BRIEF MISSED APPROACH PROCEDURE].

CALL ANY DEVIATIONS FROM FLIGHT PATH, AFDS ANNUNCIATORS OR AN UNSTABILIZED CONDITION.

ANY QUESTIONS?

Note: Prior to conducting a CAT II Approach: Review the CAT II Limitations and Approach Ban Criteria as displayed on the reverse side of the glareshield NORMAL CHECKLIST.

CAT II Limitations

Wind Direction	Autoland Wind Limits
Headwind	25 knots
Tailwind	15 knots
Crosswind	20 knots (15 knots USA)

- No CAT II landings are authorized at airfields above 8400 ft pressure altitude.
- Automatic landings can be made using Flap 30 or Flap 40, however, Flap 40 should be used for CAT II operations to improve cockpit visibility.
- Maximum glideslope angle is 3.25°.
- Minimum glideslope angle is 2.5°.

Note: Autoland should not be attempted unless the final approach course path is aligned with the runway centerline. If the localizer beam is offset from the centerline, the AFDS may cause the aircraft to depart the runway.

- The Captain's and First Officer's instruments (Display Source, VHF NAV and IRS) must not be on the same source.
- All required equipment must be serviceable. Refer to Approach Procedures Equipment Requirements Chart in the QRH, Ops Info section.
- FAL's policy is to operate all CAT II Approaches with 2 autopilots engaged and landing with Autoland.
- Autobrake must be used when serviceable.

RNAV (RNP) AR Operations

Note: For RNAV (GPS) and RNAV (GNSS) procedures use the Landing Procedure - Instrument Approach using VNAV in

Normal Procedures.

Note: This procedure is not authorized using QFE.

Note: Approach Procedures with RF Legs are authorized.

The procedure below supplements Normal Preflight, Cruise, Descent and Approach Procedures and replaces the Landing Procedure.

All required equipment must be serviceable. Refer to Approach Procedures Equipment Requirements Chart in the QRH, Ops Info section.

Note: Do the Go-Around and Missed Approach Procedure if the UNABLE REQD NAV PERF-RNP, FMC DISAGREE, or any VERIFY POSITION alerting message is shown unless suitable visual reference is established and maintained.

WARNING: If an UNABLE REQD NAV PERF-RNP is shown during the approach, whether the lateral or vertical RNP are exceeded or not, do the Go-Around and Missed Approach Procedure unless suitable visual reference is established and maintained.

Do the following before starting the approach:

- verify that the UNABLE REQD NAV PERF-RNP alert is not displayed;
- verify that the approach RNP is equal to or greater than:
 - with NPS, 0.10 (A/P or F/D)
 - without NPS, 0.11 (A/P)
 - without NPS, 0.15 (F/D)
- set current local altimeter (remote altimeter settings not allowed);
- verify that the wind is within limits published for the approach (if applicable);
- verify that the reported airport temperature is within published limits for the approach;
- review the maximum IAS for each segment of the approach as determined by aircraft category and applicable regulatory airspeed requirements.

RNAV Visual Flight Procedures

Flair is authorized to conduct RNAV Visual Flight Procedure (RVFP) operations at select airports in the USA as shown in the following table:

Airport	Procedures
KBUR	RNAV VISUAL Rwy 15
	RNAV VISUAL Rwy 33
KIWA	RNAV VISUAL Rwy 30L
KLAS	RNAV VISUAL Rwy 08R
	RNAV VISUAL Rwy 19L
	RNAV VISUAL Rwy 19R
KPSP	RNAV VISUAL Rwy 13R
	RNAV VISUAL Rwy 31L

The ceiling and visibility requirements published for these procedures will allow the crew to navigate in VMC flight conditions from the minimum radar vectoring altitude for the remainder of the procedure.

When planning on conducting an RVFP procedure, initial contact with Arrival must include "REQUEST RNAV VISUAL APPROACH RWY XX". ATC will clear the aircraft to a point on the procedure and provide descent clearance to the Minimum Radar Vectoring Altitude.

An approach clearance will not be given until the flight reports the airport, or preceding traffic, in sight. Any delay in providing this notification may result in the aircraft being in an undesired energy state (i.e., too high).

The flight must advise ATC if unable to accept the clearance due to IMC or lack of sufficient visual reference by stating "UNABLE THE RNAV VISUAL".

Once established on the procedure the flight is expected to follow the published track until landing. In the event of a missed approach the flight is expected to join a visual traffic pattern or comply with alternate ATC instructions.

The following procedures are required:

1. The procedure must be selected from the FMC database and the waypoints must not be modified.

- 2. Fly the published RVFP route and, unless cleared otherwise by ATC, comply with the charted mandatory altitudes and airspeeds.
- 3. Report the airport or preceding traffic in sight as soon as possible in order to receive the approach clearance.
- 4. Notify ATC "UNABLE THE RNAV VISUAL" if unable to accept the clearance and maintain VMC to the landing.

Note: By accepting clearance for an RVFP procedure the flight acknowledges that terrain, traffic and weather avoidance is the responsibility of the flight crew.

Approach Procedure

The Approach Procedure is normally started at transition level.

Complete the Approach Procedure before:

- the initial approach fix, or
- the start of radar vectors to the final approach course, or
- the start of a visual approach

For RNAV (RNP) AR approaches:

- When receiving radar vectors from ATC, intercept course modifications may be used to join the LNAV path at any point on the initial, intermediate or missed approach segments;
- 2. Direct To modifications are not permitted when:
 - the fix is the beginning of an RF leg; or
 - the fix is the Final Approach Fix (FAF) for the procedure.
- 3. Approaches must be flown with one autopilot engaged while operating in IMC conditions and until suitable visual reference is established; and
- 4. Confirm FMC approach track is within 3°, distance between waypoints is within 0.1 NM and vertical GP is within -.01° to +0.1° of charted values.

Select the G/S prompt OFF if flying an ILS approach where the G/S transmitter is inoperative or when the G/S data is unreliable. Do not manually build the approach to add waypoints to the selected FMC procedure.

For an ILS, LOC, BCRS, SDF or LDA approach, select the appropriate localizer frequency.

For a BCRS approach, enter the front course in the Mode Control Panel COURSE window. Do not select VOR/LOC.

For all other approaches, select VOR frequency 108.00 in both VHF control panels.

Before approach, if one or more of the following exist or are planned:

- the airport is not in the GPWS database;
- a NOTAM applies to the intended runway;
- airline policy prohibits the use of ORW for an airport or runway;
- conducting Land and Hold Short Operations (LAHSO);
- · conducting Touch and Go landings;
- landing altitude is above 10,000 feet pressure altitude;
- Landing OAT on the ground is below -40°C or greater than +50°C;
 or
- gross weight is greater than maximum landing weight;

complete the Overrun Warning (ORW) System and Runway Awareness and Advisory System (RAAS) Inhibit Operation Supplementary Procedure.

Stabilized Approach

At 1000 ft AAE, if the Stabilized Approach Criteria are not met then a go-around must be initiated, unless:

- the aircraft speed does not meet the criterion but can reasonably be expected to be achieved by 500 ft AAE and the thrust setting is appropriate to achieve this; or
- the aircraft is in the planned landing configuration and all landing actions have been completed but the Landing Checklist has not yet been completed. In this case the approach may be continued to not less than 500 ft AAE while the Landing Checklist is completed. At 500 ft AAE, if any other of the criteria are not met, the PM will call "GO-AROUND" and the PF will initiate an immediate go-around.

If a stable approach destabilizes below 500 ft AAE, the PM will call "GO-AROUND" and the PF will initiate an immediate go-around.

Any significant deviation from planned flight path, airspeed or descent rate must be announced. The decision to execute a go-around is no indication of poor performance.

All approaches must be stabilized by 1000 ft AAE in instrument meteorological conditions (IMC) and in visual meteorological conditions (VMC).

An approach is considered stabilized when all of the following criteria are met:

- The aircraft is on the correct flight path.
- Only small changes in heading / pitch are required to maintain the correct flight path.
- The aircraft is at approach speed. Deviations of +10 kts to -5 kts are acceptable if the airspeed is trending toward approach speed.
- The aircraft is in the correct landing configuration.
- Sink rate is no greater than 1,000 fpm; if an approach requires a sink rate greater than 1,000 fpm, a special briefing should be conducted.
- Thrust setting is appropriate for the aircraft configuration.
- All briefings and checklists have been conducted.
- ILS final approach flown within half dot of the glideslope and localizer within the expanded localizer scale.
- During a circling approach, wings must be level on final when the aircraft reaches 300 ft AAE.

Unique approach procedures or abnormal conditions requiring a deviation from the above elements of a stabilized approach require a special briefing.

Note: An approach that becomes unstabilized below 1000 ft AAE in IMC and in VMC requires an immediate go-around. Either pilot can call for the go-around, with the expectation that the PF will immediately respond by executing the missed approach procedure. Do not attempt to land from an unstable approach.

These conditions must be maintained throughout the rest of the approach for it to be considered a stabilized approach. If the above criteria cannot be established and maintained until approaching the flare, initiate a go-around.

At 300 ft HAT for all visual approaches, the aircraft must be positioned so the flight deck is within, and tracking to remain within, the lateral confines of the runway edges extended.

As the aircraft crosses the runway threshold it must be:

- Stabilized on approach airspeed to within +10 knots until arresting descent rate at flare.
- On a stabilized flight path using normal maneuvering.
- Positioned to make a normal landing in the touchdown zone (the first 3000 ft or the first third of the runway, whichever is less).

Initiate a go-around if the above criteria cannot be maintained.

Note: An approach in gusty conditions may be continued where airspeed and descent rate fluctuations exceed the stabilized approach criteria if the excursions are brief in duration and in the judgment of the Captain is safe to continue.

Note: Some visual approaches require turning final at less than 1000 ft AFE (e.g. LAS.) All other stabilized approach criteria apply at 1000 ft AFE except that the aircraft is not on the final approach track. This exception to the stabilized approach criteria must be briefed.

Pilot Flying	Pilot Monitoring
When descending below transition level, set and cross check the altimeters. Verify that the 2 primary altimeters are indicating within 100 ft of each other.	
The Captain sets the ISFD to destination QNH.	
PF calls: "TRANSITION, SET INCHES" (or mb, as the case may be).	
PM calls: " INCHES SET AND CROSS CHECKED".	
In descent at 10000 feet MSL, Captain sets the Landing light switches to ON, First Officer sets LOGO light switch to ON (during night operations).	During arrival and approach, verify the RNP for the approach on the FMS page RNP PROGRESS 4/5.
	At 10000 ft MSL (adjust if required for high airport elevation) or 10 minutes prior to landing, select the SEAT BELTS sign ON.
	Call: "FLIGHT ATTENDANTS PREPARE FOR ARRIVAL".
	If seat belt sign is already ON: select OFF, then ON again.
Update the arrival and approach, as needed.	
Update the approach briefing as needed.	
Call "APPROACH CHECKLIST"	Do the APPROACH checklist.
Note: The Approach Checklist is normally completed at 10000 ft MSL. Delay the Approach checklist until after transition if Transition Level is lower than FL100.	

Flap Extension Schedule

Current Flap Position	At Speedtape "Display"	Select Flaps	Command Speed for Selected Flaps
UP	"UP"	1	"1"
1	"1"	5	"5"
5	"5"	15	"15"
15	"15"	30 or 40	(VREF30 or VREF40) + wind additives

Before calling for flap settings, the PF will note and consider the speeds above.

The PM will note and confirm speed in range before selecting requested flap setting.

The PF will confirm the flap selection and movement of the flaps before calling for or selecting a lower speed on the MCP.

If speeds are increased due to wind gust corrections, consider using a lower flap setting for approach and landing.

Pilot Flying	Pilot Monitoring
"FLAP 1, SPEED 190" (as applicable)	Set the flap lever as directed. Monitor flaps and slats extension. When flaps indicate the selected position, Call "FLAP 1"

Landing Procedure - ILS CAT I

Pilot Flying	Pilot Monitoring	
Initially:		
If on radar vectors		
• HDG SEL		
• Pitch mode (as needed)		
If en route to a fix		
• LNAV or other roll mode		
VNAV or other pitch mode		
Call "FLAP, (SPEED)"		
according to the flap extension schedule. After flap selection, Set		
MCP speed.		
	Set the flap lever as directed. Monitor	
	flaps and slats extension. When flaps	
	indicate the selected position,	
	Call "FLAP"	
When on localizer intercept heading:		
Verify that the ILS is tuned and iden		
Verify that LOC and G/S pointers are	e shown.	
Arm the APP mode.		
If a dual channel approach is desired,		
engage the second autopilot.		
"LOCALIZER AND GLIDESLOPE		
ARMED"		
Note: When using LNAV to intercept the final approach course, LNAV might parallel the localizer without capturing it.		
LNAV should not be selected until the aircraft is established on the intercept heading.		
Use LNAV or HDG SEL to intercept Call "LOCALIZER ALIVE"		
the final approach course as needed.		
Verify that the loc	calizer is captured.	
Verify the final approach course heading.		
Call "LOCALIZER CAPTURED"		

Pilot Flying	Pilot Monitoring
	Call "GLIDESLOPE ALIVE"
At glideslope alive, call:	Set the landing gear lever to DOWN.
"GEAR DOWN" "FLAP 15"	Verify that the green landing gear indicator lights are illuminated.
"SPEED" • Captain sets the speedbrake lever to ARM, verifies that the	Check speed and set the flap lever as directed. When flaps indicate the selected position,
SPEEDBRAKE ARMED light is illuminated and calls:	Call "FLAP 15"
"SPEEDBRAKE ARMED"	Set the engine start switches to CONT.
At glideslope capture: "GLIDESLOPE CAPTURED" "FLAP, SPEED" as needed for landing. Set the missed approach altitude on the	Check speed and set the flap lever as directed. Monitor flap and slat extension.
MCP. Call "LANDING CHECKLIST"	Do the LANDING checklist.
Can LANDING CHECKLIST	
	At OM / FAF: "(FIX NAME)" (published altitude)
	At 1000 ft AAE, verify MA altitude set on MCP, AFDS status and aircraft in stabilized approach.
	Auto callout "ONE THOUSAND"
	Call "STABLE" or "GO-AROUND"
Respond "CONTINUE" or "GO-AROUND"	
"CHECK"	Auto callout "FIVE HUNDRED"
On approaches other than CAT II and prior to 100 ft above DH, the PM will advise the PF of runway environment in sight by stating the following: "APPROACH LIGHTS IN SIGHT"	
"RUNWAY IN SIGHT"	

Pilot Flying	Pilot Monitoring	
"CHECK"	Auto callout "APPROACHING MINIMUMS"	
If a normal approach and visual reference can be maintained, call "CONTINUE".	Auto callout "MINIMUMS"	
If the requirements above are not met, or at any time thereafter, immediately execute a missed approach and call:		
"GO-AROUND, GO-AROUND THRUST"		
If suitable visual reference is established at DA(H), MDA(H) or the missed approach point, disengage the autopilot in accordance with aircraft limitations and disengage the autothrottle at the same time.		
Maintain the glidepath to landing.		
For a single channel approach, disengage the autopilot and auto throttle no later than the minimum use height for single autopilot operation.		
For a dual channel approach, disengage the autopilot after touchdown.		

Landing Procedure - ILS CAT II

lever as directed. Monitor ats extension. When flaps selected position,
)"
"CHECK"
LOCALIZER ALIVE"

Pilot Flying	Pilot Monitoring
	"GLIDESLOPE ALIVE"
At glideslope alive, call:	Set the landing gear lever to DOWN.
"GEAR DOWN"	Verify that the green landing gear
"FLAP 15"	indicator lights are illuminated.
"SPEED" • Captain sets the speedbrake lever to ARM, verifies that the	Check speed and set the flap lever as directed. When flaps indicate the selected position,
SPEEDBRAKE ARMED light is	Call "FLAP 15"
illuminated and calls: "SPEEDBRAKE ARMED"	Set the engine start switches to CONT.
At glideslope capture:	Check speed, set the flap lever as
"GLIDESLOPE CAPTURED"	directed. Monitor flap and slat extension.
"FLAP, SPEED" as needed for landing.	extension.
Set the missed approach altitude on the MCP.	
Call "LANDING CHECKLIST"	Do the LANDING checklist.
	At OM / FAF:
	"(FIX NAME)" (published altitude)
	At 1000 ft AAE, verify MA altitude set on MCP, AFDS status and aircraft in stabilized approach.
	Auto callout "ONE THOUSAND"
	Call "STABLE" or "GO-AROUND"
Respond "CONTINUE" or "GO-AROUND"	
Monitor th	e approach.
At 500 feet AGL ver	rify the AFDS status.
	Auto callout "FIVE HUNDRED"
	"FLARE ARMED"
Scan for visual cues. "CHECK"	Auto callout "APPROACHING MINIMUMS"

Pilot Flying	Pilot Monitoring
If visual reference (approach lights, runway environment) can be established and maintained, call	Auto callout "MINIMUMS"
"CONTINUE"	
If the requirements above are not met, or at any time thereafter, immediately execute a missed approach and call:	
"GO-AROUND, GO-AROUND THRUST"	
During AUTOLAND, keep hands on controls and closely monitor aircraft. If "NO FLARE" is called, immediately press TO/GA button and GO-AROUND.	Keep heads down and closely monitor. At 50 ft radar altitude, annunciated FLARE, will replace G/S. If not, call "NO FLARE".
Upon disengaging AP during landing roll; "AUTOPILOT DISENGAGED".	

Landing Procedure - RNAV (RNP) AR

Note: For airplanes with NPS, verify that the vertical RNP is 125 feet. While there are no vertical RNP values published on the approach chart, the use of 125 feet will cause the NPS amber deviation exceedance alert to occur at 75 feet or slightly less deviation, since vertical ANP will be at least 50 feet at all times.

Pilot Flying	Pilot Monitoring	
Initially • If on radar vectors • HDG SEL • Pitch mode (as needed) • If en route to a fix • LNAV or other roll mode • VNAV or other pitch mode		
Select TERR on map.	Select TERR or WX radar on map.	
Select CDU: ACT RTE X LEGS page.	Select CDU: For aircraft without NPS, RNP PROGRESS 4/5.	
One pilot must have the map display in tracking during the final approach segm		
Use LNAV and VNAV or other pitch mo from the FAF inbound.	ode for initial descent. VNAV is required	
Some approach procedures can require	use of VNAV from the IAF inbound.	
On intercept heading, select or verify LNAV.		
Note: LNAV should not be selected until the aircraft is established on the intercept heading.		
Call "FLAP, SPEED" according to the flap extension schedule or approach speed constraint.	Set the flap lever as directed. Monitor flaps and slats extension. When flaps indicate the selected position, Call "FLAP"	
Note: For approach procedures where the vertical angle ("GP" angle shown on the LEGS page) begins earlier in the approach (prior to the FAF), the MCP may be set to the DA(H) once established on the vertical angle.		

Pilot Flying	Pilot Monitoring
Approximately 2 NM before the final approach fix and after ALT HOLD or VNAV PTH or VNAV ALT (as installed) is annunciated: • set DA(H) on the MCP • select or verify VNAV • select or verify speed intervention (as needed)	
	Maximum Lateral Deviation (XTK ERROR): 1 x RNP
	Maximum Vertical Deviation - FAF to DA: 75 feet.
	Monitor RNP PROGRESS page. For aircraft without NPS, select RNP PROGRESS Page 4/5.
Approaching glide path, call:	Set the landing gear lever to DN.
"GEAR DOWN" • "FLAP 15"	Verify that the green landing gear indicator lights are illuminated.
"SPEED" (if speed intervention engaged) Captain sets the speedbrake lever to ARM, verifies SPEEDBRAKE ARMED light is illuminated and calls:	Check speed and set the flap lever as directed. Monitor flaps and slats extension. When flaps indicate the selected position, Call "FLAP 15"
"SPEEDBRAKE ARMED"	Set the engine start switches to CONT.
Beginning the final approach descent, call "FLAP, SPEED" as needed for landing.	Check speed and set the flap lever as directed. Monitor flaps and slats extension.
Call "LANDING CHECKLIST"	Do the LANDING checklist.
At the final approach fix: • verify the crossing altitude; • cross check altimeters within 100 feet between primary altimeters.	
	At FAF:
	"(FIX NAME)" (published altitude).

737 Flight Crew Operations Manual		
Pilot Flying	Pilot Monitoring	
When past the FAF and at least 300 ft below the missed approach altitude, set the missed approach altitude on the MCP.		
	At 1000 ft AAE, verify MA altitude set on MCP, AFDS status and aircraft in stabilized approach.	
	Auto callout "ONE THOUSAND"	
	Call "STABLE" or "GO-AROUND"	
Respond "CONTINUE" or "GO-AROUND"		
"CHECK"	Auto callout "FIVE HUNDRED"	
On approaches other than CAT II and prior to 100 ft above DA(H) or MDA(H), the PM will advise the PF of runway environment in sight by stating the following: "APPROACH LIGHTS IN SIGHT"		
"RUNWAY IN SIGHT"		
Monitor the approach. Verify the AFDS status at 500 ft radio altitude.		
Note: Do the Go-Around and Missed Approach Procedure if the UNABLE REQD NAV PERF-RNP, FMC DISAGREE, or any VERIFY POSITION alerting message is shown unless suitable visual reference is established and maintained.		
"CHECK"	Auto callout "APPROACHING MINIMUMS"	
If a normal approach and visual reference can be maintained, call "CONTINUE".	Auto callout "MINIMUMS"	
If the requirements above are not met, or at any time thereafter, immediately execute a missed approach and call:		
"GO-AROUND, GO-AROUND THRUST"		

Pilot Flying	Pilot Monitoring
If suitable visual reference is established at DA(H), disengage the autopilot in accordance with aircraft limitations and disengage the autothrottle at the same time.	
Maintain the glide path to landing.	

Landing Procedure - Instrument Approach Using VNAV

Non-ILS approaches are normally flown using VNAV or V/S pitch modes. Recommended roll modes are provided in the FCOM procedure.

When conducting non-ILS approaches, the barometric minimums selector is to be set to MDA(H)+50 ft, to ensure that if a missed approach is initiated, descent below the MDA(H) does not occur during the missed approach.

The published DA(H) may be set in the barometric minimums selector if the approach is flown using VNAV for vertical guidance and the approach procedure has a published LNAV/VNAV DA(H).

A manual FMC entry of 0.3 RNP is required for approaches not using ground based Nav Aids such as a LOC or VOR.

VNAV should be used only for approaches that have one of the following features:

- a published GP angle on the LEGS page for the final approach segment
- an RWxx waypoint at the approach end of the runway
- a missed approach waypoint before the approach end of the runway, (for example, MXxx).

Use of the autopilot during the approach minimizes crew workload and provides:

- autopilot alerts and mode fail indications;
- more accurate course and glide path tracking; and
- · lower RNP limits.

Enter the appropriate wind additive on the Approach Reference page or use speed intervention, if available.

This procedure is not authorized using QFE.

Pilot Flying	Pilot Monitoring
Initially:	
If on radar vectors	
• HDG SEL	
• Pitch mode (as needed)	
If en route to a fix	
• LNAV or other roll mode	
VNAV or other pitch mode	
The recommended roll modes for the final	* *
• for a RNAV or RNAV (GNSS) approa	
• for a LOC-BC or NDB approach, use	
for a LOC, VOR, SDF or LDA approa	
When on the final approach course interc	cept heading for LOC, LOC-BC, SDF
or LDA approaches:	1
verify that the localizer is tuned and idverify that the anticipation cue or LOC	· · · · · · · · · · · · · · · · · · ·
-	pointer is shown.
Call "FLAP, SPEED" according to the flap extension	
schedule. After flap selection, if speed	
intervention is available and selected,	
set speed.	
	Set the flap lever as directed. Monitor
	flaps and slats extension. When flaps
	indicate the selected position,
	Call "FLAP"
Upon ATC clearance for the approach,	
select LNAV or arm the VOR/LOC	
mode.	
"LOCALIZER ARMED" or	
"LNAV SELECTED"	
WARNING: When using LNAV to inter	cept the localizer, LNAV might ut capturing it. The aircraft can then
	H with the localizer not captured.

Note: LNAV should not be selected until the aircraft is established on the intercept heading.

Pilot Flying	Pilot Monitoring
Use HDG SEL or LNAV to intercept the final approach course as needed.	For a LOC approach call: "LOCALIZER ALIVE"
	or, if intercepting final approach in HDG SEL call:
	"INBOUND TRACK"
"LOCALIZER CAPTURED" or	
"LNAV."	
Note: For approach procedures where the vertical angle ("GP" angle shown on the LEGS page) begins earlier in the approach (prior to the FAF), the MCP may be set to the DA(H) or MDA(H) once established on the vertical angle.	
Approximately 2 NM before the final approach fix and after ALT HOLD or VNAV PTH or VNAV ALT is annunciated: • set DA(H) or MDA(H) on the MCP • select or verify VNAV • select or verify speed intervention, as needed (and as installed).	
Call: • "GEAR DOWN" • "FLAP 15" • "SPEED" (if speed intervention engaged). • Captain sets the speedbrake lever to ARM, verifies that the SPEEDBRAKE ARMED light is illuminated and calls: "SPEEDBRAKE ARMED"	Set the landing gear lever to DN. Verify that the green landing gear indicator lights are illuminated. Check speed and set the flap lever as directed. Monitor flaps and slats extension. When flaps indicate the selected position, Call "FLAP 15" Set the engine start switches to CONT.
Beginning the final approach descent, call "FLAP, SPEED" (as needed for landing).	Check speed and set the flap lever as directed. Monitor flaps and slats extension.

Pilot Flying	Pilot Monitoring	
Call "LANDING CHECKLIST"	Do the LANDING checklist.	
At the final approach fix:		
verify the crossing altitude;cross check the altimeters. Verify they	agree within 100 feet.	
At OM / FAF:		
	"(FIX NAME)" (published altitude).	
When past the FAF and at least 300 ft below the missed approach altitude, set the missed approach altitude on the MCP.		
	At 1000 ft AAE, verify MA altitude set on MCP, AFDS status and aircraft in stabilized approach.	
	Auto callout "ONE THOUSAND"	
	Call "STABLE" or "GO-AROUND"	
Respond "CONTINUE" or "GO-AROUND"		
"CHECK"	Auto callout "FIVE HUNDRED"	
On approaches other than CAT II and prior to 100 ft above DA(H) or MDA(H), the PM will advise the PF of runway environment in sight by stating the following:		
"APPROACH LIGHTS IN SIGHT"		
"RUNWAY IN SIGHT"		
Monitor the approach. Verify the AFDS status at 500 ft radio altitude.		
"CHECK"	Auto callout "APPROACHING MINIMUMS"	

Pilot Flying	Pilot Monitoring
If a normal approach and visual reference can be maintained, call "CONTINUE".	Auto callout "MINIMUMS"
If the requirements above are not met, or at any time thereafter, immediately execute a missed approach and call: "GO-AROUND, GO-AROUND THRUST"	
If suitable visual reference is established at DA(H), MDA(H) or the missed approach point, disengage the autopilot in accordance with aircraft limitations and disengage autothrottle at the same time.	
Maintain the glide path to landing.	

Go-Around and Missed Approach Procedure

On all instrument approaches, execute an immediate missed approach when:

- a suitable visual reference has not been established by minimums and maintained to landing;
- a navigation radio or flight instrument failure occurs which affects the ability to safely complete the approach;
- the navigation instruments show significant disagreement;
- on ILS final approach and either the localizer or the glideslope indicator shows full deflection;
- on a radar approach and radio communication is lost;
- not stabilized by 1000 ft AAE or becomes unstabilized below 1000 ft AAE in IMC or VMC conditions.

Pilot Flying	Pilot Monitoring
Call "GO-AROUND, GO-AROUND THRUST" and at the same time: • push the TO/GA switch	
Verify that the thrust increases.	
Call "FLAP 15" or "FLAP" as needed.	Set the flap lever as directed and monitor flap retraction.
Verify the rotation to go-around attitud	e.
	Verify that the thrust is sufficient for the go-around or adjust as needed.
Verify a positive rate of climb on the altimeter and call "GEAR UP."	Verify a positive rate of climb on the altimeter and call "POSITIVE RATE."
	Set the landing gear lever to UP.
	Verify that the missed approach altitude is set on the MCP.
If the airspeed is within the amber band, limit bank angle to 15°.	

Pilot Flying	Pilot Monitoring
Above 400 feet radio altitude, verify LNAV or select HDG SEL as appropriate.	Observe mode annunciation.
Verify that the missed approach route i	s tracked.
At acceleration height (minimum 1000 feet AAE), call "FLAPS" according to the flap retraction	Verify the speed and set the flap lever as directed. Monitor flaps and slats retraction.
schedule.	When flaps are indicating the selected position, call "FLAPS".
After flaps are set to the planned flap setting and at or above the flap maneuvering speed, select LVL CHG or VNAV.	
Verify that climb thrust is set.	
Verify that the missed approach altitude is captured.	
	Set the engine start switches as needed.
Call "AFTER TAKEOFF CHECKLIST."	Do the AFTER TAKEOFF checklist.

Note: With all engines operating, ensure sufficient thrust for a nominal climb rate of approximately 2000 fpm (equivalent to one press of the TO/GA switch), or if required for performance reasons ensure maximum go-around thrust is set. With all engines operating at typical landing weights, it is not normally necessary to select maximum go-around thrust.

The autopilot may be engaged when climbing above 400 ft AGL provided the aircraft is in trim, the flight director commands are satisfied, the flight path is under control and the missed approach altitude is set. Engage the autothrottle, or verify that the autothrottle is engaged at the same time as autopilot engagement.

Note: With pitch mode in TO/GA, autopilot engagement automatically engages LVL CHG pitch mode and autothrottle will command climb thrust.

Standard all engine minimum flap retraction height (acceleration height) is 1000 ft AFE unless an alternative all engine minimum flap retraction height or speed restriction is stipulated as part of the missed approach procedure/airport brief.

Landing Roll Procedure

Pilot Flying	Pilot Monitoring	
If an autoland was accomplished, disengage the autopilot. Control the airplane manually.		
Verify that the thrust levers are closed.	Verify that the SPEED BRAKE lever is UP.	
Verify that the SPEED BRAKE lever	Call "SPEED BRAKES UP."	
is UP. Without delay, fly the nose wheel smoothly onto the runway.	If the SPEED BRAKE lever is not UP, call "SPEED BRAKES NOT UP."	
Monitor the rollout progress.		
Verify correct autobrake operation.		
WARNING: After the reverse thrust levers are moved, only a full stop landing can be made. If an engine stays in reverse, safe flight is not possible.		
levers to the interlocks and hold light pressure until the interlocks release.	Verify that the forward thrust levers are closed.	
	When both REV indications are green, call "REVERSERS NORMAL".	
	If there is no REV indication(s) or the indication(s) stays amber, call "NO REVERSER ENGINE NUMBER 1", or "NO REVERSER ENGINE NUMBER 2", or "NO REVERSERS".	
By 60 knots, start movement of the reverse thrust levers to be at the reverse idle detent before taxi speed.	Call "60 KNOTS."	

Pilot Flying	Pilot Monitoring
After the engines are at reverse idle, move the reverse thrust levers full down.	
Before taxi speed, disarm the autobrake and advise "MANUAL BRAKING".	Call "AUTOBRAKES DISARMED" when advisory light illuminates.
Use manual braking as needed.	

WARNING: During landing rollout, immediately apply maximum manual braking and maximum reverse thrust consistent with conditions any time that an On-Ground Warning alert activates. The alert consists of a MAX REVERSE visual alert shown on the PFD, and a "MAX BRAKES, MAX BRAKES" aural alert.

In circumstances where the On-Ground Warning system is inhibited or inoperative, the PM must call:

- 1. "3000 FEET REMAINING" at 3000 ft remaining markerboard or equivalent (daytime) or at alternating red and white centreline lights or equivalent (night), and
- 2. "1000 FEET REMAINING" at 1000 ft remaining markerboard or equivalent (daytime) or at all red centreline lights or equivalent (night).

After Landing Procedure

Start the After Landing Procedure when clear of the active runway and the SPEEDBRAKE lever is stowed. The Captain will stow the SPEEDBRAKE lever, which is the cue for the First Officer to begin the After Landing Flow. The flow should only be completed when clear of the active runway and after taxi instructions have been received.

Engine cooldown recommendations:

- run the engines for at least 3 minutes
- use a thrust setting normally used for taxi operations
- routine cooldown times less than 3 minutes are not recommended.

Pilot Flying	Pilot Monitoring	
The Captain moves or verifies that the SPEEDBRAKE lever is DOWN.		
	Set the transponder as needed.	
	At airports where ground tracking is not available, select STBY.	
	At airports equipped to track aircraft on the ground, select XPNDR.	
Set the WEATHE	ER RADAR to OFF.	
	Set the FLAP LEVER to UP.	
	Set the STAB TRIM to 5 units.	
	Set the AUTO BRAKE select switch to OFF.	
LANDING LIGHTS, Runway Turnoff Lights and Taxi Light, as needed.	Set the exterior lights as needed.	
	Set the ENGINE START and ENGINE ANTI ICE switches to OFF (or as required).	
	Set the PROBE HEAT switches to AUTO.	
	Start the APU as required. (Start APU as close to gate as possible.)	
	When available, select the APU GEN bus switches to ON and call: "APU ON BUSSES".	
Note: If the landing was made in slush, the flaps should remain extended until an assessment of the contaminant on the aircraft		

extended until an assessment of the contaminant on the aircraft can be determined and the contaminant removed.

Engine Out Taxi In Procedure

The After Landing Procedure must be completed prior to shutting an engine down (stabilizer trim reset and flaps UP).

Note: Operate the engine at or near idle thrust for a minimum of 3 minutes before shutdown. Taxi thrust can be considered idle thrust for this purpose. If idle reverse thrust or no reverse thrust was used during the landing rollout, the 3 minute period can begin when thrust was reduced to idle for landing.

The crew should consider the current atmospheric conditions such as wind, visibility, and temperature. During icing conditions, or when taxiways and aprons are slippery or contaminated, taxi with all engines operating.

Engine Out Taxi In is authorized with or without the APU operating:

Verify that the APU BLEED air switch is OFF.

APU switch(as requ	iired).	F/O
If APU is running:		
APU GEN switches	ON	F/O
ISOLATION VALVE switch	AUTO	F/O
Note: Both pack switches and engine bleed air switches must be ON and the isolation valve switch in AUTO prior to shutting down		

and the isolation valve switch in AUTO prior to shutting down an engine or the remaining engine may also shut down. Both packs cannot be operated from a single engine bleed source on the ground.

Engine start lever (affected engine)......CUTOFF

C

F/O

The following Caution lights will be illuminated:

- (APU not operating) SOURCE OFF (affected side)
- DRIVE (affected side)
- LOW OIL PRESSURE Engine (affected side)
- LOW PRESSURE Engine Hydraulic Pump (affected side)

Shutdown Procedure	
Start the Shutdown Procedure after taxi is complete.	
Parking brake Set	C
Verify that the parking brake warning light is illuminated.	
Electrical power	О
If APU power is needed:	
Verify that the APU GENERATOR OFF BUS light is illuminated	d.
APU GENERATOR bus switches – ON	
Verify that the SOURCE OFF lights are extinguished.	
If external power is needed:	
Verify that the GRD POWER AVAILABLE light is illuminated.	
GRD POWER switch – ON	
Verify that the SOURCE OFF lights are extinguished.	
CAUTION: Do not apply rotational force when moving the engine start lever.	
Engine start levers	C
Operate the engines at or near idle thrust for a minimum of three minutes before shutdown to thermally stabilize the engines and reduce undercowl soak-back temperatures. Taxi thrust can be considered idle thrust for this purpose.	
If idle reverse thrust or no reverse thrust is used during the landing rollout, the three minute period can begin when thrust is reduced to idle for landing.	
Routine cooldown times of less than three minutes before engine shutdown can cause engine degradation.	
If towing is needed:	
Establish communications with ground handling personnel	C
WARNING: If the nose gear steering lockout pin is not installed and hydraulic system A is pressurized,	

installed and hydraulic system A is pressurized, any change to electrical or hydraulic power with the tow bar connected can cause unwanted tow bar movement.

Verify that the nose gear steering lockout pin is installed, or, if the nose gear steering lockout pin is not used	, C
System A HYDRAULIC PUMP switches - OFF	
Verify that the system A pump LOW PRESSURE li illuminated.	ghts are
CAUTION: Do not hold or turn the nose wheel steering during pushback or towing. This can dama nose gear or the tow bar.	
CAUTION: Do not use airplane brakes to stop the airp during pushback or towing. This can dama nose gear or the tow bar.	
Set or release the parking brake as directed by ground handling personnel.	C or F/O
FASTEN BELTS switchOFF	F/O
ANTI-COLLISION light switchOFF	F/O
FUEL PUMP switches OFF (as required)	F/O
WING ANTI–ICE switchOFF	F/O
ENGINE ANTI–ICE switchesOFF	F/O
Hydraulic panel	F/O
ELECTRIC HYDRAULIC PUMPS switches (normally EL and ELEC 1 ON for through flights and both OFF for term flights)	
ENGINE START switchesOFF	F/O
Air conditioning PACK switches AUTO	F/O
ISOLATION VALVE switch OPEN	F/O
Engine BLEED air switchesON	F/O
APU BLEED air switchON	F/O
Note: Run the APU for two full minutes before using it as a bleed air source.	
Exterior lights switches As needed	F/O

737 Fiight Crew Operations Manual			
FLIGHT DIRECTOR switches / MCP Panel: OFF / ALT 9900 / SPD 100	C, F/O		
Transponder mode selector STBY / 1000	F/O		
After the wheel chocks are in place:			
Parking brake – Release	C		
APU switchAs needed	F/O		
Note: If extended APU operation is needed on the ground and the airplane busses are powered by AC electrical power, position an AC powered fuel pump ON. This extends the service life of the APU fuel control unit.			
Note: If fuel is loaded in the center tank, position the left center tank fuel pump switch ON to prevent a fuel imbalance before takeoff.			
CAUTION: Position the center tank fuel pump switches only if the fuel quantity in the center tank ex 453 kgs.			
CAUTION: Do not operate the center tank fuel pumps w flight deck unattended.	ith the		
Flight deck door (when FWD ENTRY open) Unlock	C, F/O		

Flight deck door (when FWD ENTRY open) Unlock	C, F/O
Call "SHUTDOWN CHECKLIST."	C
Do the SHUTDOWN checklist.	F/O

Secure Procedure

Complete this procedure when the aircraft will be left unattended by the flight crew and/or maintenance.

IRS mode selectorsOFF	F/O
EMERGENCY EXIT LIGHTS switchOFF	F/O
WINDOW HEAT switchesOFF	F/O
Air conditioning PACK switchesOFF	F/O
Call "SECURE CHECKLIST."	C
Do the SECURE checklist.	F/O

To facilitate crew changes and turn arounds where Customs procedures are required, pilots may leave the aircraft unattended with the APU in operation under the following conditions:

- the operating pilots will be returning to the aircraft after clearing Customs/Security, or at least one operating pilot from the outbound crew has arrived at the gate for a crew change;
- center tank fuel pumps are selected OFF;
- fuel on board is greater than 1800 kg;
- there are no passengers on board; and
- the L1 door remains open.

In all other cases when Maintenance personnel are not present, complete the Electrical Power Down Supplementary Procedure before leaving the aircraft unattended.

Intentionally Blank

Normal Procedures Standard Callouts

Chapter NP Section 40

General

Both crew members should be aware of altitude, aircraft position and situation. Avoid casual and non-essential conversation during critical phases of flight, particularly during taxi, takeoff, approach and landing. Sterile cockpit rules apply below 10000 ft.

While in terminal airspace and, in particular, between 10000 ft and 20000 ft, non-essential duties such as paperwork and communication (i.e., with flight attendants, ACARS, etc.) should be avoided.

The pilot monitoring should accomplish callouts based on instrument indications or observations for the appropriate condition. The pilot flying should verify the condition/location from their instruments and acknowledge. FMA/MCP and Autopilot Status Annunciation changes should be called out by the PF, and verified and acknowledged ("CHECK") by the PM. Any other calls made by the PF or PM for awareness or as per Standard Calls should be verified and acknowledged with "CHECK". If the pilot flying does not make the required callout, the pilot monitoring should make it.

One of the basic fundamentals of the "Crew Coordination Concept" is that each crew member must be able to supplement or act as a backup for the other crew member. Proper adherence to standard callouts is an essential element of a well-managed cockpit. These callouts provide both crew members required information about aircraft systems and about the participation of the other crew member. The absence of a standard callout at the appropriate time may indicate a malfunction of an aircraft system or indication, or indicate the possibility of incapacitation of the other crew member.

When GPWS height callouts occur during approach (above 500 ft AFE), the pilot flying should acknowledge the electronic callout. If the normally expected electronic voice callout is not heard by the flight crew, the pilot monitoring should make the callout.

The procedures described in this manual assume that the A/P and A/T are engaged, and that the PF is making the applicable changes on the mode control panel. When flying manually, the PF directs the PM to make the changes on the mode control panel by first stating "SET" followed by the applicable direction. (e.g. "SET SPEED 230", "SET ALTITUDE 5000" or "SET LNAV").

Standard Callouts

Phase of Flight	PF Call	PM Call
Passenger Boarding complete and IFD confirms the passenger count	"CLEAR FOR THE DOOR" (Captain)	
Engine Start	"START # ENGINE" (Captain)	
		"STARTER CUTOUT or "NO STARTER CUTOUT" (First Officer)
	"STABLE ENGINES" (Captain)	
Engaging an autopilot	"COMMAND A" or "COMMAND B", as applicable	"CHECK"
At 400 feet RA following takeoff or go-around	"LNAV" or "HEADING SELECT", as applicable	
Climbing or Descending: Call passing through "10000", "20000" and "30000"	"10000 CLIMBING FL330"	
E.G. "10000 CLIMBING FL330"		
		"CHECK"
Transition in climb	"TRANSITION, SET STANDARD"	

Phase of Flight	PF Call	PM Call
		"STANDARD SET AND CROSS CHECKED"
1000 feet below	"8000 CLIMBING 9000" (as applicable)	
		"CHECK"
Level Off	"ALTITUDE ACQUIRE / HOLD / VNAV PATH" (FMA change)	
		"CHECK"
New Cleared Altitude/FL (A/P ON)	"EIGHTTHOUSAND SET" (call out what the PF sees on PFD)	
		"CHECK"
Transition in Descent (Crosscheck is to verify that correct altimeter setting is set and that the 2 primary altimeters are indicating within 100 ft of each other)	"TRANSITION, SET INCHES"	" INCHES SET AND CROSS CHECKED"
Descent through 10000 ft or FL100 (adjust if required for high altitude airport elevations)	"10000 DESCENDING"	"FLIGHT ATTENDANTS PREPARE FOR ARRIVAL"
	"APPROACH CHECKLIST"	
1000 ft above	"9000 DESCENDING 8000"	
		"CHECK"
Transfer of control	"YOU HAVE CONTROL"	
		"I HAVE CONTROL"
When disengaging autopilot	"AUTOPILOT DISENGAGED"	

Phase of Flight	PF Call	PM Call
When disengaging autothrottle	"AUTOTHROTTLE DISENGAGED"	
After a navigation change has been EXECUTED in the FMS and if not in LNAV		"LNAV AVAILABLE"
During Rejected Takeoff or during landing rollout		"SPEEDBRAKES UP" or "SPEEDBRAKES NOT UP" (as appropriate) "REVERSERS NORMAL" or "NO REVERSER ENGINE NUMBER 1 (or 2)" or "NO REVERSERS".
Windshear Encounter	"WINDSHEAR TOGA"	
TCAS RA	"TCAS, I HAVE CONTROL"	

Standard Callouts - Approach

Condition / Location	Pilot Flying	Pilot Monitoring
After selecting Approach mode	"LOCALIZER AND GLIDESLOPE ARMED"	
When selecting second autopilot for a dual autopilot approach	"SECOND AUTOPILOT ENGAGED"	
Localizer alive		"LOCALIZER ALIVE"
Localizer capture	"LOCALIZER CAPTURED"	

Condition / Location	Pilot Flying	Pilot Monitoring
Glideslope alive		"GLIDESLOPE ALIVE"
	"GEAR DOWN"	
	"FLAP 15"	
	"SPEED"	
	"SPEEDBRAKE ARMED" (Captain)	"FLAP 15"
Glideslope capture	"GLIDESLOPE CAPTURED"	
	"FLAP,	
	SPEED," (as needed for landing)	
	"LANDING CHECKLIST"	
FAF		" (FIX NAME)" (published altitude)
	"CHECK" (check against G/S check altitude)	
"ONE THOUSAND" auto	Reply, as applicable:	"STABLE" or
callout	"CONTINUE" or "GO-AROUND"	"GO-AROUND" (if Stabilized Approach criteria is not met or maintained)
"FIVE HUNDRED" auto callout	"CHECK" (CAT I and non-precision approaches)	"FLARE ARMED" (CAT II approach)
100 feet above DA Auto callout		"100 ABOVE" (if no auto callout)
"APPROACHING MINIMUMS"		
	"CHECK"	
At DA Auto callout "MINIMUMS"	"CONTINUE" or "GO-AROUND"	
AUTOLAND:		

Condition / Location	Pilot Flying	Pilot Monitoring
Approx 50 feet RA		"NO FLARE" if FLARE does not annunciate
Approx 27 feet RA		"NO RETARD" if RETARD does not annunciate

Note: The PF may call "VISUAL" prior to the "APPROACHING MINIMUMS" call when the runway environment is in sight (and will remain so throughout the remainder of the approach). After the "VISUAL" call, the PF can maneuver from the instrument approach track if required to line up with the runway (e.g. offset final approach track.)

Note:	The following calls are dependent on whether the autopilot is
	engaged or disengaged:

- a) "FLAP ____, SET SPEED ____" (if autopilot is disengaged)
- b) "FLAP ____, SPEED ____" (if autopilot is engaged)

Standard Callouts - Go-Around / Missed Approach

Phase of Flight	PF Call	PM Call
Decision to Go-Around made	"GO-AROUND, GO-AROUND THRUST"	
	"FLAP" as appropriate.	
		"POSITIVE RATE"
	"GEAR UP"	
Acceleration Height	"FLAP" according to retraction schedule.	

Non-Normal Procedures Table of Contents

Chapter NNP Section TOC

Introduction and Procedures

Introduction

Non-Normal Checklists

Flight Crew Notification of an Emergency

Ground Emergency Coordination Procedures

Rejected Takeoff

Evacuation Procedure

Rapid Deplanement

Engine Malfunction After V1

Engine Failure On Final Approach

Windshear

TCAS Warning

Emergency Descent

CABIN ALTITUDE WARNING or Rapid Depressurization

Approach to Stall Recovery

Bomb Threat and Hijacking

Inadvertent Encounter With Moderate to Severe In-Flight Icing

Pilot Incapacitation

Intentionally Blank

Non-Normal Procedures Introduction and Procedures

Chapter NNP Section 22

Introduction

Non-Normal Procedures are to be carried out in accordance with the QRH.

For checklists with memory items, the pilot monitoring first verifies that each memory item has been done. The checklist is normally read aloud during this verification. The pilot flying does not need to respond except for items that are not in agreement with the checklist.

Non-Normal Checklists

Non-Normal checklist are used by the flight crew to properly configure the aircraft for safe flight and to ensure a high level of safety while coping with non-normal situations. All actions must be coordinated and accomplished in a deliberate, systematic manner.

Do not reset any tripped fuel pump or fuel control circuit breaker. Any other circuit breaker that has opened should be reset only in accordance with the procedures in the QRH or Airplane Flight Manual. For more information, refer to the Company Operations Manual.

The word "Confirm" is added to checklist items when both crew members must verbally agree before action is taken. During an in-flight non-normal situation, verbal confirmation is required for:

- an engine thrust lever;
- an engine, APU or cargo fire switch;
- a generator drive disconnect switch;
- · an IRS mode selector when only one IRS is failed; and
- a flight control switch.

When the Loss of Thrust on Both Engines checklist is required, or when the aircraft is on the ground, confirmation is not required before action is taken regarding the items listed above. It is recommended that, if an Engine Fire occurs while on the ground, the Captain brings the aircraft to a stop, sets the Parking Brake and completes the Engine Fire on the Ground non-normal checklist.

There are some situations where the crew must always land at the nearest suitable airport. These situations include, but are not limited to, conditions where:

- the non-normal checklist has the words "Plan to land at the nearest suitable airport";
- fire or smoke continues:
- only one AC power source remains (engine or APU generator);

- only one hydraulic system remains (the standby system is considered a hydraulic system);
- any other situation determined by the crew to have a significant adverse effect on safety if the flight is continued.

All Non-Normal Checklists, and the guidance information for the use of the checklists, can be found in the Quick Reference Handbook (QRH).

Flight Crew Notification of an Emergency

Refer to COM Section 5.

Ground Emergency Coordination Procedures

While on the ground with the aircraft on the stand, cabin crew should inform of any irregularity observed. During taxiing, takeoff roll, initial climb and final approach, cabin crew must inform the Captain of any anomalous situation or incident that might endanger passengers' lives, and which requires an immediate evacuation.

This information will be reported over the interphone, after having notified with the emergency chime signal (3 chimes).

Rejected Takeoff

Briefing

The Flair Standard Takeoff Briefing will include information on the events that will result in a rejected takeoff and the actions to be taken.

The reasons for rejecting a takeoff between 80 knots and V1 are:

- fire or fire warning;
- engine failure;
- predictive windshear warning; or
- if the aircraft is unsafe or unable to fly.

Should one of those critical failures occur, the pilot first noticing the problem shall call the problem, and the Captain will call "REJECT", and the reason for reject will be discussed once the aircraft has been brought to a stop.

Execution

Once the decision to reject the takeoff is made, the Captain becomes PF.

It is strongly advised that the Autobrake be set to "RTO" for takeoff, and that the PM monitors the system. Autobrake is not available if the takeoff is rejected below 90 kts. A rejected takeoff below 80 kts will require that the autothrottle (A/T) be disengaged

Consideration needs to be given to placing any fire downwind of the aircraft. If this is not practical, initially turn the aircraft into the wind. Generally, the aircraft should be stopped on the runway as this allows better access for emergency vehicles and more space for evacuation.

The Captain will bring the aircraft to a complete stop and make a PA: "THIS IS THE CAPTAIN SPEAKING. REMAIN SEATED, REMAIN SEATED".

After analyzing the situation, the Captain will either initiate the Evacuation Non-Normal Checklist or, should an evacuation prove not to be required and normal operations can be resumed, make a PA: "THIS IS THE CAPTAIN SPEAKING. FLIGHT ATTENDANTS, RETURN TO NORMAL OPERATIONS".

Evacuation Procedure

The Evacuation Non-Normal Checklist shall be performed as a read and do procedure.

Once the Evacuation Checklist has been completed, the pilots will help cabin crew members to evacuate the passengers.

Flight Deck Crew Responsibilities

After completing the procedures, and when circumstances permit, the F/O will leave the aircraft by the R1 door as soon as possible. They will take control of the evacuation from outside the aircraft until they are relieved by the Captain.

The Captain, if circumstances permit, will inspect the inside of the aircraft to make sure no one is left on board and then they will leave the aircraft using door L1, taking control of the evacuation. If conditions are unfavorable, flight crew members will leave the aircraft by the nearest available exit (e.g. the Flight Deck side windows).

Rapid Deplanement

Rapid deplanement is the quick and orderly disembarking of passengers through the main cabin door. The command from the Flight Deck to deplane the passengers shall be: "THIS IS THE CAPTAIN SPEAKING. DEPLANE QUICKLY" over the PA.

Engine Malfunction After V1

In the event of any engine failure or fire after V1, the takeoff is to be continued.

The PM is to call: "ENGINE FAILURE" or "ENGINE FIRE" but is not to identify the engine. This removes the possibility of the wrong engine being called. Only after passing 400 ft is the problem to be confirmed and the faulty engine identified.

Pilot Flying	Pilot Monitoring
Maintain directional control by smoothly applying rudder proportionate with thrust decay to maintain runway centerline.	If engine failure or fire occurs after V1, call: "ENGINE FAILURE" or "ENGINE FIRE".
At Vr, rotate towards the target pitch attitude (12° - 13°). Do not rotate early or rapidly. Adjust pitch attitude to maintain desired airspeed of V2 to V2+20 knots.	At Vr, call: "ROTATE".
Limit the bank angle to 15° until V2+15 knots to maintain an adequate maneuvering margin. The bank angle limit increases to 30° at V2+15 knots with takeoff flaps.	
	"POSITIVE RATE"
"GEAR UP"	
At 400 ft AGL, call for Roll Mode.	Select HDG or LNAV, as requested.
As soon as possible after 400 ft: Call "WHAT'S THE PROBLEM?"	PM will state the emergency, carefully identifying the correct engine (e.g. "ENGINE FIRE #1").
In case of an engine failure, there are no checklist for an engine failure is normal been retracted and if conditions permit. In case of engine fire, severe damage of accomplished as soon as possible after the complex of the comple	lly accomplished after the flaps have r separation, memory items must be
When an engine failure and/or fire after Memory Items, the PF is to deselect the receiving confirmation of the correct sel selections are to be made by the PM after	A/T and close their own thrust lever after ection from the PM. Subsequently, all
"ENGINE FIRE MEMORY ITEMS"	
"AUTOTHROTTLE DISENGAGE"	

Pilot Flying	Pilot Monitoring
"#THRUST LEVER, CONFIRM?"	"#, CONFIRMED"
"CLOSE"	
"# CONFIRMED"	"# ENGINE START LEVER, CONFIRM?" "CUTOFF"
"# CONFIRMED"	"#ENGINE FIRE SWITCH, CONFIRM?" "PULL"
If the Engine Fire Switch or Engine Ov Engine Fire Switch - Rotate to the stop	
	Call "BOTTLE DISCHARGED"
	"ENGINE FIRE MEMORY ITEMS COMPLETE"

At engine out acceleration altitude, 1000 feet AGL or as shown in the Special Procedures, accelerate for flap retraction.

After flaps have been retracted:

- verify or set Flap Up speed;
- · confirm CON thrust has been selected and set;
- · accomplish the reference non-normal checklist items;
- · accomplish AFTER TAKEOFF checklist;
- select ENGINE OUT on FMS.

Engine Failure On Final Approach

If an engine failure should occur on final approach with the aircraft in the landing configuration, the decision to continue the approach or execute a go-around should be made immediately. If the approach is continued and sufficient thrust is available, continue the approach with landing flaps. If the approach is continued and sufficient thrust is not available for landing flaps, retract the flaps to 15 and adjust thrust on the operating engine. Speed should be increased to 20 knots over the previously set Flap 30 or 40 Vref. This is equal to at least Vref for Flap 15.

Windshear

Whenever windshear warnings occur, the procedures specified in the FCTM, FCOM (Volume 1, SP) and QRH Non-Normal Maneuvers will be used.

Windshear is defined as any change of wind speed and/or direction over a relatively short distance on the flight path. Severe windshear produces changes in speed greater than 15 kts or changes in the Vertical Speed Indicator readings of over 500 ft per minute.

The presence of windshear may be indicated by:

- Stormy conditions
- Virga (rain which evaporates before reaching the ground)
- PIREPs
- Low Level Windshear Alerting System (LLWAS)

If there is a chance windshear will be encountered, the following preventive actions are recommended:

On takeoff

- Use the maximum power available.
- · Use the longest runway available.
- Use Flaps between 5 and 15.
- Pay attention to oscillations in airspeed during takeoff and initial climb.
- If windshear close to V1 is encountered, speed may quickly diminish without there being enough runway left for the aircraft to stop, so that a normal rotation should be initiated at least 2000 ft before the end of the runway even if speed is low. A rotation superior to normal may be necessary to achieve takeoff on the remaining length of the runway.
- Once in the air, the Windshear Escape Maneuvre will be executed as indicated in QRH Chapter Maneuvers, Non Normal Maneuvers section.

Note: If windshear is reported or suspected, consider delaying the takeoff.

Approach and Landing

- Use Flaps 30°.
- If there is a possibility of windshear or it has been reported, the approach must be stabilized before 1000 AGL, to improve the capacity of reaction and recognition.
- Add Vref corrections without exceeding 15 kts.
- Avoid great changes in power and compensation as IAS increases, since IAS is likely to decrease rapidly immediately afterwards.
- Maintain constant coordination between pilots.
- Pay careful attention to the altimeter, vertical speed indicator and ILS glide path.
- The PM will advise of any deviation.
- Using the A/P and the A/T will allow a better instrument cross check to be made.
- Use the longest runway available.
- Use all available aids, PAPI, VASI etc.

Recognition of a Recovery From Windshear

See Windshear Escape Maneuver stated in QRH Chapter Maneuvers.

TCAS Warning

Refer to COM Section 3.45 Traffic Alert and Collision Avoidance System and QRH Chapter: Maneuvers, Traffic Avoidance.

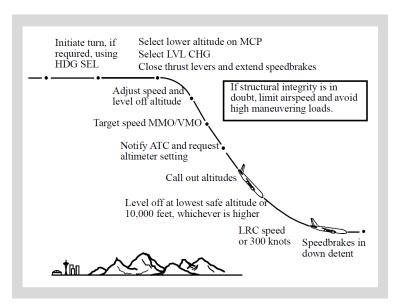
Whenever a TCAS RA occurs, the PF will call "TCAS, I HAVE CONTROL" and comply with the RA. ATC must be informed of all TCAS maneuvers and the phraseology is: Callsign + TCAS RA (an example would be "FLAIR 123 TCAS RA").

Emergency Descent

Whenever QRH Non-Normal memory items require the donning of oxygen masks and the initiation of an Emergency Descent, the following procedure will be used:

- Both pilots don oxygen masks simultaneously.
- Captain takes over as PF.
- Captain performs the descent in accordance with the Memory Items.
- First Officer alerts ATC and obtains an altimeter setting.

This maneuver is designed to bring the aircraft down smoothly to a safe altitude, in the minimum time, with the least possible passenger discomfort. It is intended as a specialized case in the event of an uncontrollable loss of cabin pressurization.


Note: Use of the A/P is recommended.

In the event of a cabin altitude exceedance or the intermittent cabin altitude/configuration warning horn sounds, complete the QRH CABIN ALTITUDE WARNING or Rapid Depressurization checklist.

If the cabin altitude is uncontrollable, go to the Emergency Descent checklist.

Captain takes over as PF.

Perform the maneuver deliberately and methodically. Do not be distracted from flying the aircraft. If icing conditions are entered, use anti-ice and thrust as required.

Note: Rapid descents are normally made with the landing gear up.

The PM checks the lowest safest altitude, notifies ATC and obtains an area altimeter setting (QNH). Both pilots should verify that all memory items have been accomplished and call out any items not completed. The PM calls out 2000 ft and 1000 ft above the level off altitude.

Level off at the lowest safe altitude or 10000 ft, whichever is higher. Lowest safe altitude is the Minimum Enroute Altitude (MEA), Minimum Off Route Altitude (MORA) or any other altitude based on terrain clearance, navigational aid reception or other appropriate criteria.

If severe turbulent air is encountered or expected, reduce to the turbulent air penetration speed.

Refer to COM Section 5.14 for additional reference.

CABIN ALTITUDE WARNING or Rapid Depressurization

Pilot Flying	Pilot Monitoring
OXYGEN MASK ON/100% Crew communications establish. "CAPTAIN ON OXYGEN"	OXYGEN MASK ON/100% Crew communications establish. "FIRST OFFICER ON OXYGEN"
"CAN YOU CONTROL THE CABIN?" Seat Belt/No Smoking - ON Engine Start Switches - CONT All Landing and Runway Turnoff Lights - ON	Ensure Packs and Bleeds - ON Press Mode Selector - MAN Outflow Valve Sw - Hold in CLOSE until Outflow Valve indicates fully closed. "CONTROLLABLE" "UNABLE TO CONTROL"
If cabin is uncontrollable "EMERGENCY DESCENT" Set 10000 ft or Min Safe Altitude LVL CHG Set Speed Mmo / Vmo Heading, Turn if required Thrust levers - Idle Speedbrake - Flight detent	If Cabin Altitude uncontrollable: Passenger Oxygen Switch - ON Advise ATC. Request area altimeter setting and lower safe altitude. Confirm MEA. Squawk 7700 if required.
When stabilized in descent, PA "THIS IS THE CAPTAIN SPEAKING. EMERGENCY DESCENT, EMERGENCY DESCENT"	
"EMERGENCY DESCENT CHECKLIST"	Accomplish Emergency Descent Checklist.
"TRANSITION, SET INCHES"	
	" INCHES SET AND CROSS CHECKED" (or mb as applicable)
When pitch mode changes to ALT on the FMA, adjust speed then retract speedbrakes to down detent. Level off at lowest safe altitude or 10000 ft, whichever is higher. Set LRC or 300 kts IAS.	Call: "2000 to LEVEL" Call: "1000 to LEVEL"

Pilot Flying	Pilot Monitoring
Once aircraft has descended to safe altitude, PA: "THIS IS THE CAPTAIN SPEAKING. FLIGHT ATTENDANTS COMMENCE POST - DEPRESSURIZATION DUTIES"	
When appropriate below 13000 ft, PA: "THIS IS THE CAPTAIN SPEAKING. YOU MAY NOW REMOVE YOUR OXYGEN MASKS"	
Crew Oxygen Regulators - NORMA Flight crew must use oxygen when ca To conserve oxygen, move the regula	abin altitude is above 10000 ft.
	Engine Start Switches - As Needed
When the cabin altitude is at or below oxygen masks may be removed.	w 10000 ft,

Approach to Stall Recovery

All recoveries from approach to stall should be done as if an actual stall has occurred.

Immediately do the following at the first indication of stall (buffet or stick shaker).

Note: Do not use flight director commands during the recovery.

Pilot Flying	Pilot Monitoring
Initiate the recovery: • Hold the control column firmly. • Disconnect A/P and A/T. • Smoothly apply nose down elevator to reduce the angle of attack until buffet or stick shaker stops. Nose down stabilizer trim may be needed.*	 Monitor altitude and airspeed. Verify all required actions have been done and call out any omissions. Call out any trend toward terrain contact.
Continue the recovery: Roll in the shortest direction to wings level if needed.** Advance thrust levers as needed. Retract the speedbrakes. Do not change gear or flap configuration, except During liftoff, if flaps are up, call for Flap 1.	 Monitor altitude and airspeed. Verify all required actions have been done and call out any omissions. Call out any trend toward terrain contact. Set the FLAP lever as directed.
 Complete the recovery: Check airspeed and adjust thrust as needed. Establish pitch attitude. Return to the desired flight path. Re-engage the A/P and A/T, if desired. 	 Monitor altitude and airspeed. Verify all required actions have been done and call out any omissions. Call out any trend toward terrain contact.

WARNING: * If the control column does not provide the needed response, stabilizer trim may be necessary.

WARNING: ** Excessive use of pitch trim or rudder may aggravate the condition, or may result in loss of control or in high structural loads.

Bomb Threat and Hijacking

Unlawful Interference

All information contained in this section is "privileged need to know" and must be treated as such for security reasons.

Action of Pilot in Command

All decisions as to the conduct of the flight when an unlawful interference is underway must be made by the pilot-in-command (PIC) according to his/her judgment and assessment of the situation. Under no circumstances will the PIC allow the hijacker access to the Flight Deck. The PIC will establish and maintain contact with ATC and the Company, and will divert the aircraft to the nearest suitable airport to land as soon as possible.

Should the hijacker gain access to the Flight Deck, the PIC should:

- comply with the demands of the hijacker within the range of operational feasibility;
- ensure that nothing is done to endanger the safety of the crew, passengers or aircraft;
- attempt to communicate with the ground station, indicating intentions, if possible;
- advise the hijacker that in order to meet their demands, the following factors must be considered to permit a change in destination:
 - fuel capability;
 - clearance through ATC;
 - filing of revised flight plan to ensure safety of operation;
 - · weather conditions; and
- runway length.

Communications Signals During Hijack

When possible, the pilot of a hijacked aircraft should transmit their predicament to ATC in the clear. However, should the hijacker gain access to the flight deck, they may forcibly prevent such transmissions which will necessitate use of covert signaling. The use of the specific word identified during crew training will convey a message to ATC that communication in the clear is impossible due to hijack activity. ATC will confirm receipt of the signal and message by using the covert word with the flight number in response.

The standard signal for unlawful interference is the hijack transponder code. The spoken code numbers impart the same message as if the respective transponder codes were received on radar.

Non-Normal Procedures -Introduction and Procedures

737 Flight Crew Operations Manual

ATC shall acknowledge receipt of the transponder code by transmitting: "FLAIR 999, CENTER..... YOU ARE SQUAWKING _ _ _ . IS THIS INTENTIONAL?". An affirmative reply will initiate ATC response to hijacking and notification of the Company and appropriate authorities.

When a clear radio transmission of a hijacking is received, controllers shall assign the hijack code to the aircraft.

Where an emergency occurs in addition to the unlawful interference, the PIC shall change from the hijack code to code 7700, allowing a period of at least 3 minutes on the hijack code or until a confirmation is received from the controller, whichever is sooner, before changing to code 7700. Controllers shall acknowledge receipt of 7700 by transmitting: "FLAIR 999, CENTER NOW READING YOU ON TRANSPONDER SEVEN SEVEN ZERO ZERO."

Aircraft squawking code 7700 and not in radio contact with the ground will be considered by ATC to have an emergency in addition to hijacking and the appropriate emergency procedures will be implemented. In these cases, notification to the Company and concerned authorities shall include information that the aircraft displayed the hijack code as well as the emergency code.

Inadvertent Encounter With Moderate to Severe In-Flight Icing

Moderate Icing: The rate of accumulation is such that even short encounters become potentially hazardous, and use of de-icing or anti-icing equipment or diversion is necessary.

Severe Icing: The rate of accumulation is such that de-icing or anti-icing equipment fails to reduce or control the hazard. Immediate diversion is necessary.

The B737 is certified for in-flight icing conditions, however, if moderate to severe in-flight icing conditions are inadvertently encountered, flight crew should consider the following actions:

- turn on all available de-ice/anti-ice equipment, as appropriate;
- request an expedited clearance from ATC to exit the area of icing conditions.

Any non-standard procedures shall be briefed between the flight crew members.

For more information, refer to COM Section 3.38 - Flight Operations in Icing Conditions.

Pilot Incapacitation

Refer to COM Section 5.18 - Incapacitated Pilot and Section 5.19 - Incapacitated Flight Attendant.

Intentionally Blank

Supplementary Procedures Table of Contents

Chapter SP Section TOC

Introduction

General

Airplane General, Emer. Equip., Doors, Windows

Interior Inspection

Flight Deck Door Access System Test

Water System Draining

Air Turn Back - Flaps 15 Landing

ETOPS

APU Operation

Fuel Crossfeed Valve Check

Air Systems

Wing-Body Overheat Test

External Air Cart Use

Ground Conditioned Air Use

Isolated Pack Operation during Engine Start

Pressurization System Manual Mode Test

Manual Mode Operation

Pressurization Control Operation – Landing at Alternate Airport

Automatic Pressurization Control – Departure Airport Elevation Above 8400 Feet

Return to Departure Airport is Needed

Automatic Pressurization Control – Landing Airport Elevation Above 6000 Feet but 8400 Feet and Below

Automatic Pressurization Control – Landing Airport Elevation Above 8400 Feet

Unpressurized Takeoff and Landing

Takeoff

After Takeoff

Landing

Boeing Proprietary, Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

No Engine Bleed Takeoff and Landing

Takeoff

After Takeoff

Landing

Anti-Ice, Rain

Anti–Ice Operation

Cold-Soaked Fuel Frost (CSFF)

Exterior Safety Inspection - Airplanes with Defined Cold-Soaked

Fuel Frost Area

Exterior Safety Inspection - Airplanes without Defined Cold-Soaked Fuel Frost Area

Window Heat System Tests

Overheat Test

Power Test

Automatic Flight

Level Change Climb/Descent

Vertical Speed (V/S) Climb/Descent

Intervention of FMC Altitude Constraints during VNAV Climb

Intervention of FMC Altitude Constraints during VNAV Descent

Intervention of FMC Cruise Altitude during VNAV Cruise

Intervention of FMC Airspeed Constraints during VNAV

Altitude Hold

Heading Select

VOR Navigation

Instrument Approach using Vertical Speed (V/S)

Circling Approach

Communications

Cockpit Voice Recorder Test

Electrical

Electrical Power Up

Electrical Power Down

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

Standby Power Test

Engines, APU

Starting with Ground Air Source (AC electrical power available)

Engine Crossbleed Start

Setting N1 Bugs with No Operative FMC

(Manual N1 Bug Setting)

High Altitude Airport Engine Start (Above 8400 Feet)

Fire Protection

Fire and Overheat System Test with an Inoperative Loop

Flight Instruments, Displays

Altimeter Difference

Setting Airspeed Bugs with No Operative FMC

(Manual Airspeed Bug Setting)

To set reference airspeed bugs for takeoff:

To set reference airspeed bugs for approach:

Flight Management, Navigation

Tests

Transponder Test

Weather Radar Test

IRS

Align Light(s) Flashing

Fast Realignment

Inadvertent Selection of Attitude Mode (while on the ground)

IRS Entries

Lateral Navigation (LNAV)

Proceeding Direct to a Waypoint (overwrite)

Intercepting a Leg (Course) to a Waypoint

Active Route Modification

Inactive Route Modification

Route Copy

Inactive Route Activation

Route Removal

Linking a Route Discontinuity

Determining ETA and Distance to Cross Radial (Bearing) or Distance from a Fix

Changing Destination

Entering Holding Fix Into Route

Exiting Holding Pattern

Along Track Displacement

Entering Created Waypoints on the Route or Route Legs Pages

Entering Created Waypoints on the Nav Data Pages

Deleting Created Waypoints on the Nav Data Pages

Entering a Crossing Radial (Bearing) or Distance from a Fix as a Route Waypoint

Entering a Lateral Offset

Change SID or Runway

Change STAR, PROF DES, or APP

Delete Procedure Turn

Other Operations

FMC Navigation Check

Inhibiting VOR/DME Use for Position Updating

Inhibiting GPS Updating

Vertical Navigation (VNAV)

Temporary Level Off during Climb or Descent (Not at FMC Cruise Altitude)

Intervention of FMC Altitude Constraints during VNAV Climb

Intervention of FMC Cruise Altitude during VNAV Cruise

Intervention of FMC Altitude Constraints during VNAV Descent

Intervention of FMC Airspeed Constraints during VNAV

Entering Waypoint Speed and Altitude Restriction (On Climb or Descent Legs Only)

Deleting Waypoint Speed and Altitude Restriction

Changing Speed and/or Altitude Restriction during Climb or Descent

Changing Climb/Cruise/Descent Speed Schedule

Early Descent

Step Climb or Descent from Cruise

Performance and Progress Functions

Determining ETA and Fuel Remaining for New Destination

Estimated Wind Entries for Cruise Waypoints

Step Climb Evaluation

Entering Descent Forecasts

Engine Out

Required Time of Arrival (RTA)

Entering an RTA Waypoint and Time

Entering Speed Restrictions for RTA Navigation

Entering New Time Error Tolerances for RTA Navigation

Additional CDU Functions

Navigation Display Plan Mode (Center Step Operation)

Enter Position Shift on Runway

Fuel

Fuel Balancing

Refueling

Fuel Load Distribution

Fuel Pressure

Normal Refueling

Refueling with Battery Only

Refueling with No AC or DC Power Source Available

Ground Transfer of Fuel

Fuel Crossfeed Valve Check

Warning Systems

Ground Proximity Warning System (GPWS) and Runway Awareness and Advisory System (RAAS) Test

Ground Proximity Warning System (GPWS), Overrun Warning (ORW) System, and Runway Awareness and Advisory System (RAAS) Test

Runway Awareness and Advisory System (RAAS) Inhibit Operation

Overrun Warning (ORW) System and Runway Awareness and Advisory System (RAAS) Inhibit Operation

Adverse Weather

Introduction

Takeoff - Wet or Contaminated Runway Conditions

Cold Weather Operations

Exterior Inspection

Preflight Procedure - First Officer

Engine Start Procedure

Engine Anti-ice Operation - On the Ground

Wing Anti-ice Operation - On the Ground

Before Taxi Procedure

Taxi-Out

De-icing/Anti-icing

Before Takeoff Procedure

Takeoff Procedure

Engine Anti-Ice Operation - In Flight

Fan Ice Removal

Wing Anti-ice Operation - In Flight

Cold Temperature Altitude Corrections

Approach and Landing

After Landing Procedure

Shutdown Procedure

Secure Procedure

Hot Weather Operation

Moderate to Heavy Rain, Hail or Sleet

Operation in a Sandy or Dusty Environment

Exterior Inspection

Preflight Procedure - First Officer

Engine Start Procedure

Before Taxi Procedure

Taxi-Out

Takeoff

Approach

Landing

After Landing Procedure

Taxi-In

Secure Procedure

Turbulence

Severe Turbulence

Windshear

Avoidance

Precautions

Ice Crystal Icing (ICI)

Recognizing Ice Crystal Icing

Avoiding Ice Crystal Icing

Ice Crystal Icing Suspected

Intentionally Blank

Supplementary Procedures Introduction

Chapter SP Section 05

General

This section contains procedures (adverse weather operation, engine crossbleed start, and so on) that are accomplished as required rather than routinely performed on each flight.

Supplementary procedures may be required because of adverse weather, unscheduled maintenance or as a result of a procedure referenced in a Non–Normal Checklist. Additionally, some may be performed if the flight crew must accomplish preflight actions normally performed by maintenance personnel.

At the discretion of the Captain, procedures may be performed by memory, by reviewing the procedure prior to accomplishment, or by reference to the procedure during its accomplishment.

Supplementary procedures are provided by section. Section titles correspond to the respective chapter title for the system being addressed except for the adverse weather section.

Intentionally Blank

Supplementary ProceduresChapter SPAirplane General, Emer. Equip., Doors, WindowsSection 1

Interior Inspection
Emergency exit lights
Passenger signs
Service and entry doors
Escape slides
Emergency exits
Wing upper surfaces
Lavatory fire extinguishers
Emergency equipment
Flight Deck Door Access System Test
Flight Deck Access System switchNORM
Flight deck doorOpen
Flight deck door
Flight deck door lock selectorAUTO
Flight deck door lock selector
Flight deck door lock selector

Flight deck access system switchNORM Guard - Down Verify LOCK FAIL light extinguishes. **Water System Draining** Lavatory water supply selector valvesSUPPLY/DRAIN Galley water supply shutoff valvesSUPPLY ON The shutoff valve is found adjacent to each wet galley sink. Drain line.......Connect to drain ports There are two drain port locations: • below the main passenger entry door • aft of the water service panel Water service panelOpen Tank drain valve handleOPEN Drains potable water tank and water system aft of the wings. Forward lavatory drain valveOPEN Drain valve is found below the sink in the forward lavatory only. Drain valves for coffee maker and water boiler (if installed)......OPEN All galley and lavatory water faucetsOpen Close faucets when water flow stops. Accomplish the following items after verifying the potable water system is empty: Drain valves for coffee maker and Drain line Disconnect from drain ports

Doors, Windows

737 Flight Crew Operations Manual

If the potable water tank will not be refilled immediately after the system is emptied, open the following circuit breakers and attach DO-NOT-CLOSE tags:

P18-3 circuit breaker panel

- LAVATORY WATER HEATER A
- LAVATORY WATER HEATER D
- LAVATORY WATER HEATER E

Power distribution panel number 1

- POT WATER COMPRESSOR
- WATER QTY IND

Air Turn Back - Flaps 15 Landing

When needed to meet Return-to-Land dispatch requirements, do the following:

Plan a flaps 15 landing and a flaps 1 go-around.

Use a Normal Descent Procedure except:

Set VREF 15 or VREF ICE.

Note: If any of the following conditions apply, set VREF ICE= VREF 15 + 10 knots:

- Engine anti-ice will be used during landing
- Wing anti-ice has been used any time during the flight
- Icing conditions were encountered during the flight and the landing temperature is below 10°C.

Note: When VREF ICE is needed, the wind additive should not exceed 5 knots.

Use Normal Approach Procedure except:

GROUND PROXIMITY

FLAP INHIBIT switchFLAP INHIBIT

Use Normal Landing Procedure.

Use the normal Go-Around and Missed Approach Procedure except:

Use flaps 1 for the go-around.

Limit bank angle to 15° when airspeed is less than VREF 15 + 15 knots or the minimum maneuver speed, whichever is lower.

ETOPS

Operators conducting ETOPS are required to comply with appropriate regulations. An operator must have an ETOPS configured and approved airplane, and approved flight operations and maintenance programs in place to support ETOPS.

APU Operation

Unless otherwise authorized, start the APU before the ETOPS segment. The APU must be on for the entire ETOPS segment.

Fuel Crossfeed Valve Check

extinguishes.

Unless accomplished by maintenance personnel prior to the ETOPS flight, do the following steps on the ground prior to engine start:

Supplementary	Procedures
Air Systems	

Chapter SP Section 2

Wing-Body Overheat Test
Wing-body OVHT TEST switch
Wing-body OVHT TEST switch
External Air Cart Use CAUTION: The BAT switch should always be on when using the
airplane air conditioning system since the protective circuits are DC. This ensures protection in the event of loss of AC power.
circuits are DC. This ensures protection in the event of
circuits are DC. This ensures protection in the event of loss of AC power.
circuits are DC. This ensures protection in the event of loss of AC power. Note: For engine start with a ground air source, see section SP.7.
circuits are DC. This ensures protection in the event of loss of AC power. Note: For engine start with a ground air source, see section SP.7. APU BLEED air switch
circuits are DC. This ensures protection in the event of loss of AC power. Note: For engine start with a ground air source, see section SP.7. APU BLEED air switch
circuits are DC. This ensures protection in the event of loss of AC power. Note: For engine start with a ground air source, see section SP.7. APU BLEED air switch
circuits are DC. This ensures protection in the event of loss of AC power. Note: For engine start with a ground air source, see section SP.7. APU BLEED air switch

757 Figure Crew Operations Ivianual
APU BLEED air switchON
APU supplies left pack and external air source supplies right pack.
Ground Conditioned Air Use
Before connecting ground conditioned air:
PACK switchesOFF
Packs can be damaged if they are operated while ground conditioned air is connected.
After disconnecting ground conditioned air:
PACK switches As needed
Isolated Pack Operation during Engine Start
To improve cabin air quality between starting the first and second engine
CAUTION: Moving engine BLEED air switches while a starter is engaged can damage the starter.
Engine No. 2Star
After engine No. 2 stabilized:
ISOLATION VALVE switch
Right PACK switch
Duct pressure Stabilized
Engine No. 1
After engine No. 1 stabilized:
ISOLATION VALVE switchAUTO
Pressurization System Manual Mode Test
PACK switchesOF
Pressurization mode selector
AUTO FAIL and ALTN lights – extinguished.
MANUAL light – illuminated.

Verify outflow valve position indicator moves toward CLOSE.
Outflow valve switch
Pressurization mode selector
Manual Mode Operation CAUTION: Switch actuation to the manual mode causes an
immediate response by the outflow valve. Full range of motion of the outflow valve can take up to 20 seconds.
Pressurization mode selector
MANUAL light – illuminated
CABIN/FLIGHT ALTITUDE placard
If a higher cabin altitude is desired:
Outflow valve switch (momentarily)
If a lower cabin altitude is desired:
Outflow valve switch (momentarily)
During Descent
Thrust lever changes should be made as slowly as possible to prevent excessive pressure bumps.

Before entering the landing pattern, slowly position the outflow valve to full open to depressurize the airplane. Verify differential pressure is zero.

Pressurization Control Operation – Landing at Alternate Airport

At top of descent:

Automatic Pressurization Control – Departure Airport Elevation Above 8400 Feet

1B392, 1L075 - 1L078

If departure airport elevation is above 10,000 feet:

Oxygen masks and regulatorsON, Normal

Supplemental oxygen must be used from departure until the cabin altitude is below 10,000 feet.

After electrical power is applied to the airplane:

HIGH ALT LDG switch Off

Monitor CABIN ALT and CABIN rate of CLIMB indicators during climbout to ensure cabin altitude is descending below 8500 feet, at which time the cabin altitude warning system is reset to 10,000 feet.

Note: If departure airport elevation is above 9000 feet, the high altitude landing mode may be active and the warning system set at the High Altitude setpoint. When the cabin altitude descends below 8500 feet, the cabin altitude warning system is reset to 10,000 feet.

If landing altitude is at or below 6000 feet:

LAND ALT indicator Destination field elevation

767 Ingite erew Operations Manual
If landing altitude is above 6000 feet:
Do the Automatic Pressurization Control - Landing Airport Elevation Above 6000 Feet supplementary procedure.
Return to Departure Airport is Needed
HIGH ALT LDG switchON
If landing elevation is above 10,000 feet:
Oxygen masks and regulators
Automatic Pressurization Control – Landing Airport Elevation Above 6000 Feet but 8400 Feet and Below
Do the normal Preflight Procedure - First Officer except as modified below.
Prior to takeoff:
LAND ALT indicator
LAND ALT indicator Destination field elevation
Automatic Pressurization Control – Landing Airport Elevation Above 8400 Feet
1B392, 1L075 - 1L078
Do the normal Preflight Procedure - First Officer except as modified below.
Prior to takeoff:
LAND ALT indicator6000 feet
At initial descent or approximately 20 minutes prior to landing:
If landing elevation is above 8400 feet:

HIGH ALT LDG switch.....ON

If landing elevation is above 10,000 feet:

Oxygen masks and regulators......ON, Normal Supplemental oxygen must be used anytime the cabin altitude is above 10,000 feet.

LAND ALT indicator Destination field elevation

Unpressurized Takeoff and Landing

When making a no engine bleed takeoff or landing with the APU inoperative, or operative but not providing bleed air:

Takeoff

PACK switches
ISOLATION VALVE switch
Engine BLEED air switchesOFF
APU BLEED air switchOFF
After Takeoff
Note: If engine failure occurs, do not position engine BLEED air switches ON until reaching 1500 feet or until obstacle clearance height has been attained.
At not less than 400 feet, and prior to 2000 feet above field elevation:
Engine No. 2 BLEED air switch
Engine No. 1 BLEED air switchON
ISOLATION VALVE switchAUTO
Landing
When below 10,000 feet and starting the turn to final approach:
Engine BLEED air switchesOFF
Avoid high rates of descent for passenger comfort.

No Engine Bleed Takeoff and Landing

When making a no engine bleed takeoff or landing with the APU operating.

Takeoff

Takeoff' just prior to takeoff.	
Note: If anti–ice is not required for taxi, configure for a "No Engine Bleed Takeoff" just after engine start.	
Right PACK switchAUTC)

Note: If anti-ice is required for taxi, configure for a "No Engine Bleed

ISOLATION VALVE switch	CLOSE
Left PACK switch	AUTO
Engine No. 1 BLEED air switch	OFF
APU BLEED air switch	ON
Engine No. 2 BLEED air switch	OFF
Trim Air Switch	ON
WING ANTI-ICE switch	
THE HUDIC ANTELLICE IN A CORE WILL	•

The WING ANTI-ICE switch must remain OFF until the engine BLEED air switches are repositioned to ON and the ISOLATION VALVE switch is repositioned to AUTO.

After Takeoff

Note: If engine failure occurs, do not position engine BLEED air switches ON until reaching 1500 feet or until obstacle clearance height has been attained.

height has been attained.	
Engine No. 2 BLEED air switch	ON
APU BLEED air switch	OFF
When CABIN rate of CLIMB indicator stabilizes:	
Engine No. 1 BLEED air switch	ON
ISOLATION VALVE switch	AUTO

Landing

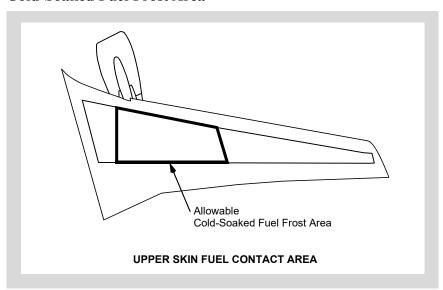
If additional go—around thrust is desired, configure for a "No Engine Bleed Landing."

When below 10,000 feet:

WING ANTI-ICE switch	OFF
Right PACK switch	AUTO
ISOLATION VALVE switch	CLOSE
Left PACK switch	AUTO
Engine No. 1 BLEED air switch	OFF
APU BLEED air switch	ON
Engine No. 2 BLEED air switch	OFF

Supplementary Procedures Anti–Ice, Rain

Chapter SP Section 3


Anti-Ice Operation

Requirements for use of anti-ice and operational procedures for engine and wing anti-ice are contained in Supplementary Procedures, Adverse Weather Section SP.16.

Cold-Soaked Fuel Frost (CSFF)

Frost may form on the lower and upper wing surfaces due to cold-soaked fuel touching the wing surface after long flights with large fuel loads.

Exterior Safety Inspection - Airplanes with Defined Cold-Soaked Fuel Frost Area

Visually inspect the lower and upper wing surfaces.

If there is frost or ice on the lower surface outboard of measuring stick 4, there may also be frost or ice on the upper surface. The distance that the frost extends outboard of measuring stick 4 can be used as an indication of the extent of the frost on the upper surface.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

Takeoff with CSFF on lower wing surfaces is allowable provided all of the following conditions are met:

- Ambient air temperature is at or above +4°C, +39°F.
- There is no precipitation or visible moisture (rain, snow, drizzle or fog with less than 1 mile visibility).
- Tank fuel temperature is at or above -16°C, +3°F.
- All leading edge devices, all control surfaces, tab surfaces, winglet surfaces, and control surface balance panel cavities must be free of snow, ice and frost.

If all of the above conditions are not met, takeoff with light coatings of frost, up to 1/8 inch (3 mm) in thickness, on lower wing surfaces due to cold fuel is allowable; however, all leading edge devices, all control surfaces, tab surfaces, winglet surfaces and control surface balance panel cavities must be free of snow, ice and frost. If the frost on the lower surface is greater than 1/8 inch (3 mm) in thickness, all snow, ice and frost on the wings must be removed using appropriate deicing/anti-icing procedures.

Takeoff with CSFF on upper wing surfaces is allowable provided all of the following conditions are met:

- The CSFF on the wing tank upper surfaces is only within the lines defining the permissible CSFF area with no snow, ice or frost on the leading edges or control surfaces.
- Ambient air temperature is at or above +4°C, +39°F.
- There is no precipitation or visible moisture (rain, snow, drizzle, or fog with less than 1 mile visibility).
- Tank fuel temperature is at or above -16°C, +3°F.

If all of the above conditions are not met, all snow, ice and frost on the upper wing surfaces must be removed using appropriate deicing/anti-icing procedures.

Exterior Safety Inspection - Airplanes without Defined Cold-Soaked Fuel Frost Area

Visually inspect the lower and upper wing surfaces.

If there is frost or ice on the lower surface outboard of measuring stick 4, there may also be frost or ice on the upper surface. The distance that the frost extends outboard of measuring stick 4 can be used as an indication of the extent of the frost on the upper surface.

Takeoff with CSFF on lower wing surfaces is allowable provided all of the following conditions are met:

- Ambient air temperature is at or above +4°C, +39°F.
- There is no precipitation or visible moisture (rain, snow, drizzle, or fog with less than 1 mile visibility).
- Tank fuel temperature is at or above -16°C, +3°F.
- All leading edge devices, all control surfaces, tab surfaces, winglet surfaces, and control surface balance panel cavities must be free of snow, ice and frost.

If all of the above conditions are not met, takeoff with light coatings of frost, up to 1/8 inch (3 mm) in thickness, on lower wing surfaces due to cold fuel is allowable; however, all leading edge devices, all control surfaces, tab surfaces, winglet surfaces and control surface balance panel cavities must be free of snow, ice and frost. If the frost on the lower surface is greater than 1/8 inch (3 mm) in thickness, all snow, ice and frost on the wings must be removed using appropriate deicing/anti-icing procedures.

Takeoff with frost on upper wing surfaces due to cold fuel (CSFF) is not allowable. If any frost is present on the upper wing surface, all snow, ice and frost on the wings must be removed using appropriate deicing/anti-icing procedures.

Window Heat System Tests

Overheat Test

The overheat test simulates an overheat condition to check the overheat warning function of the window heat system.

WINDOW HEAT switches	ON
WINDOW HEAT TEST switch	OVHT
OVERHEAT lights – On	
ON lights – Extinguish	
Lights extinguish after approximately 1 minute.	
MASTER CAUTION – On	
ANTI-ICE system annunciator - On	
WINDOW HEAT switches	Reset
Position the WINDOW HEAT switches OFF, then ON.	

Power Test

The power test verifies operation of the window heat system. The test may be accomplished when any of the window heat ON lights are extinguished and the associated WINDOW HEAT switch is ON.

WINDOW HEAT switches ON
Note: Do not perform the power test when all ON lights are illuminated
WINDOW HEAT TEST switch
WINDOW HEAT ON lights

Supplementary Procedures Automatic Flight

Chapter SP Section 4

Level Change Climb/Descent
ALTITUDE selector Set desired altitude
Note: If a new MCP altitude is selected while in ALT ACQ, the AFDS engages in V/S and the existing vertical speed is maintained.
LVL CHG switchPush
Verify FMA display:
Thrust mode (climb) – N1
Thrust mode (descent) – RETARD then ARM
Pitch mode – MCP SPD
IAS/MACH Selector Set desired speed
Vertical Speed (V/S) Climb/Descent
ALTITUDE selector Set desired altitude
Note: If a new MCP altitude is selected while in ALT ACQ, the AFDS engages in V/S and the existing vertical speed is maintained.
V/S thumbwheel Set desired vertical speed
Verify FMA display:
Thrust mode (climb or descent) – MCP SPD
Pitch mode – V/S
IAS/MACH Selector Set desired speed
To transition to the vertical speed mode from another engaged climb or descent mode:
V/S mode switchPush V/S climb mode engages at existing V/S.
V/S thumbwheelSet desired vertical speed Verify FMA display:

Thrust mode (climb or descent) – MCP SPD

Pitch mode – V/S

IAS/MACH Selector Set desired speed **Intervention of FMC Altitude Constraints during VNAV Climb** New altitude must be higher than the FMC altitude constraint(s) to be deleted. ALT INTV switch Push Each push of the ALT INTV switch will delete an FMC altitude constraint. Intervention of FMC Altitude Constraints during VNAV Descent New altitude must be lower than the FMC altitude constraint (s) to be deleted. Each push of the ALT INTV switch will delete an FMC altitude constraint. If all FMC altitude constraints are deleted, the descent mode will revert to a VNAV speed descent. **Intervention of FMC Cruise Altitude during VNAV Cruise**

ALT INTV switch Push
If a higher altitude is selected, a CRZ climb will be started.
If the airplane is more than 50 nm from T/D, if a lower altitude is selected, a CRZ descent will be started if the selected altitude is at or above any FMC altitude constraint.
If the airplane is more than 50 nm from T/D, if a lower altitude is selected, an early descent will be started if the selected altitude is below any FMC altitude constraint.
If the airplane is 50 nm or less from T/D, if a lower altitude is selected, an early descent will be started.
Intervention of FMC Airspeed Constraints during VNAV
SPD INTV switchPush MCP IAS/MACH display shows current FMC target speed.
IAS/MACH Selector
To resume former FMC speed:
SPD INTV switch
Altitude Hold
Altitude HOLD switch
Heading Select
Heading selector
Heading select switchPush Verify FMA display:
Roll mode – HDG SEL

VOR Navigation

VOR LOC mode switch.....Push

Verify VOR LOC armed mode annunciates.

A/P automatically captures the VOR course.

Verify VOR LOC engaged mode annunciates upon course capture.

Note: If change to a localizer frequency is desired when captured in the VOR mode, disengage VOR LOC mode prior to selection of the localizer. VOR LOC mode can then be reengaged.

Instrument Approach using Vertical Speed (V/S)

Pilot Flying	Pilot Monitoring
Initially • If on radar vectors • HDG SEL • Pitch mode (as needed) • If enroute to a fix • LNAV or other roll mode • VNAV or other pitch mode	
Call "FLAPS" according to the flap extension schedule.	Set the flap lever as directed. Monitor flaps and slats extension.

Note: If required to remain at or above MDA(H) during the missed approach, the missed approach must be initiated at least 50 feet above MDA(H).

Recommended roll modes:

- RNAV, GPS, TACAN, LOC-BC, VOR or NDB approach: LNAV or HDG SEL.
- LOC, SDF or LDA approach: VOR/LOC or LNAV.

Note: When using LNAV to intercept a localizer, LNAV might parallel the localizer without capturing it. Use HDG SEL to intercept the final approach course, if needed.

Ensure appropriate navaids (VOR, LOC or NDB) are tuned and identified before commencing the approach.

Pilot Flying	Pilot Monitoring
Use LNAV or other roll mode to intercept the final approach course as needed.	
Approximately 2 NM before the final approach fix, set the first intermediate altitude constraint or MDA(H).	Approximately 2 NM before the final approach fix, call "APPROACHING GLIDE PATH."
Set the MCP altitude to the nearest 100 foot increment at or above each intermediate altitude constraint or MDA(H).	
When the current constraint is assured, set the next constraint before ALT HOLD is engaged to achieve a continuous descent path.	
Call:	Set the landing gear lever to DN.
• "GEAR DOWN" • "FLAPS 15."	Verify that the green landing gear indicator lights are illuminated.
	Set the flap lever to 15.
	Set the engine start switches to CONT.
Set the speed brake lever to ARM.	
Verify that the SPEED BRAKE ARMED light is illuminated.	

Before descent to MDA(H):

Pilot Flying	Pilot Monitoring
Call "FLAPS" as needed for	Set the flap lever as directed.
landing.	

At descent point:

Desired V/S Set

Set desired V/S to descend to MDA(H). Use a V/S that results in no level flight segment at MDA(H).

Verify V/S mode annunciates.

Pilot Flying	Pilot Monitoring
Call "LANDING CHECKLIST."	Do the LANDING checklist.
At the final approach fix, crosscheck the feet.	altimeters. Verify they agree within 100
Approximately 300 feet above MD	A(H):
MCP altitude	Set missed approach altitude
At MDA(H)/missed approach point:	
If suitable visual reference is no approach.	t established, execute missed
After suitable visual reference is	s established:
A/P disengage switch	Push
Disengage the autopilot is requirements.	n accordance with regulatory
A/T disengage switch	Push
Disengage the autothrottl	e when disengaging the autopilot.
Circling Approach	

If a missed approach is needed at any time while circling, make an initial climbing turn toward the landing runway and intercept the missed approach course.

Configuration at MDA(H):

- Gear down
- Flaps 15 (landing flaps optional)
- Speedbrake armed

Set the MCP altitude to the nearest 100 foot increment at or above the MDA(H).

Accomplish an instrument approach, establish suitable visual reference and level off at MCP altitude.

Verify ALT HLD or VNAV ALT mode annunciates.

Verify ALT HLD mode annunciates.

MCP altitude selector Set missed approach alt	itude
HDG SEL switch	Push
Verify HDG SEL mode annunciates.	
Before starting the turn to base:	
• Landing flaps (if not previously selected)	
• Do the LANDING checklist.	
Intercepting the landing profile:	
Autopilot disengage switchPus	sh
Autothrottle disengage switchPus	sh

Intentionally Blank

Supplementary Procedures Communications

Chapter SP Section 5

Cockpit Voice Recorder Test

	The Cockpit VOICE RECORDER switch must be in the ON position or at least one engine must be operating to perform this test.	
Test sv	vitchPush	1

Hold switch for 1 second then release. Observe that the STATUS light illuminates once within 6 seconds. A tone may be heard

through a headset plugged into the headset jack.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

Intentionally Blank

Supplementary Procedures Electrical

Chapter SP Section 6

Electrical Power Up

The following procedure is accomplished to permit safe application of electrical power.

Note: Do not move the airplane until Integrated Standby Flight Display (ISFD) alignment is complete. **Note:** If external power is not used for APU start, wait at least 30 seconds between closing the BATTERY switch guard and starting the APU. This allows for completion of DPC self-test. 1B392 - 1J022, 1K002 - 1L078 Note: Devices plugged into the flight deck auxiliary power outlets during Electrical Power Up will not be powered until the plugs are removed and reinserted. Windshield WIPER selectors......PARK ELECTRIC HYDRAULIC PUMPS switches OFF LANDING GEAR leverDN Verify that the green landing gear indicator lights are illuminated. Verify that the red landing gear indicator lights are extinguished. If external power is needed: Verify that the GRD POWER AVAILABLE light is illuminated. GRD POWER switch - ON Verify that the SOURCE OFF lights are extinguished.

Verify that the TRANSFER BUS OFF lights are extinguished. Verify that the STANDBY PWR OFF light is extinguished.

If APU power is needed:

Verify that the engine No. 1, APU and the engine No. 2 fire switches are in.

Alert ground personnel before the following test is accomplished.

OVERHEAT DETECTOR switches - NORMAL

TEST switch – Hold to FAULT/INOP

Verify that the MASTER CAUTION lights are illuminated.

Verify that the OVHT/DET annunciator is illuminated.

Verify that the FAULT light is illuminated.

If the FAULT light fails to illuminate, the fault monitoring system is inoperative.

Verify that the APU DET INOP light is illuminated.

Do not operate the APU if the APU DET INOP light fails to illuminate.

TEST switch – Hold to OVHT/FIRE

Verify that the fire warning bell sounds.

Verify that the master FIRE WARN lights are illuminated.

Verify that the MASTER CAUTION lights are illuminated.

Verify that the OVHT/DET annunciator is illuminated.

Master FIRE WARN light – Push

Verify that the master FIRE WARN lights are extinguished.

Verify that the fire warning bell cancels.

Verify that the engine No. 1, APU and the engine No. 2 fire switches stay illuminated.

Verify that the engine No. 1 and engine No. 2 start lever lights stay illuminated.

Verify that the ENG 1 OVERHEAT and ENG 2 OVERHEAT lights stay illuminated.

Note: The WHEEL WELL fire warning light on the overheat and fire protection panel may or may not illuminate when testing on DC electrical power only. For accurate testing, do the wheel well fire detection system test after AC electrical power is established.

EXTINGUISHER TEST switch – Check

TEST Switch - Position to 1 and hold

Verify that the three green extinguisher test lights are illuminated.

TEST Switch - Release

Verify that the three green extinguisher test lights are extinguished.

Repeat for test position 2.

APU - Start

Note: If extended APU operation is needed on the ground and the airplane busses are powered by AC electrical power, position an AC powered fuel pump ON. This will extend the service life of the APU fuel control unit.

Note: If fuel is loaded in the center tank, position the left center tank fuel pump switch ON to prevent a fuel imbalance before takeoff.

CAUTION: Center tank fuel pump switches should be positioned ON only if the fuel quantity in the center tank exceeds 453 kgs.

CAUTION: Do not operate the center tank fuel pumps with the flight deck unattended.

When the APU GEN OFF BUS light is illuminated:

APU GENERATOR bus switches - ON

Verify that the SOURCE OFF lights are extinguished.

Verify that the TRANSFER BUS OFF lights are extinguished.

Verify that the STANDBY PWR OFF light is extinguished.

Verify that the APU DOOR light is extinguished.

Verify that the APU LOW OIL PRESSURE light is extinguished.

Verify that the APU FAULT light is extinguished.

Verify that the APU OVERSPEED light is extinguished.

Wheel well fire detection syste	m Test
Test switch – Hold to OVH	Γ/FIRE
	sounds, master FIRE WARN lights, ghts and OVHT/DET annunciator
Fire warning BELL CUTO	UT switch – Push
Verify that the master FI	RE WARN lights extinguish.
Verify that the fire warni	ng bell cancels.
Verify that the WHEEL V	VELL fire warning light is illuminated.
Electrical Power Down	
This procedure assumes the Secure	procedure is complete.
APU switch and/or GRD POWER	switchOFF
If APU was operating:	
	utes after the APU GEN OFF BUS acing the BATTERY switch OFF.
BATTERY switch	OFF
Standby Power Test	
Battery switch	ON
AC and DC meter selectors	STBY PWR
If APU generator is on-line:	
APU GEN No. 1 switch	OFF
APU GEN No. 2 switch	OFF
If ground power is on–line:	
GRD PWR switch	OFF
STANDBY POWER switch Check STANDBY PWR OFF I	OFF ight illuminated.
AC and DC voltmeters	Zero
STANDBY POWER switch Check STANDBY PWR OFF I	BAT

AC and DC voltmeters Check
AC voltmeter 115 +/-5 volts
DC voltmeter 24 +/-4 volts
Frequency meter
Check frequency meter for normal indication: 400 +/- 5 CPS.
DC meter selector
Check DC voltmeter for normal indication: 24 +/- 4 volts.
Check DC ammeter for discharge indication: a negative value.
DC meter selector
Check DC voltmeter for normal indication: 24 +/- 4 volts.
Check DC ammeter for discharge indication: a negative value.
STANDBY POWER switchAUTO
GRD PWR switch or APU GEN No. 1 and No. 2 switchesON
Note: It can take up to 3 minutes for MDS displays to recover when power is interrupted for more than 2 seconds on the ground.

Intentionally Blank

Supplementary Procedures Engines, APU

Chapter SP Section 7

Starting with Ground Air Source
(AC electrical power available)

Engine No. 1 must be started first.

When cleared to start:

WARNING: To minimize the hazard to ground personnel, the external air should be disconnected, and engine No. 2 started using the Engine Crossbleed Start procedure.

Engine Crossbleed Start

Do not accomplish a crossbleed start during pushback.

Before using this procedure, ensure that the area to the rear is clear.

Engine BLEED air switchesON

APU BLEED air switch OFF

PACK switches OFF

ISOLATION VALVE switchAUTO

Ensures bleed air supply for engine start.

Engine thrust lever

Note: If needed, advance thrust lever until bleed duct pressure indicates 30 PSI.

Use normal start procedures with crossbleed air.

After starter cutout, adjust thrust on both engines, as required.

Setting N1 Bugs with No Operative FMC (Manual N1 Bug Setting)

Reference the Performance – Inflight section to determine N1 setting for desired phase of flight.

Note: SELECTOR	refers to either	the CAPT o	r FO SELECT	OR
knob.				

SELECTOR outer knob.	Select C

The last FMC computed value is shown by reference N1 bugs and readouts. If the FMC has not calculated an input since power up, a default value of 104% is shown.

Note: If the N1 SET selection is returned to the AUTO, the bugs and readouts will revert to the last FMC computed value or 104% if the FMC has not calculated an input since power up.

Verify that the Thrust Mode Display Annunciation is MAN.

When manual N1 bug setting is no longer needed:

Verify that the Thrust Mode Display Annunciation is appropriate for the phase of flight.

SP.7.3

737 Flight Crew Operations Manual

High Altitude Airport Engine Start (Above 8400 Feet)

1B392, 1L075 - 1L078

An indication of N1 rotation plus maximum motoring and a minimum of 20% N2 are required prior to introducing fuel to the engine.

Note: Maximum motoring occurs when N2 acceleration is less than 1% in approximately 5 seconds.

Intentionally Blank

Supplementary Procedures Fire Protection

Chapter SP Section 8

Fire and Overheat System Test with an Inoperative Loop

Fire and Overneat System Test with an Inoperative Loop
To determine the specific inoperative loop:
OVHT DET switches
Test switch
OVHT DET switchesB
Test switch
If the FAULT light illuminates and one of the ENG OVERHEAT lights and corresponding engine start lever and engine fire switch remain extinguished, there is a fault in loop B of the detection system of that engine.
OVHT DET switches
Test switch

Intentionally Blank

Supplementary Procedures Flight Instruments, Displays

Chapter SP Section 10

Altimeter Difference

Note: If flight in RVSM airspace is planned use the RVSM table in the limitations section.

This procedure is accomplished when there is a noticeable difference between the altimeters. Accomplish this procedure in stabilized level flight or on the ground.

Altimeter barometric settings	Check
Check all altimeters set to proper barometric setting flight.	for phase of
Standby altimeter baro set control	
Altimeters	Crosscheck
Maximum differences between the altimeter readings	: :

mum differences between the altimeter readings:

Altitude	MDS/MDS	MDS/Standby
Sea Level	50 feet	60 feet
5,000 feet	50 feet	80 feet
10,000 feet	60 feet	120 feet
15,000 feet	70 feet	(see note)
20,000 feet	80 feet	(see note)
25,000 feet	100 feet	(see note)
30,000 feet	120 feet	(see note)
35,000 feet	140 feet	(see note)
40,000 feet	160 feet	(see note)
41,000 feet	170 feet	(see note)

Note: Above 10,000 feet and 0.4 Mach, position error causes the tolerance to diverge rapidly and direct crosscheck becomes inconclusive. Between 10,000 feet and 29,000 feet, differences greater than 400 feet should be suspect and verified by ground maintenance checks. Between 29,000 feet and the maximum operating altitude, differences greater than 500 feet should be suspect and verified by ground maintenance checks.

If it is not possible to identify which altimeter is indicating the altitude:	e correct
ATC	Notify

Setting Airspeed Bugs with No Operative FMC (Manual Airspeed Bug Setting)

To set reference airspeed bugs for takeoff:

•
Note: SELECTOR refers to either the CAPT or FO SELECTOR knob.
SELECTOR outer knob
MFD INFO switch
N1/SPD REF SET display is shown.
SELECTOR inner knob
Default speed of 80 knots is shown.
SELECTOR inner knob
SELECTOR inner knob
V1 bug is shown when a speed greater than 80 knots is set.
SELECTOR inner knob
Default speed of 80 knots is shown.
SELECTOR inner knob
SELECTOR inner knob
VR bug is shown and the NO VSPD flag is removed when a speed greater than 80 knots is set.
MCP speed selector
Airspeed bug and V2+15 bug move to the correct speeds.
SELECTOR inner knob
Default weight of 32,000 kgs is shown.

8
SELECTOR inner knob
SELECTOR inner knob
Flaps up maneuver speed bug is shown.
SELECTOR inner knob
Digital readout is removed from PFD and MAN SPD is shown.
To set the spare bug, if desired:
SELECTOR inner knob
Default speed of 60 knots is shown.
SELECTOR inner knob
SELECTOR inner knob
SELECTOR inner knob
Digital readout is removed from PFD and MAN SPD is shown.
Note: When the flap lever is set to any takeoff flap setting above flaps 1, a bug comes into view for the next smaller flap maneuvering speed, between takeoff flaps and flaps up. For example, if the flap lever is set to 15 for takeoff, a bug for flaps 5 maneuvering speed will appear. For a flaps 1 takeoff, the flaps 1 maneuvering speed is shown.
When manual airspeed bug setting is no longer needed:
MFD INFO switch Push
N1/SPD REF SET display is shown.
SELECTOR inner knobRotate to AUTO and push
Verify that the MAN SPD airspeed indication is removed from PFD.

737 Flight Crew Operations Manual
To set reference airspeed bugs for approach:
Note: SELECTOR refers to either the CAPT or FO SELECTOR knob.
SELECTOR outer knob
MFD INFO switch
SELECTOR inner knob
Default weight of 32,000 kgs is shown.
SELECTOR inner knob
SELECTOR inner knob
Flaps up maneuver speed bug is shown.
SELECTOR inner knob
Default speed of 80 knots is shown.
SELECTOR inner knob
SELECTOR inner knob
The green VREF bug and white VREF +20 bug are shown when a speed greater than 80 knots is set.
SELECTOR inner knob
Digital readout is removed from PFD and MAN SPD is shown.
To set the spare bug, if desired:
SELECTOR inner knob

SELECTOR inner knob......Rotate to the spare

Default speed of 60 knots is shown.

bug data field and push

SELECTOR inner knob	Rotate to set spare
	bug speed and push
SELECTOR inner knob	Rotate to SET
	and push
Digital readout is removed from PFD	and MAN SPD is shown.

Supplementary Procedures Flight Management, Navigation

Chapter SP Section 11

Tests

Transponder Test

This procedure requires the IRSs to be aligned and in NAV mode.

Check FAIL light illuminates.

Check all code segments illuminate. Verify no error codes exist.

Verify aural indicates TCAS system test passed.

Note: TCAS TEST is displayed on the navigation display during the test followed by TCAS TEST PASSED or TCAS TEST FAILED. This test remains in view for 8 seconds then blanks. An aural annunciation sounds at the completion of the test.

1B392 - 1J022, 1L075 - 1L078

AURAL ALERTS	DEFINITION
"TCAS TEST" "TCAS TEST FAIL"	Test failed. Maintenance required.
"TCAS TEST" "TCAS TEST OK"	Test complete. System operable.

1J103 - 1K003

AURAL ALERTS	DEFINITION
"TCAS SYSTEM TEST FAIL"	Test failed. Maintenance required.
"TCAS SYSTEM TEST OK"	Test complete. System operable.

Weather Radar Test

Verify test pattern consisting of the following colors appears:

- Green
- Amber
- Red
- Magenta.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

If testing of the PWS system is desired:
Weather Radar ModeDeselect TEST
WXR (EFIS control panel)ON
Weather Radar ModeTEST
Verify the amber WINDSHEAR caution, red WINDSHEAR warning and PWS FAIL annunciations display momentarily and then extinguish.
1B392 - 1J022, 1L075 - 1L078
After test is complete, check for any weather related fault messages on
the navigation display. Test is complete when either of the following
occurs:

- TEST COMPLETE message is shown on the navigation displays;
- 50 seconds have elapsed since test was initiated.

Note: It can take up to 20 seconds after test is complete for any weather related fault messages to show.

Note: In the short time the weather radar is on and not in the TEST position, it will radiate.

IRS

Align Light(s) Flashing

Do not move IRS Mode selector to OFF except where called for in procedure.

POS INIT page Select
Set IRS position Enter present position
Enter present position using the most accurate latitude and longitude available. If the present position is being entered via the CDU and a position is already displayed on the SET IRS POS line, enter new position over displayed position.
If ALIGN light continues to flash:
Set IRS position Enter present position

Re-enter same present position.

Supplementary Procedures -Flight Management, Navigation

If ALIGN light continues to flash after re-entry:
IRSOFF
Rotate IRS Mode Selector to OFF and verify ALIGN light extinguished.
Note: Light must be extinguished before continuing with procedure (approximately 30 seconds.)
IRSNAV
Rotate IRS Mode Selector to NAV and verify ALIGN light illuminated.
Set IRS position Enter present position
Enter present position. If ALIGN light flashes, re-enter same present position over displayed position.
Note: Approximately five to seventeen minutes are required for alignment.
If ALIGN light continues to flash, maintenance action is required.
Fast Realignment
Prior to commencing procedure the airplane must be parked and not moved until procedure is complete and ALIGN lights extinguish.
IRS mode selectors
CDUSet Enter present position on SET IRS POS line of the POS INIT page.
IRS mode selectorNAV Observe ALIGN light extinguished within 30 seconds.
Note: If time permits it is preferable to perform a full alignment of the IRS. A more precise alignment will result.
Note: If the mode selector is accidentally switched to OFF or ATT, position mode selector to OFF, wait for ALIGN light(s) to extinguish, then perform full alignment procedure.

Inadvertent Selection of Attitude Mode (while on the ground)

Inadvertent selection of the attitude mode may be due to physically overpowering the switch during turn—on or may be the result of a faulty switch which prevents the flight crew from accurately determining which mode is selected.

If ATT position is selected inadvertently when switching to NAV

IRS mode selectorsOFF

Observe ALIGN lights extinguish.

After ALIGN lights extinguish, initiate a full alignment.

IRS Entries

Present Position Entry

ALIGN lights must be illuminated (steady or flashing).

IRS display selectorPPOS

LatitudeEnter

Key—in latitude in the data display, beginning with N or S, then press the ENT Key (the Cue Lights extinguish).

Longitude Enter

Key—in longitude in the data display, beginning with E or W, then press the ENT key (the cue lights extinguish). Observe that proper latitude and longitude are displayed and that the ALIGN light is not flashing.

Heading – Enter through CDU

FMC/CDU POS INIT page Select

Enter the correct heading into the CDU scratch pad then press line select key 5R. Verify entered heading appears on line 5R. Select HDG on the IRS display selector and verify that the entered heading is displayed on the navigation displays.

Supplementary Procedures - Flight Management, Navigation

Heading – Enter through ISDU
IRS display selector
Lateral Navigation (LNAV)
Proceeding Direct to a Waypoint (overwrite)
On page 1/XX, line 1L, enter desired waypoint over the presently active waypoint. Correct any ROUTE DISCONTINUITY if entered waypoint was not in original flight plan.
Intercepting a Leg (Course) to a Waypoint
On page 1/XX, line 1L, enter desired waypoint over presently active waypoint. Observe INTC CRS prompt displayed in line 6R. Enter the desired intercept course in the INTC CRS line. Observe the desired course is displayed on line 6R. The displayed course on line 1L may vary by several degrees due to magnetic variation. Correct any ROUTE DISCONTINUITY if the entered waypoint was not in original flight plan.
EXEC keyPush
Observe MOD RTE LEGS page changes to ACT. LNAV may disengage after execution of an intercept leg to a waypoint. If LNAV disengages, turn to a heading to satisfy LNAV capture criteria, as described in Chapter 11, and then engage LNAV. Active Route Modification
ACT RTE x LEGS or ACT RTE x pageSelect Line select existing waypoints in the desired sequence.

Key-in any new waypoints in the scratch pad and line select into the flight plan. Correct any ROUTE DISCONTINUITY.
EXEC keyPush
Observe MOD RTE x LEGS or MOD RTE x page changes to ACT.
Inactive Route Modification
RTE x LEGS or RTE x page Select
Line select existing waypoints in the desired sequence.
Key-in any new waypoints in the scratch pad and line select into the flight plan. Correct any ROUTE DISCONTINUITY.
Note: The flight number should not be changed in the inactive route as it will change the flight number in the active route.
Route Copy
ACT RTE x LEGS or ACT RTE x page Select
RTE COPY line select key Push
Inactive Route Activation
RTE x LEGS or RTE x page Select
ACTIVATE line select keyPush
Correct any ROUTE DISCONTINUITY.
EXEC keyPush
Route Removal
ACT RTE xpage Select
ORIGINEnter
If EXEC key illuminates
EXEC keyPush
Linking a Route Discontinuity
Correct the ROUTE DISCONTINUITY by entering or deleting waypoints in a sequence that provides a continuous flight–plan path.
EXEC keyPush
Observe MOD RTE or MOD RTE LEGS page changes to ACT.
Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

Determining ETA and Distance to Cross Radial (Bearing) or Distance from a Fix

FIX INFO page Select Enter the identifier of the reference waypoint (normally an off–route waypoint) onto the FIX line. Enter the desired radial or distance from the FIX on a RAD/DIS line, or line select the ABM prompt if the desired radial from the FIX is perpendicular to the present route/course. Check ETA and DTG, as desired. Note: If ETA and DTG are not displayed, the fix radial and/or distance do not intersect the route. **Changing Destination** Enter the new destination over the original DEST. Enter desired routing to the new destination using the RTE, RTE LEGS, and ARRIVALS pages, as appropriate. Correct any ROUTE DISCONTINUITY. EXEC keyPush Observe the MOD RTE or MOD RTE LEGS page changes to ACT.

Entering Holding Fix Into Route

on the CLB page.

HOLD keyPush

Note: If destination is changed during climb, performance predictions may be blanked if the new flight plan is incompatible with the entered cruise altitude. Correct by entering a lower CRZ ALT

(If RTE HOLD page is displayed, observe NEXT HOLD prompt. Line select 6L until (RTE LEGS) HOLD AT page is displayed.)

Observe HOLD AT box prompts and PPOS prompt (if in flight) are displayed. Enter the holding fix in line 6L, or line select PPOS.

If the holding fix is a waypoint in the active route, or PPOS was selected, observe MOD RTE HOLD page displayed. If the holding fix is a waypoint not in the active route, observe message HOLD AT XXXXX displayed in the scratch pad. Enter the holding fix into the route by line selecting in the desired waypoint sequence. Observe the MOD RTE HOLD page displayed. If displayed holding details are incorrect or inadequate, enter correct information on appropriate line(s).

Exiting Holding Pattern

Observe EXIT ARMED is highlighted in reverse video and LNAV flight returns to the holding fix and resumes the active route.

Note: The holding pattern may be exited by performing a DIRECT TO modification if desired. In this case, the flight path may not return to the holding fix before proceeding to the selected waypoint.

Note: A late sequencing of the hold exit waypoint may occur if multiple route modifications are performed just prior to exiting the hold. LNAV guidance may be temporarily interrupted while sequencing the hold exit waypoint.

Along Track Displacement

RTE LEGS page Select

Line select the reference waypoint to the scratch pad. Add a "/" and the + or – distance desired. (EX: SEA/15 for a point 15 miles downtrack from SEA)

Line select the reference waypoint. (The FMC will automatically position the created waypoint to appropriate position.)

Supplementary Procedures - Flight Management, Navigation

EXEC keyPush
Observe the MOD RTE LEGS page change to ACT.
Entering Created Waypoints on the Route or Route Legs Pages
Note: Created waypoints are stored in the temporary navigation data base for one flight only.
RTE or RTE LEGS page Selec
Using any of the following methods, key into the scratch pad the parameters which define the new created waypoint (place identifiers must already be stored in one of the FMC data bases):
 Place bearing/distance (for example, SEA250/40); Place bearing/place bearing (for example, SEA180/ELN270); Along-track displacement (for example, SEA/-10);
• Latitude and longitude (for example, N4731.8W12218.3).
Enter into the route by line selecting to the appropriate waypoint sequence.
Repeat the above steps to define additional created waypoints as desired. Correct any ROUTE DISCONTINUITY.
EXEC keyPusł
Observe the MOD RTE or MOD RTE LEGS page changes to ACT (for an inactive route, activate and execute on the RTE or RTE LEGS page).
Entering Created Waypoints on the Nav Data Pages
Note: Created waypoints entered on the SUPP NAV DATA pages (permitted on the ground only) are stored in the supplemental navigation data base for an indefinite time period; those entered on REF NAV DATA pages are stored in the temporary navigation data base for one flight only.
INIT/REF keyPush
Observe INDEX prompt displayed.
INIT/REF INDEX page Selec
Observe the NAV DATA prompt displayed. To access the SUPP NAV DATA page, enter SUPP into the scratch pad.

NAV DATA page Select
(If the SUPP NAV DATA page is selected, observe the EFF FRM date line displayed. If an effective date had not been previously entered, box prompts are displayed. The effective date must be entered before proceeding. If required, enter the current or appropriate date on EFF FRM line and execute.)
DataEnter
Enter a crew-assigned identifier on either the WPT IDENT, NAVAID IDENT, or AIRPORT IDENT line, as appropriate. Use the navaid category only for stations with DME.
For a WPT IDENT entry, define the waypoint with entries for either latitude and longitude, or with entries for REF IDENT and RADIAL/DIST (REF IDENT identifier must already be stored in one of the FMC data bases).
For a NAVAID IDENT or AIRPORT IDENT entry, enter appropriate data.
EXEC key illuminates when data has been entered into all box prompts.
EXEC keyPush
Repeat above steps to define additional created waypoints as desired. To enter a new identifier in the same category, simply overwrite the previous identifier.
Note: To enter a created waypoint into the flight plan, key the identifier into the scratch pad and follow the route modification procedure.
Deleting Created Waypoints on the Nav Data Pages
INIT/REF keyPush Observe the INDEX prompt displayed.
INIT/REF INDEX page Select
Observe the NAV DATA prompt displayed. To access the SUPP NAV DATA page, key SUPP into the scratch pad.
NAV DATA page Select
Enter the identifier on either the WPT IDENT, NAVAID IDENT, or AIRPORT IDENT line, as appropriate.

Data Delete
Push the DEL key and then line select the identifier. Observe the EXEC key illuminates.
EXEC keyPush
Data previously entered is deleted. Observe NAV DATA page displayed with prompts.
Entering a Crossing Radial (Bearing) or Distance from a Fix as a Route Waypoint
FIX INFO page Select
Enter identifier of the reference waypoint (normally an off–route waypoint) onto the FIX line. Enter the desired radial or distance from the FIX on a RAD/DIS line, or line select the ABM prompt if the desired radial or distance from the FIX is perpendicular to the present route/course.
Line select the desired intersection (lines 2L–5L) into the scratch pad and observe the new created waypoint displayed as FIX/Radial/Distance.
RTE LEGS page Select
Line select the new created waypoint, displayed in the scratch pad, to the desired waypoint sequence.
Repeat the above steps to define additional created waypoints as desired. Correct any ROUTE DISCONTINUITY.
EXEC keyPush
Observe the MOD RTE LEGS page changes to ACT.
Note: These created waypoints are stored in the temporary navigation data base for one flight only.
Entering a Lateral Offset
RTE page
LATERAL OFFSET page

e i
OFFSET DIST Enter
Enter desired offset distance using format Lxx or Rxx for left or right offset up to 99 nm. Observe dash prompts for START WAYPOINT and END WAYPOINT.
START/END WAYPOINTEnter
If no start/end waypoint is entered, offset will begin/end at first/last valid offset leg.
Change SID or Runway
This entire procedure must be accomplished when a SID is used and the runway or SID is changed. This will prevent the possibility of incorrect routing or inadequate obstacle clearance.
DEPARTURES page
RUNWAYReselect
SIDReselect
TRANSITION (if required)Reselect
RTE LEGS page Select
WAYPOINT SEQUENCE and ALTITUDES Check
Modify as necessary to agree with clearance.
EXEC keyPush
Change STAR, PROF DES, or APP
The associated airport must be entered as route origin or destination.
ARRIVAL page Select
STAR or PROFILE DESCENT (if required) Select
TRANSITION (if required) Select
APPROACH. Select
APPROACH TRANSITION (if required) Select
RTE LEGS page. Select
WAYPOINT SEQUENCECHECK
Modify as necessary to agree with clearance.
EXEC keyPush
Boeing Proprietary Converight © Boeing. May be subject to export restrictions under FAR. See title page for details

Other Operations

FMC Navigation Check

Do the following as needed to ensure navigation accuracy if any alerting message listed below is shown in the scratch pad or course deviation is suspected:

EXEC keyPush

- GPS-L INVALID and GPS-R INVALID (both)
- IRS-L DRIFT
- IRS-R DRIFT
- UNABLE REQD NAV PERF RNP
- VERIFY POS: FMC-FMC
- VERIFY POS: FMC-GPS
- VERIFY POS: FMC-RADIO
- VERIFY POS: IRS-FMC
- VERIFY POS: IRS-IRS
- VERIFY POS: IRS-RADIO

Actual position......Determine and compare with FMC position Determine actual airplane position using raw data from VHF navigation or ADF radios.

If radio navaids are unavailable:

Actual position Confirm with ATC radar or visual reference points.

Navigate using most accurate information available (continue to monitor FMC position using VOR/ADF raw data displays on non–flying pilot's navigation display).

CAUTION: Navigating in LNAV mode with an unreliable FMC position may result in significant navigation errors.

Navigate by conventional VOR/ADF procedures, radar vectors from ATC, dead reckoning from last known position, and/or use of visual references.

Inhibiting VOR/DME Use for Position Updating

Note: This procedure inhibits the use of VOR/DME information for FMC position updating. Use DEL key to remove a VOR/DME from inhibit status.

PROG page Select
Observe NAV STATUS prompt displayed.

NAV STATUS page Select

NAV OPTIONS page Select (NEXT/PREV page)

Observe dash prompts for VOR/DME INHIBIT. Enter desired VOR/DME identifier (a previous entry may be overwritten but will no longer be inhibited).

Inhibiting GPS Updating

Note: Inhibit GPS updates for approach operations that are not based on WGS-84, unless other appropriate procedures are used.

Supplementary Procedures -Supplementary Procedures - Flight Management, Navigation

707 Ingite erew Operations Manual
NAV STATUS page Select
NAV OPTIONS page Select (NEXT/PREV page)
GPS UPDATE OFF
Vertical Navigation (VNAV)
Temporary Level Off during Climb or Descent (Not at FMC Cruise Altitude)
MCP altitude selector
MCP altitude selectorSet desired altitude
ALT INTV switchPush Climb or descent is initiated. Mode annunciations appear as initial climb or descent.
Intervention of FMC Altitude Constraints during VNAV Climb
MCP altitude selector
ALT INTV switch
Intervention of FMC Cruise Altitude during VNAV Cruise
MCP altitude selectorSet
ALT INTV switch

If the airplane is more than 50 nm from T/D, if a lower altitude is selected, a CRZ descent will be started if the selected altitude is at or above any FMC altitude constraint.

If the airplane is more than 50 nm from T/D, if a lower altitude is selected, an early descent will be started if the selected altitude is below any FMC altitude constraint.

If the airplane is 50 nm or less from T/D, if a lower altitude is selected, an early descent will be started.

Intervention of FMC Altitude Constraints during VNAV Descent

Descent
MCP altitude selector
ALT INTV switch
Intervention of FMC Airspeed Constraints during VNAV
SPD INTV switch
MCP speed selector
SPD INTV switch
Entering Waypoint Speed and Altitude Restriction (On Climb or Descent Legs Only)

altitude only, into scratch pad.

An altitude followed by A or B signifies a requirement to be "at or above" or "at or below" that altitude at the waypoint (for example, key–in 220A or 240B).
Line select to desired waypoint line.
EXEC keyPush
Observe MOD RTE LEGS page changes to ACT.
Note: This changes any prior speed and altitude restriction at this waypoint.
Deleting Waypoint Speed and Altitude Restriction
RTE LEGS pageSelect
Push DEL key to enter DELETE in scratch pad. Line select to appropriate waypoint line.
EXEC keyPush
Observe MOD RTE LEGS page changes to ACT and restriction is deleted and replaced with an FMC predicted value (small size characters).
Changing Speed and/or Altitude Restriction during Climb or Descent
CLB/DES pageSelect
Push DEL key to enter DELETE in the scratch pad, or key-in the desired speed and altitude in the scratch pad. Line select to the SPD REST line.
EXEC keyPush
Observe the MOD CLB or the MOD DES page changes to ACT and the restriction is changed or deleted.
Changing Climb/Cruise/Descent Speed Schedule
CLB/CRZ/DES pageSelect
Select the prompt for the desired climb/cruise/descent schedule, or key—in the desired speed in the scratch pad and line select to the TGT SPD line.

737 Flight Crew Operations Manual
EXEC keyPush
Observe the MOD CLB, MOD CRZ, or MOD DES page changes to ACT and new speed schedule is specified.
Early Descent
MCP altitude selector
DES page
EXEC key
Observe MOD DES page changes to ACT. Observe descent is initiated (if VNAV engaged).
Note: For a PATH DES, this will result in a 1000 FPM rate of descent until the planned path is intercepted. For a SPD DES, this will result in an idle thrust normal rate of descent.
Step Climb or Descent from Cruise
MCP altitude selector
FLT ALT indicator
CRZ page
If the desired climb/descent speed is different from the displayed cruise speed, manually enter the desired TGT SPD, or use access prompts to select desired CLB/DES page.
EXEC keyPush
Observe the MOD CRZ CLB/MOD CRZ DES page (or other selected MOD CLB/MOD DES page) changes to ACT. Observe climb/descent is initiated at the TGT SPD (if VNAV engaged).

Performance and Progress Functions

Determining ETA and Fuel Remaining for New Destination
RTE pageSelect
Enter the new destination over the original DEST. Enter correct routing to the new destination using RTE, RTE LEGS, and ARRIVALS pages, as appropriate. Correct any ROUTE DISCONTINUITY.
PROGRESS page
RTE page
Estimated Wind Entries for Cruise Waypoints
RTE LEGS page
RTE DATA page
Step Climb Evaluation
CRZ page
Step climb savings
If step climb fuel savings are significant, use the appropriate climb procedure to initiate climb to the higher altitude when NOW is

displayed on STEP POINT line.

Note: Step climb evaluations do not consider buffet margin limits. If the altitude entered for the step climb evaluation is higher than the maximum altitude for flight with an adequate buffet margin, the message "MAX ALT FLXXX" will be displayed in the scratch pad. Ensure the new cruise altitude entered for the climb is at or below the MAX ALT displayed in the message in order to maintain a safe buffet margin.

Entering Descent Forecasts

DES page
Observe FORECAST prompt displayed.
DES FORECASTS page
Verify the TRANS LVL and revise if required. Enter average ISA DEV forecast for descent and destination QNH. Enter forecast descent WINDs (for up to three different altitudes).
EXEC keyPush
Observe MOD DES FORECASTS page changes to ACT.

Engine Out

Engine out climb and cruise pages provide advisory information for engine out operation. Refer to section 11.41 and 11.42 for a complete description of ENG OUT CLB and ENG OUT CRZ pages.

Required Time of Arrival (RTA)

Note: An active FMC flight plan complete with all performance data must exist before the required time of arrival (RTA) mode can be used

Entering an RTA Waypoint and Time

Observe MOD RTA PROGRESS page displayed with pertinent data for complying with entered RTA. Observe EXEC key illuminated.

Entering Speed Restrictions for RTA Navigation

PERF LIMITS page Select

Enter minimum or maximum speed restriction for RTA navigation in lines 2, 3, or 4 depending on phase of flight. Observe RTA parameters change to reflect new limits (RTA PROGRESS page) and EXEC key illuminated.

EXEC keyPush

Observe MOD PERF LIMITS page change to ACT PERF LIMITS page.

Note: Entered restrictions on line 2, 3, and 4 also restrict other navigation modes such as ECON.

Entering New Time Error Tolerances for RTA Navigation
PERF LIMITS page
EXEC keyPush
Observe ACT PERF LIMITS page displayed.
Additional CDU Functions
Navigation Display Plan Mode (Center Step Operation)
EFIS Control Panel Mode SelectorPLAN
RTE LEGS page Select
EFIS Control Panel Range Selector As required
MAP CTR STEP key
EFIS Control Panel Mode Selector As required
Enter Position Shift on Runway
1K002, 1K003
TAKEOFF REF page Select
RWY REMAIN distance
If position shift must be removed
RTE page
RWY Enter
Reenter runway on RTE page. Check and reenter other performance data as required.

Supplementary Procedures Fuel

Chapter SP Section 12

SP.12.1

Fuel Balancing

If an engine fuel leak is suspected:

Accomplish the Fuel Leak Engine checklist.

If the fuel IMBAL alert shows:

Accomplish the IMBAL checklist.

Maintain main tank No. 1 and No. 2 fuel balance within limitations.

Note: Fuel pump pressure should be supplied to the engines at all times. At high altitude, without fuel pump pressure, thrust deterioration or engine flameout may occur.

If the center tank contains fuel:

Center tank fuel pump switches
Crossfeed selectorOpen
Fuel pump switches (low tank)
Fuel pump switches (main tank)ON
Center tank fuel pump switchesON
Crossfeed selectorClose
If the center tank contains no fuel:
Crossfeed selectorOpen
Fuel pump switches (low tank)
Fuel pump switchesON
Crossfeed selector

Refueling

Fuel Load Distribution

Main tanks No. 1 and No. 2 should normally be serviced equally until full. Additional fuel is loaded into the center tank until the desired fuel load is reached.

Note: Main tanks No. 1 and No. 2 must be scheduled to be full if the center tank contains more than 453 kgs of fuel. With less than 453 kgs of center tank fuel, partial main tank fuel may be loaded provided the effects of balance have been considered.

Fuel Pressure

Apply from a truck or fuel pit. A nozzle pressure of 50 psi provides approximately 1136 liters per minute.

Normal Refueling

| 1B392, 1J022, 1J023, 1L075 - 1L078

When a full fuel load is required, the fuel shutoff system closes the fueling valves automatically when the tanks are full. When a partial fuel load is required, the fuel shutoff system closes the fueling valves automatically when the quantity preselected on the fuel quantity selector (located on the test gauges and fueling panel) is reached.

1C845, 1J103 - 1K002

When a full fuel load is required, the fuel shutoff system closes the fueling valves automatically when the tanks are full. When a partial fuel load is required, the fuel quantity indicators are monitored and the fueling valves are closed by manually positioning the fueling valve switches to CLOSED when the desired fuel quantity is aboard the airplane.

Refueling with Battery Only

When the APU is inoperative and external power is not available, refueling can be accomplished as follows:

Battery switch ON

Note: The refueling system will operate normally. Operation is limited only by battery life.

Refueling with No AC or DC Power Source Available

When it becomes necessary to refuel with the APU inoperative, the aircraft battery depleted, and no external power source available, refueling can still be accomplished:

Fueling hose nozzle Attached to the refueling receptacle

Fueling valves Open for the tanks to be refueled

Note: Main tanks No. 1 and No. 2, and the center tank refueling valves each have a red override button that must be pressed and held while fuel is being pumped into the tank. Releasing the override button allows the spring in the valve to close the valve.

Caution must be observed not to overfill a tank, since there is no automatic fuel shutoff during manual operation. When the desired amount of fuel has been pumped into the tanks, the refueling valves for the respective tanks can be released.

Ground Transfer of Fuel

Fuel can be transferred from one tank to another tank using the fuel pumps, fueling valve, defueling valve, and crossfeed valve. AC power must be available.

Note: Before transferring fuel, ensure that the associated FUEL PUMP LOW PRESSURE lights are operating.

CAUTION: Transferring fuel with passengers onboard is prohibited, unless the fuel quantity in the tank from which fuel is being taken is maintained at or above 2000 pounds/900 kilograms.

To transfer fuel from the main tanks to the center tank:

Main tank fuel pump switches	ON
Crossfeed selector	Open
Manual defueling valve	Open
Center tank fueling valve switch	OPEN

Fuel transferMonitor
The center tank fuel quantity indicator shows an increase in fuel. The main tank indicators show a decrease in fuel.
When a FUEL PUMP LOW PRESSURE light illuminates, turn OFF the associated fuel pump.
When the required amount of fuel has been transferred:
Center tank fueling valve switch
Manual defueling valve
Crossfeed selector
Main tank fuel pump switchesOFF
Main Tanks
Refueling panel and defuel panel access doors
Fuel Crossfeed Valve Check
Crossfeed selectorOpen
Verify crossfeed VALVE OPEN light illuminates bright and then dim.
Crossfeed selector
Verify crossfeed VALVE OPEN light illuminates bright and then extinguishes.

Supplementary Procedures Warning Systems

Chapter SP Section 15

Ground Proximity Warning System (GPWS) and Runway Awareness and Advisory System (RAAS) Test 1K002

Verify IRS alignment is complete.

Verify that the guards are closed for all GROUND PROXIMITY INHIBIT switches.

- BELOW G/S and GPWS INOP lights illuminate
- TERR FAIL and TERR TEST annunciations show on navigation displays
- PULL UP and WINDSHEAR alerts illuminate
- "GLIDESLOPE", "PULL UP" and "WINDSHEAR" aurals sound
- "TERRAIN TERRAIN PULLUP" aural sounds
- terrain display test pattern shows on navigation displays
- TERRAIN caution message shows on navigation displays
- "OBSTACLE OBSTACLE PULLUP" aural sounds

During the test the RUNWAY INOP light illuminates and one of the following aurals will announce the status of the RAAS system:

- RUNWAY AWARENESS OK FEET
- RUNWAY AWARENESS NOT AVAILABLE
- RUNWAY AWARENESS INOP
- "AIRSPEED LOW" aural sounds

Note: If the test switch is held until the aurals begin, additional GPWS aural warnings are tested.

Ground Proximity Warning System (GPWS), Overrun Warning (ORW) System, and Runway Awareness and Advisory System (RAAS) Test

Verify IRS alignment is complete.

Verify that the guards are closed for all GROUND PROXIMITY INHIBIT switches.

Ground proximity SYS TEST switch Push momentarily

Verify the following:

- BELOW G/S and GPWS INOP lights illuminate
- TERR FAIL and TERR TEST annunciations show on navigation displays
- PULL UP and WINDSHEAR alerts illuminate
- "GLIDESLOPE", "PULL UP" and "WINDSHEAR" aurals sound
- "TERRAIN TERRAIN PULLUP" aural sounds
- terrain display test pattern shows on navigation displays
- TERRAIN caution message shows on navigation displays
- "OBSTACLE OBSTACLE PULLUP" aural sounds

During the test the RUNWAY INOP light illuminates and one of the following aurals will announce the status of the ORW and RAAS system:

- RUNWAY AWARENESS OK FEET
- RUNWAY AWARENESS NOT AVAILABLE
- RUNWAY AWARENESS INOP
- "AIRSPEED LOW" aural sounds

Note: If the test switch is held until the aurals begin, additional GPWS aural warnings are tested.

Runway Awareness and Advisory System (RAAS) Inhibit Operation

1K002

If one or more of the following exist:

- The airport or runway is not in the GPWS database
- A NOTAM applies to the intended runway
- Airline policy prohibits the use of RAAS for an airport or runway.

RUNWAY INHIBIT switchINHIBIT

Note: If the RUNWAY INHIBIT switch is in the INHIBIT position, and the airspeed is 250 knots or greater for 60 seconds or more, the RUNWAY INOP light illuminates. The RUNWAY INOP light extinguishes when airspeed is below 250 knots.

After takeoff, if RAAS use is allowed at the destination:

RUNWAY INHIBIT switchNORM

Overrun Warning (ORW) System and Runway Awareness and Advisory System (RAAS) Inhibit Operation

Before departure if one or more of the following exist:

- The airport or runway is not in the GPWS database
- A NOTAM applies to the intended runway
- Airline policy prohibits the use of RAAS for an airport or runway.

RUNWAY INHIBIT switch......INHIBIT

Note: If the RUNWAY INHIBIT switch is in the INHIBIT position, and the airspeed is 250 knots or greater for 60 seconds or more, the RUNWAY INOP light illuminates. The RUNWAY INOP light extinguishes when airspeed is below 250 knots.

After takeoff:

RUNWAY INHIBIT switch......NORM

Before approach if one or more of the following exist or are planned:

- The airport is not in the GPWS database
- A NOTAM applies to the intended runway
- Airline policy prohibits the use of ORW for an airport or runway.
- Conducting Land and Hold Short Operations (LAHSO).
- Conducting Touch and Go landings
- Landing altitude is above 10,000 feet pressure altitude
- Landing OAT on the ground is below -40°C or greater than +50°C
- Gross weight is greater than maximum landing weight.

RUNWAY INHIBIT switch......INHIBIT

Note: If the RUNWAY INHIBIT switch is in the INHIBIT position, and the airspeed is 250 knots or greater for 60 seconds or more, the RUNWAY INOP light illuminates. The RUNWAY INOP light extinguishes when airspeed is below 250 knots.

Intentionally Blank

Supplementary Procedures Adverse Weather

Chapter SP
Section 16

Introduction

Airplane operation in adverse weather conditions may require additional considerations due to the effects of extreme temperatures, precipitation, turbulence and windshear. Procedures in this section supplement normal procedures and should be observed when applicable.

Takeoff - Wet or Contaminated Runway Conditions

The following information applies to takeoffs on wet or contaminated runways:

- For wet runways, reduced thrust (fixed derate, assumed temperature method, or both) is allowed provided suitable takeoff performance accountability is made for the increased stopping distance on a wet surface
- For runways contaminated by slush, snow, standing water, or ice, reduced thrust (fixed derate) is allowed provided takeoff performance accounts for the runway surface condition. Reduced thrust using assumed temperature method, whether alone or in combination with a fixed derate, is not allowed
- V1 may be reduced to minimum V1 to provide increased stopping margin provided the field length required for a continued takeoff from the minimum V1 and obstacle clearance meet the regulatory requirements. The determination of such minimum V1 may require a real-time performance calculation tool or other performance information supplied by dispatch
- Takeoffs are not recommended when slush, wet snow, or standing water depth is more than 1/2 inch (13 mm) or dry snow depth is more than 4 inches (102 mm).

Cold Weather Operations

Considerations associated with cold weather operation are primarily concerned with low temperatures and with ice, snow, slush and standing water on the airplane, ramps, taxiways, and runways.

Icing conditions exist when OAT (on the ground) or TAT (in flight) is 10°C or below and any of the following exist:

- visible moisture (clouds, fog with visibility of one statute mile (1600m) or less, rain, snow, sleet, ice crystals, and so on) is present, or
- ice, snow, slush or standing water is present on the ramps, taxiways, or runways.

CAUTION: Do not use engine or wing anti-ice when OAT (on the ground) or TAT (in flight) is above 10°C.

Exterior Inspection

Although removal of surface snow, ice and frost is normally a maintenance function, during preflight procedures, the captain or first officer should carefully inspect areas where surface snow, ice or frost could change or affect normal system operations.

Do the normal Exterior Inspection with the following additional steps:

Takeoff with light coatings of frost, up to 1/8 inch (3 mm) in thickness, on lower wing surfaces due to cold fuel is allowable; however, all leading edge devices, all control surfaces, tab surfaces, upper wing surfaces, winglet surfaces and control surface balance panel cavities must be free of snow, ice and frost.

Thin hoarfrost is acceptable on the upper surface of the fuselage provided all vents and ports are clear. Thin hoarfrost is a uniform white deposit of fine crystalline texture, which usually occurs on exposed surfaces on a cold and cloudless night, and which is thin enough to distinguish surface features underneath, such as paint lines, markings or lettering.

Verify that all pitot probes and static ports free of snow and ice. Water rundown after snow removal may freeze immediately forward of static ports and cause an ice buildup which disturbs airflow over the static ports resulting in erroneous static readings even when static ports are clear.

Air conditioning inlets and exits
Verify that the air inlets and exits, including the outflow valve, are free of snow and ice.
If the APU is operating, verify that the outflow valve is fully open.
Engine inlets
Verify that the fan is free to rotate.
Snow or ice that accumulates on the fan spinner or fan blades during extended shutdown periods must be removed by maintenance or other means before engine start.
Snow or ice that accumulates on the fan spinner or fan blades as a result of operation in icing conditions, such as during approach or taxi in, is allowed if the fan is free to rotate and the snow or ice is removed using the ice shedding procedure during taxi out and before setting takeoff thrust.
Fuel tank vents
Verify all traces of ice and frost are removed.
Landing gear doors
Landing gear doors should be free of snow and ice.
APU air inlets
The APU inlet door and cooling air inlet must be free of snow and ice before APU start.
Preflight Procedure - First Officer
Do the following step after completing the normal Preflight Procedure - First Officer:
PROBE HEAT switchesON Verify that all probe heat lights are extinguished.

Engine Start Procedure

Do the normal Engine Start Procedure with the following modifications:

- If the engine has been cold soaked for one or more hours at ambient temperatures below -40°C, do not start or motor the engine.

 Maintenance personnel should do appropriate procedures for adverse weather heating of the Hydro-Mechanical Unit.
- If the engine has been cold soaked for three or more hours at ambient temperatures below -40°C, do not start or motor the engine.

 Maintenance personnel should do appropriate procedures for adverse weather starter servicing.
- Several minutes may be needed for oil pressure to reach the normal operating pressure. During this period, oil pressure may go above the normal range and the OIL FILTER BYPASS light may illuminate. Operate the engine at idle thrust until oil pressure returns to the normal range.
- If the oil pressure remains above the normal range after the oil temperature has stabilized within limits, shut down the engine.
- Display units may require additional warm-up time before displayed engine indications accurately show changing values. Display units may appear less bright than normal.

Engine Anti-ice Operation - On the Ground

Engine anti-ice must be selected ON immediately after both engines are started and remain on during all ground operations when icing conditions exist or are anticipated.

WARNING: Do not rely on airframe visual icing cues before activating engine anti-ice. Use the temperature and visible moisture criteria because late activation of engine anti-ice may allow excessive ingestion of ice and result in engine damage or failure.

CAUTION: Do not use engine anti-ice when OAT is above 10°C.

When engine anti-ice is needed:

extinguished.

ENGINE START switches	CONT	F/O
ENGINE ANTI-ICE switches	ON	F/O
Verify that the COWL ANTI-ICE lights are	e	

Note: If the COWL VALVE lights remain illuminated amber with engines at IDLE, do the following:

- verify APU BLEED air switch is in the OFF position,
- verify ISOLATION VALVE switch is in the AUTO position,
- check that the area around the airplane is clear, and
- increase thrust slightly (up to a maximum of 30% N1).

When engine anti-ice is no longer needed:

ENGINE ANTI-ICE switches OFF F/O

Wing Anti-ice Operation - On the Ground

Use wing anti-ice during all ground operations between engine start and takeoff when icing conditions exist or are anticipated, unless the airplane is, or will be protected by the application of Type II or Type IV fluid in compliance with an approved ground de-icing program.

WARNING: Do not use wing anti-ice as an alternative for ground de-icing/anti-icing. Close inspection is still needed to ensure that no frost, snow or ice is adhering to the wing, leading edge devices, stabilizer, control surfaces or other critical airplane components at takeoff.

CAUTION: Do not use wing anti-ice when OAT is above 10°C.

When wing anti-ice is needed:

WING ANTI-ICE switchON

F/O

When wing anti-ice is no longer needed:

WING ANTI-ICE switch OFF

F/O

Before Taxi Procedure

Do the normal Before Taxi Procedure with the following modifications:

GENERATOR 1 and 2 switchesON

F/O

Normally the IDG's stabilize within one minute, although due to cold oil, up to five minutes can be needed to produce steady power.

If there is snow or ice accumulation on the wing, consider delaying the flight control check until after de-icing/anti-icing is accomplished.

Flight contro	olsCheck	С
An increatemperat	ase in control forces can be expected at low	
1	The flap position indicator and the leading edge devices annunciator panel should be closely observed for positive movement. If the flaps should stop, flap lever should be placed immediately in the supposition as indicated.	erved the
temperature freezing, tax subjects the	is through ice, snow, slush or standing water in low s or if precipitation is falling with temperatures below out with the flaps up. Taxiing with the flaps extend flaps and flap drives to contamination. Leading edge ceptible to slush accumulations.	ow ded
Call "FLAP	S" as needed.	C
Flap lever	Set flaps, as needed	F/O
Taxi–Out		
CAUTION	Taxi at a reduced speed. Use smaller nose wheel steering wheel and rudder inputs and apply mint thrust smoothly. Differential thrust may be used help maintain airplane momentum during turns all other times, apply thrust evenly. Taxiing on slippery taxiways or runways at excessive speed with high crosswinds may start a skid.	imum l to s. At
CAUTION	: When operating the engines over significant am of standing de-icing or anti-icing fluid, limit thr the minimum required. Excessive ingestion of de or anti-icing fluid can cause the fluid to build up the engine compressor blades resulting in comp	ust to e-icing o on

When engine anti-ice is required and the OAT is 3°C or below, or if increased fan vibration due to fan ice accumulation is present, do an engine run up to minimize ice build-up. Use the following procedure:

stalls and engine surges.

Check that the area behind the airplane is clear.

 \mathbf{C}

Increase thrust to a minimum of 50% N1 then decrease thrust to idle. Repeat as necessary or at intervals no greater than 60 minutes.

Note: Fan blade ice build-up is cumulative. If the fan spinner and fan blades were not deiced prior to taxi out, the time the engines were operating during the taxi in should be included in the 60 minute interval

Note: Engine vibration may indicate above the normal operating range up to the maximum display value during ice shedding, however, this will have no adverse effect on the engine.

Within 5 minutes of or in conjunction with the takeoff

Check that the area behind the airplane is clear.

PF

Run-up to a minimum of 50% N1 for a minimum of 5 seconds.

PF

Confirm stable engine operation prior to setting takeoff thrust.

PF, PM

Note: Engine vibration may indicate above the normal operating range up to the maximum display value during ice shedding, however, this will have no adverse effect on the engine.

De-icing/Anti-icing

Testing of undiluted de-icing/anti-icing fluids has shown that some of the fluid remains on the wing during takeoff rotation and initial climb. The residual fluid causes a temporary decrease in lift and increase in drag, however, the effects are temporary. Use the normal takeoff rotation rate.

CAUTION: Operate the APU during de-icing only if necessary. If the APU is running, ingestion of de-icing fluid causes objectionable fumes and odors to enter the airplane. Ingestion of snow, slush, ice, or de-icing/anti-icing fluid can also cause damage to the APU.

If de-icing/anti-icing is needed:

APU As needed F/O
The APU should be shut down unless APU operation is necessary.

Call "FLAPS UP".

FlapsUP

F/O

 \mathbf{C}

Prevents ice and slush from accumulating in flap cavities during de-icing.

or right erent operations framewith	
Thrust levers	С
Reduces the possibility of injury to personnel at inlet or exhaust areas.	
WARNING: Ensure that the stabilizer trim wheel handle stowed before using electric trim to avoid personal injury.	es are
Stabilizer trimUNITS	C
Set the trim for takeoff.	
Verify that the trim is in the green band.	
Engine BLEED air switchesOFF Reduces the possibility of fumes entering the air conditioning system.	F/O
APU BLEED air switchOFF Reduces the possibility of fumes entering the air conditioning system.	F/O
After de-icing/anti-icing is completed:	
APU As needed	F/O
CAUTION: After de-icing, the use of APU bleed air durint takeoff can cause smoke in the airplane.	ng
APU BLEED air switch As needed	F/O
Wait approximately one minute after de-icing is completed to engine BLEED air switches on to ensure all de-icing fluid hat cleared from the engines:	
Engine BLEED air switchesON	F/O
Flight controls Check, as needed	C
An increase in control forces can be expected at low temperatures.	

Before Takeoff Procedure

Do the normal Before Takeoff Procedure with the following modifications: Call "FLAPS" as needed for takeoff. PF

Flap lever Set takeoff flaps, as needed PM

Extend the flaps to the takeoff setting at this time if they have been held because of slush, or standing water, or icing conditions, or because of exterior de-icing/anti-icing.

Verify that the LE FLAPS EXT green light is illuminated.

Before setting takeoff thrust, verify that the engine oil temperature is at or above 31°C. The table below provides the approximate time needed for a cold soaked engine to reach an oil temperature of 31°C with engines operating at idle thrust.

Ambient Temperature	Approximate Idle Time
0°C	3 minutes
-7°C	4 minutes
-18°C	6 minutes
-32°C	8 minutes
-40°C	9 minutes
-54°C	10 minutes

Takeoff Procedure

Do the normal Takeoff Procedure with the following modification when engine anti-ice is needed and the OAT is 3°C or below:

Within 5 minutes of or in conjunction with the takeoff:

Check that the area behind the airplane is clear.

Run-up to a minimum of 50% N1 for a minimum of 5 seconds.

Confirm stable engine operation prior to the final advance to takeoff thrust

Note: Engine vibration may indicate above the normal operating range up to the maximum display value during ice shedding, however, this will have no adverse effect on the engine.

Engine Anti-Ice Operation - In Flight

Engine anti-ice must be ON during all flight operations when icing conditions exist or are anticipated, except during climb and cruise when the temperature is below -40°C SAT. Engine anti-ice must be ON before, and during descent in all icing conditions, including temperatures below -40°C SAT.

When operating in areas of possible icing, activate engine anti–ice before entering icing conditions.

WARNING: Do not rely on airframe visual icing cues before activating engine anti-ice. Use the temperature and visible moisture criteria because late activation of engine anti-ice may allow excessive ingestion of ice and result in engine damage or failure.

CAUTION: Do not use engine anti-ice when TAT is above 10°C

When engine anti-ice is needed:

ENGINE START switches	CONT	PM
ENGINE ANTI-ICE switches	ON	PM
Verify that the COWL ANTI-ICE ligestinguished.	hts are	
N ICA GOINT INTITUTE 1: 1.		• .1

Note: If the COWL VALVE lights remain illuminated amber with engines at IDLE, do the following:

- verify APU BLEED air switch is in the OFF position,
- verify ISOLATION VALVE switch is in the AUTO position, and
- increase thrust slightly (up to a minimum of 30% N1).

When engine anti-ice is no longer needed:

ENGINE ANTI-ICE switches	OFF	PM
ENGINE START switches	OFF	PM

Fan Ice Removal

CAUTION: Avoid prolonged operation in moderate to severe icing conditions.

PF

737 Flight Crew Operations Manual

Prolonged operation in moderate to severe icing conditions can lead to fan blade/spinner icing and engine vibration. Severe icing can usually be avoided by a change in altitude and/or airspeed. If flight in moderate to severe icing conditions cannot be avoided, do the following on both engines, one engine at a time:

Note: Engine vibration can reduce to a low level before 80% N1 is reached, however, thrust increase must continue to a minimum of 80% N1 to remove ice from the fan blades.

Note: Engine vibration can indicate full scale before shedding ice, however, this has no adverse effect on the engine.

ENGINE START switches (both)FLT PM

Autothrottle (if engaged) Disengage PF

Thrust Increase PF

Increase thrust to a minimum of 80% N1 for approximately 1 second to ensure the fan blades and spinner are clear of ice.

Thrust Reduce as needed for flight conditions

Wait 15 seconds. This allows engine vibration level to stabilize.

If engine vibration is less than 4.0 units after thrust is reduced, repeat the above steps at approximately 15 minute intervals or sooner as needed.

Autothrottle (if needed) Engage PF

If engine vibration is 4.0 units or greater after thrust is reduced, do the Engine High Vibration non-normal checklist.

Wing Anti-ice Operation - In Flight

Ice accumulation on the flight deck window frames, windshield center post, or on the windshield wiper arm may be used as an indication of structural icing conditions and the need to turn on wing anti-ice.

In flight, the wing anti-ice system may be used as a de-icer or as an anti-icer. The primary method is to use it as a de-icer by allowing ice to accumulate before turning wing anti-ice on. This procedure provides the cleanest airfoil surface, the least possible runback ice formation, and the least thrust and fuel penalty. Normally it is not necessary to shed ice periodically unless extended flight through icing conditions is necessary (holding).

The secondary method is to use wing anti-ice before ice accumulation. Operate the wing anti-ice system as an anti-icer only during extended operations in moderate or severe icing conditions, such as holding.

CAUTION: Do not use wing anti-ice when TAT is above 10°C.

CAUTION: Use of wing anti-ice above approximately FL350 may cause bleed trip off and possible loss of cabin pressure.

Note: Prolonged operation in icing conditions with the leading edge and trailing edge flaps extended is not recommended. Holding in icing conditions with flaps extended is prohibited.

When wing anti-ice is needed:

WING ANTI-ICE switch ON PM

When wing anti-ice is no longer needed:

WING ANTI-ICE switchOFF PM

Cold Temperature Altitude Corrections

Extremely low temperatures create significant altimeter errors and greater potential for reduced terrain clearance. When the temperature is colder than ISA, true altitude will be lower than indicated altitude. Altimeter errors become significantly larger when the surface temperature approaches -30°C or colder, and also become larger with increasing height above the altimeter reference source.

Apply the altitude correction table when needed:

- apply corrections to all published minimum departure, en route and approach altitudes, including missed approach altitudes, according to the table below. Advise ATC of the corrections.
- MDA/DA settings should be set at the corrected minimum altitudes for the approach.
- corrections apply to QNH and QFE operations.

To determine the correction from the Altitude Correction Table:

- subtract the elevation of the altimeter barometric reference setting source (normally the departure or destination airport elevation) from the published minimum altitude to be flown to determine "height above altimeter reference source"
- enter the table with Airport Temperature and with "height above altimeter reference source". Read the correction where these two entries intersect. Add the correction to the published minimum altitude to be flown to determine the corrected indicated altitude to be flown. To correct an altitude above the altitude in the last column, use linear extrapolation (e.g., to correct 6000 feet or 1800 meters, use twice the correction for 3000 feet or 900 meters, respectively.) The corrected altitude must always be greater than the published minimum altitude
- if the corrected indicated altitude to be flown is between 100 foot increments, set the MCP altitude to the closest 100 foot increment above the corrected indicated altitude to be flown
- do not correct altimeter barometric reference settings

An altitude correction due to cold temperature is not needed for the following conditions:

- while under ATC radar vectors
- when maintaining an ATC assigned flight level (FL)
- when the reported airport temperature is above 0° C.

Altitude Correction Table (Heights and Altitudes in Feet)

Airport	Height Above Altimeter Reference Source											
Temp °C	200 feet	300 feet	400 feet	500 feet	600 feet	700 feet	800 feet	900 feet	1000 feet	1500 feet	2000 feet	3000 feet
0°	20	20	30	30	40	40	50	50	60	90	120	170
-10°	20	30	40	50	60	70	80	90	100	150	200	290
-20°	30	50	60	70	90	100	120	130	140	210	280	420
-30°	40	60	80	100	120	140	150	170	190	280	380	570
-40°	50	80	100	120	150	170	190	220	240	360	480	720
-50°	60	90	120	150	180	210	240	270	300	450	590	890

Altitude Correction Table (Heights and Altitudes in Meters)

Airport		Height Above Altimeter Reference Source										
Temp °C	60 m	90 m	120 m	150 m	180 m	210 m	240 m	270 m	300 m	450 m	600 m	900 m
0°	5	5	10	10	10	15	15	15	20	25	35	50
-10°	10	10	15	15	20	20	25	30	30	45	60	90
-20°	10	15	20	25	25	30	35	40	45	65	85	130
-30°	15	20	25	30	35	40	45	55	60	85	115	170
-40°	15	25	30	40	45	50	60	65	75	110	145	220
-50°	20	30	40	45	55	65	75	80	90	135	180	270

Approach and Landing

Use normal procedures and reference speeds.

After Landing Procedure

CAUTION: Taxi at a reduced speed. Use smaller nose wheel steering wheel and rudder inputs and apply minimum thrust smoothly. Differential thrust may be used to help maintain airplane momentum during turns. At all other times, apply thrust evenly. Taxiing on slippery taxiways or runways at excessive speed or with high crosswinds may start a skid.

CAUTION: When operating the engines over significant amounts of standing de-icing or anti-icing fluid, limit thrust to the minimum required. Excessive ingestion of de-icing or anti-icing fluid can cause the fluid to build up on the engine compressor blades resulting in compressor stalls and engine surges.

Do the normal After Landing Procedure with the following modifications:

After prolonged operation in icing conditions with the flaps extended, or when an accumulation of airframe ice is observed, or when operating on a runway or taxiway contaminated with ice, snow, slush or standing water:

Do not retract the flaps to less than flaps 15 until the flap areas have been checked to be free of contaminants.

 \mathbf{C}

737 Flight Crew Operations Manual

Engine anti-ice must be selected ON and remain on during all ground operations when icing conditions exist or are anticipated.

WARNING: Do not rely on airframe visual icing cues before activating engine anti-ice. Use the temperature and visible moisture criteria because late activation of engine anti-ice may allow excessive ingestion of ice and result in engine damage or failure.

CAUTION: Do not use engine anti-ice when OAT is above 10°C.

When engine anti-ice is needed:

ENGINE START switchesCONT	F/O
ENGINE ANTI-ICE switchesON	F/O
Verify that the COWL ANTI-ICE lights are	
extinguished.	

Note: If the COWL VALVE lights remain illuminated amber with engines at IDLE, do the following:

- verify APU BLEED air switch is in the OFF position,
- verify ISOLATION VALVE switch is in the AUTO position, and
- increase thrust slightly (up to a maximum of 30% N1).

When engine anti-ice is no longer needed:

ENGINE ANTI-ICE switches	OFF	F/O
ENGINE START switches	OFF	F/O

When engine anti-ice is required and the OAT is 3°C or below, or if increased fan vibration due to fan ice accumulation is present, do an engine run up to minimize ice build-up. Use the following procedure

gine run up to minimize ice build-up. Use the following procedure:	
Check that the area behind the airplane is clear.	C

Increase thrust to a minimum of 50% N1 then decrease thrust to idle. Repeat as necessary or at intervals no greater than 60 minutes.

Note: Engine vibration may indicate above the normal operating range up to the maximum display value during ice shedding, however, this will have no adverse effect on the engine.

Shutdown Procedure

Do the following step before starting the normal Shutdown Procedure:

After landing in icing conditions:

WARNING: Ensure that the stabilizer trim wheel handles are stowed before using electric trim to avoid personal injury.

Secure Procedure

Do the normal Secure Procedure with the following modifications:

If the airplane will be attended and warm air circulation throughout the cargo E/E compartments is desired:

CAUTION: Do not leave the interior unattended with a pack operating and all doors closed. With the airplane in this configuration, accidental closure of the main outflow valve can cause unscheduled pressurization of the airplane.

APUStart	F/O
APU GENERATOR bus switches ON	F/O
PACK switchesAUTO	F/O
ISOLATION VALVE switchOPEN	F/O
Pressurization mode selectorMAN	F/O
Outflow valve switchOPEN Prevents aircraft pressurization.	F/O
Note: The airplane must be parked into the wind when the outflow valve is full open.	
APU BLEED air switchON	F/O

If the airplane will not be attended, or if staying overnight at off-line stations or at airports where normal support is not available, the flight crew must arrange for or verify that the following steps are done:

Pressurization mode selector MAN	F/O
Outflow valve	F/O
Position the outflow valve fully closed to inhibit the intake of snow or ice.	
Wheel chocks Verify in place	C or F/O
Parking brake Released	C
Reduces the possibility of frozen brakes.	

Cold weather maintenance procedures for securing the airplane may be required. These procedures are normally done by maintenance personnel, and include, but are not limited to:

- protective covers and plugs installed
- water storage containers drained
- toilets drained
- · doors and sliding windows closed
- batteries removed. If the batteries will be exposed to temperatures below -18°C, the batteries should be removed and stored in an area warmer than -18°C, but below 40°C. Subsequent installation of the warm batteries ensures the starting capability of the APU.

Hot Weather Operation

During ground operation the following considerations will help keep the airplane as cool as possible:

- While the airplane is electrically powered, packs should be run or cooling air supplied to the airplane when the OAT exceeds 40° C (103° F) to protect the reliability of electrical and electronic equipment in the airplane.
- If cooling air is available from an outside source, the supply should be plugged in immediately after engine shutdown and should not be removed until just prior to engine start.
- Keep all doors and windows, including cargo doors, closed as much as possible.
- Electronic components which contribute to a high temperature level in the flight deck should be turned off while not needed.
- Open all passenger cabin gasper outlets and close all window shades on the sun–exposed side of the passenger cabin.

If these actions do not reduce cabin temperatures sufficiently:

•
PASSENGER CABIN temperature selector
Use of APU bleed air instead of engine bleed air to supply the packs while on the ground can significantly increase cabin cooling. If additional cooling is needed during extended ground operations:
Engine BLEED 1 air switchOFF
Engine BLEED 2 air switchOFF
ISOLATION VALVE switch OPEN
APU BLEED air switchON
PACK switchesHIGH
Temperature selectorsAUTO COOL
Prior to takeoff:
PACK switchesAUTO
Engine BLEED 2 air switchON
APU BLEED air switchOFF
Engine BLEED 1 air switchON
ISOLATION VALVE switchAUTO
Temperature selectors As needed
Brake temperature levels may be reached which can cause the wheel fu

Brake temperature levels may be reached which can cause the wheel fuse plugs to melt and deflate the tires. Consider the following actions:

- Be aware of brake temperature buildup when operating a series of short flight sectors. The energy absorbed by the brakes from each landing is accumulative
- Extending the landing gear early during the approach provides additional cooling for tires and brakes.
- In-flight cooling time can be determined from the "Brake Cooling Schedule" in the Performance–Inflight section of the QRH.

During flight planning consider the following:

- High temperatures inflict performance penalties which must be taken into account on the ground before takeoff
- Alternate takeoff procedures (No Engine Bleed Takeoff, Improved Climb Performance, etc.)

Moderate to Heavy Rain, Hail or Sleet

Flights should be conducted to avoid thunderstorm or hail activity. If visible moisture is present at high altitude, avoid flight over the storm cell. (Storm cells that do not produce visible moisture at high altitude can be overflown safely.) To the maximum extent possible, moderate to heavy rain, hail or sleet should also be avoided.

If moderate to heavy rain, hail or sleet is encountered or anticipated:

ENGINE START switches
AutothrottleDisengage
Thrust Levers Adjust Slowly
If thrust changes are necessary, move the thrust levers slowly. Avoid changing thrust lever direction until engines have stabilized at a selected setting. Maintain an increased minimum thrust setting.
IAS/MACH

Consider starting the APU (if available).

Operation in a Sandy or Dusty Environment

The main hazards of a sandy or dusty environment are erosion (especially of engine fan blades), accumulation of sand or dust on critical surfaces and blockage. The effects of sand ingestion occur predominantly during takeoff, landing and taxi operations. The adverse effects, however, can occur if the airplane's flight path was through a cloud of visible sand or dust or the airplane was parked during a sand or dust storm. Premature engine deterioration can result from sand or dust ingestion, causing increased fuel burn and reduced EGT margins.

CAUTION: After a sandstorm, if all taxiways and runways are not carefully inspected and swept for debris before flight ops are conducted, the risk of engine damage and wear is increased.

Exterior Inspection

Although removal of sand and dust contaminants is primarily a maintenance function, during the exterior inspection the captain or first officer should carefully inspect areas where accumulation of sand or dust could change or affect normal system operations

could change or affect normal system operations.
Do the normal Exterior Inspection with the following additional steps:
Windshield
Verify that the windshield has been cleaned.
Note: Do not use windshield wipers for sand or dust removal. Wash deposits off with water and wipe residue off with a soft cloth.
Surfaces
Verify that the upper surfaces of the wings and other control surfaces are free of sand.
CAUTION: Particular care should be taken to ensure that the fuselage and all surfaces are clean after a sand storm that occurs with a rain storm.
Probes, sensors, ports, ram turbine doors, vents, and drains (as applicable)
Leading edge flaps
Engine inlets
Fuel tank vents
T 1' C1 1
Landing gear

131 Fight Crew Operations Manual	
Vertical and horizontal stabilizers	Check
Verify that all leading edges are undamaged.	
APU air inlets	Check
Ensure that the APU inlet door and cooling air inlet are free and dust before APU start.	of sand
Preflight Procedure - First Officer	
Do the normal Preflight Procedure - First Officer with the follomodifications:	owing
Note: Minimize the use of air conditioning, other than from a air conditioner, as much as possible. If the APU must be for air conditioning, maintain a temperature as high as p while still providing a tolerable flight deck and cabin environment.	used
APU BLEED air switchOFF	F/O
If APU bleed air will be used and the APU is not operating:	
APU switchSTART	F/O
Note: Run the APU for two full minutes before using it as air source.	a bleed
Engine BLEED air switches OFF	F/O
APU BLEED air switchON	F/O
Engine Start Procedure	
Do the normal Engine Start Procedure with the following mod	ifications:
Note: Use a filtered ground cart for pneumatic air for engine s available.	tart, if
ENGINE START switchGRD	F/O
Verify that the N2 RPM increases.	C, F/O
Motor the engine for 2 minutes to help remove contaminants.	
CAUTION: Do not apply rotational force when moving the start lever.	engine
Engine start lever IDLE detent	C

Before Taxi Procedure

Do the normal Before Taxi Procedure with special emphasis on the following steps:

If bleed air is needed to maintain tolerable flight deck and cabin temperatures, use APU bleed air rather than engine bleed air during the taxi out. Limit APU bleed air use as much as possible to reduce sand and dust ingestion.

If APU bleed air will be used and the APU is not operating:

APU switch	START	F/O
Note: Run the APU for two full minute air source.	es before using it as a b	oleed
Engine BLEED air switches	OFF	F/O
APU BLEED air switch	ON	F/O
Flight controls	Check	C
Verify that there is no increase in control or dust contaminants.	ol forces due to sand	

Taxi-Out

Do the following, conditions permitting, to minimize sand and dust ingestion by the engines and to improve visibility during taxi:

- Use all engines during taxi and taxi at low speed. Limit ground speed to 10 knots and maintain thrust below 40% N1 whenever possible to avoid creating engine vortices during ground operations.
- Maintain a greater than normal separation from other aircraft while taxiing and avoid the ingestion of another engine's wake.
- Avoid engine overhang of unprepared surfaces.
- In the event of a crosswind during 180° turns, turn away from the wind if possible to minimize sand and dust ingestion.
- Whenever possible, avoid situations that would require the airplane to be brought to a complete stop.
- Avoid excessive braking. The presence of sand or dust will increase brake wear.

Takeoff

Do the following to minimize sand and dust ingestion by the engines during takeoff:

- Use the maximum fixed derate and/or assumed temperature thrust reduction that meets performance requirements.
- Make an No Engine Bleed Takeoff if operations permit. If cabin and flight deck temperatures can be maintained at a tolerable temperature, consider an Unpressurized Takeoff.
- Prior to takeoff, allow sand and dust to settle.
- Do not take off into a sand or dust cloud.
- Use a rolling takeoff. Whenever possible, avoid setting high thrust at low speed.
- When visible sand and dust exist, consider delaying flap retraction until above the dust cloud, if operations permit.

Approach

Do the following, conditions permitting, to minimize sand and dust ingestion:

• Make an No Engine Bleed Landing if operations permit. If cabin and flight deck temperatures can be maintained at a tolerable temperature, consider an Unpressurized Landing.

Landing

Do the following to minimize sand and dust ingestion by the engines during landing:

- Use autobrakes on landing to help minimize the need for reverse thrust
- Performance permitting, minimize the use of reverse thrust to prevent ingestion of dust and sand and to prevent reduction of visibility. Reverse thrust is most effective at high speed.

After Landing Procedure

Do the normal After Landing Procedure with the following modifications:

If bleed air is needed to maintain tolerable flight deck and cabin temperatures, use APU bleed air rather than engine bleed air during the taxi in. Limit APU bleed air use as much as possible to reduce sand and dust ingestion.

If APU bleed air will be used and the APU is not operating:

APU switchSTART PM

Note: Run the APU for two full minutes before using it as a bleed air source.

Engine BLEED air switchesOFF **PM**

APU BLEED air switchON **PM**

Taxi-In

Do the following, conditions permitting, to minimize sand and dust ingestion by the engines and to improve visibility during the taxi-in:

- Use all engines and taxi at low speed. Limit ground speed to 10 knots and maintain thrust below 40% N1 whenever possible.
- Maintain a greater than normal separation from other aircraft while taxiing and avoid the ingestion of another engine's wake.
- Avoid engine overhang of unprepared surfaces.
- In the event of a crosswind during 180° turns, turn away from the wind if possible to minimize sand and dust ingestion.
- Whenever possible, avoid situations that would require the airplane to be brought to a complete stop.
- Avoid excessive braking. The presence of sand or dust will increase brake wear.

Secure Procedure

Do the normal Secure Procedure with the following modifications:

CAUTION: Do not leave the interior unattended with a pack operating and all doors closed. With the main outflow valve closed, an unscheduled pressurization of the airplane may occur.

Verify OFF	F/O
MAN	F/O
CLOSE	F/O
nhibit the intake	
	MAN

Additional procedures for securing the airplane during sandy or dusty conditions may be needed. These procedures are normally done by maintenance personnel, and include, but are not limited to:

- engine covers installed, if applicable.
- protective covers and plugs installed (streamers should be used to remind personnel to remove before flight).

- · doors and sliding windows closed.
- all compartments closed.

Turbulence

During flight in light to moderate turbulence, the autopilot and/or autothrottle may remain engaged unless performance is objectionable. Increased thrust lever activity can be expected when encountering wind, temperature changes and large pressure changes. Short–time airspeed excursions of 10 to 15 knots can be expected.

Passenger signsON

Advise passengers to fasten seat belts prior to entering areas of reported or anticipated turbulence. Instruct flight attendants to check that all passengers' seat belts are fastened.

Severe Turbulence

Yaw DamperON
Autothrottle Disengage
AUTOPILOT
Note: If sustained trimming occurs, disengage the autopilot.
ENGINE START switchesFLT
Thrust
Set thrust as needed for the phase of flight. Change thrust setting only if needed to modify an unacceptable speed trend.

PHASE OF FLIGHT	AIRSPEED
CLIMB	280 knots or .76 Mach, whichever is lower.

PHASE OF FLIGHT	AIRSPEED
CRUISE	Use FMC recommended thrust settings. If the FMC is inoperative, refer to the Unreliable Airspeed page in the Performance–Inflight section of the QRH for approximate N1 settings that maintain near optimum penetration airspeed.
DESCENT	.76 Mach/280/250 knots, whichever is lower. If severe turbulence is encountered at altitudes below 15,000 feet and the airplane gross weight is less than the maximum landing weight, the airplane may be slowed to 250 knots in the clean configuration.

Note: If an approach must be made into an area of severe turbulence, delay flap extension as long as possible. The airplane can withstand higher gust loads in the clean configuration.

Windshear

Windshear is a change of wind speed and/or direction over a short distance along the flight path. Indications of windshear are listed in the Windshear non-normal maneuver in this manual.

Avoidance

The flight crew should search for any clues to the presence of windshear along the intended flight path. Presence of windshear may be indicated by:

- Thunderstorm activity
- Virga (rain that evaporates before reaching the ground)
- Pilot reports
- Low level windshear alerting system (LLWAS) warnings.

Stay clear of thunderstorm cells and heavy precipitation and areas of known windshear. If the presence of windshear is confirmed, delay takeoff or do not continue an approach.

Precautions

If windshear is suspected, be especially alert to any of the danger signals and be prepared for the possibility of an inadvertent encounter. The following precautionary actions are recommended if windshear is suspected:

Takeoff

- Takeoff with full rated takeoff thrust is recommended, unless the use of a fixed derate is required to meet a dispatch performance requirement
- For optimum takeoff performance, use flaps 5, 10 or 15 unless limited by obstacle clearance and/or climb gradient
- Use the longest suitable runway provided it is clear of areas of known windshear
- Consider increasing Vr speed to the performance limited gross weight rotation speed, not to exceed actual gross weight Vr + 20 knots. Set V speeds for the actual gross weight. Rotate at the adjusted (higher) rotation speed. This increased rotation speed results in an increased stall margin and meets takeoff performance requirements. If windshear is encountered at or beyond the actual gross weight Vr, do not attempt to accelerate to the increased Vr but rotate without hesitation
- Be alert for any airspeed fluctuations during takeoff and initial climb. Such fluctuations may be the first indication of windshear

- Know the all—engine initial climb pitch attitude. Rotate at the normal rate to this attitude for all non—engine failure takeoffs. Minimize reductions from the initial climb pitch attitude until terrain and obstruction clearance is assured, unless stick shaker activates
- Crew coordination and awareness are very important. Develop an awareness of normal values of airspeed, attitude, vertical speed, and airspeed buildup. Closely monitor vertical flight path instruments such as vertical speed and altimeters. The pilot monitoring should be especially aware of vertical flight path instruments and call out any deviations from normal
- Should airspeed fall below the trim airspeed, unusual control column forces may be required to maintain the desired pitch attitude. If stick shaker is encountered, reduce pitch attitude. Do not exceed the Pitch Limit Indication.

Approach and Landing

- Use flaps 30 for landing
- Establish a stabilized approach no lower than 1000 feet above the airport to improve windshear recognition capability
- Use the most suitable runway that avoids the areas of suspected windshear and is compatible with crosswind or tailwind limitations. Use electronic or visual glidepath indications to detect flight path deviations and help with timely detection of windshear
- If the autothrottle is disengaged, or is planned to be disengaged prior to landing, add an appropriate airspeed correction (correction applied in the same manner as gust), up to a maximum of 15 knots
- Avoid large thrust reductions or trim changes in response to sudden airspeed increases as these may be followed by airspeed decreases
- Crosscheck flight director commands using vertical flight path instruments
- Crew coordination and awareness are very important, particularly at night or in marginal weather conditions. Closely monitor the vertical flight path instruments such as vertical speed, altimeters, and glideslope displacement. The pilot monitoring should call out any deviations from normal. Use of the autopilot and autothrottle for the approach may provide more monitoring and recognition time.

Recovery

Accomplish the Windshear Escape Maneuver found in the Non–Normal Maneuvers section of the QRH.

Ice Crystal Icing (ICI)

At temperatures below freezing near convective weather, the airplane can encounter visible moisture made up of high concentrations of small ice crystals. Ice crystals can accumulate aft of the engine fan in the engine core. Ice shedding can cause engine vibration, engine power loss and engine damage.

Ice crystals can also accumulate in the fan hub. This can cause vibration indications above 4 units. Fan ice removal procedures have no effect on fan hub icing. When clear of clouds, fan hub ice sublimates and engine vibration decreases over time. Fan hub ice can remain into descent.

Ice crystal icing is difficult to detect because ice crystals do not cause significant weather radar returns. They are often found in high concentrations above and near regions of heavy precipitation. Ice crystals do not stick to cold airplane surfaces.

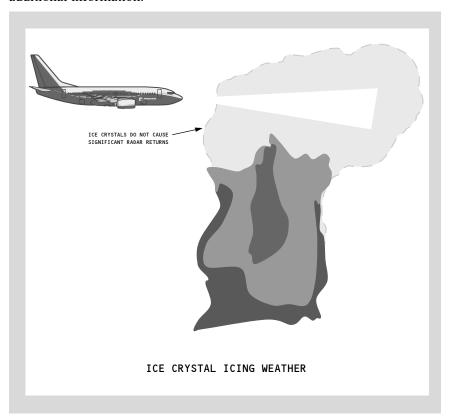
Avoid ICI conditions. Flight in clouds containing high concentrations of ice crystals has been associated with engine vibration, engine power loss and engine damage.

Because these conditions can be difficult to recognize, careful preflight planning is a key component of in-flight situational awareness. When ICI is encountered or suspected, do the QRH Ice Crystal Icing NNC to mitigate the effect on the flight.

Recognizing Ice Crystal Icing

Ice crystals are most frequently found in areas of visible moisture and above altitudes normally associated with icing conditions. Their presence can be indicated by one or more of the following:

- appearance of rain on the windshield at temperatures too cold for liquid water to exist. This is due to ice crystals melting on the heated windows (sounds different than rain)
- areas of light to moderate turbulence.
- in IMC with:
 - · no significant airframe icing and
 - no significant radar returns at airplane altitude and
 - heavy precipitation below the airplane, identified by amber and red radar returns on the weather radar.
- cloud tops above typical cruise levels (above the tropopause)
- smell of ozone or sulfur


- humidity increase
- static discharge around the windshield (St. Elmo's fire).

Avoiding Ice Crystal Icing

During flight in IMC, avoid flying directly over significant amber or red radar returns, even if there are no returns at airplane altitude.

Use the weather radar controls to assess weather radar reflectivity below the airplane flight path. Refer to weather radar operating instructions for additional information.

Areas with a higher risk of High Ice Water Content (HIWC) are identified by some aviation weather vendors. In these areas, ICI should be suspected while operating in IMC. Use of this type of HIWC information is recommended for strategic preflight planning and in-flight adjustments in order to avoid potential ICI conditions.

March 21, 2021 D6-27370-MAX-FLR SP.16.31

Ice Crystal Icing Suspected

If conditions allow, exit the ice crystal icing conditions laterally. Climbing or descending to exit ice crystal icing conditions is not recommended. Request a route change to minimize the time above red and amber radar returns.

Do the Ice Crystal Icing non-normal checklist.

Performance Dispatch
Table of Contents

Chapter PD Section 0

737-8 LEAP-1B27 KG C M FAA CATB TO1-10% TO2-20% ALT-AB

Intentionally Blank

Performance Dispatch Table of Contents

Chapter PD Section 10

737-8 LEAP-1B27 KG C M FAA CATB TO1-10% TO2-20% ALT-AB

Pkg Model Identification

Takeoff

Takeoff Field Corrections - Dry Runway

Takeoff Field & Climb Limit Weights - Dry Runway

Takeoff Field Corrections - Wet Runway

Takeoff Field & Climb Limit Weights - Wet Runway

Takeoff Obstacle Limit Weight

Brake Energy Limits VMBE

Fuel Jettison Limit Weight

Enroute

Long Range Cruise Maximum Operating Altitude

Long Range Cruise Trip Fuel and Time

Long Range Cruise Step Climb

Short Trip Fuel and Time

Holding Planning

Flight Crew Requirements for Chemical Passenger Oxygen System

Flight Crew Requirements for Large Capacity Descent Passenger

Oxygen

Net Level Off Weight

Landing

Landing Field Limit Weight - Dry Runway - Low Altitudes

Landing Field Limit Weight - Dry Runway - High Altitudes

Landing Field Limit Weight - Wet Runway - Low Altitudes

Landing Field Limit Weight - Wet Runway - High Altitudes

Landing Climb Limit Weight

Go-Around Climb Gradient

Quick Turnaround Limit Weight

Gear Down

Takeoff Climb Limit Weight

Takeoff Obstacle Limit Weight

Fuel Jettison Limit Weight

Landing Climb Limit Weight

Long Range Cruise Altitude Capability

Long Range Cruise Trip Fuel and Time

Short Trip Fuel and Time

Holding Planning

Net Level Off Weight

Text

Introduction

Takeoff

Enroute

Landing

Gear Down

Performance Dispatch Pkg Model Identification

Chapter PD Section 10

General

The table below shows the airplanes that have been identified with the following performance package. Note, some airplanes may be identified with more than one performance package. This configuration table information reflects the Boeing delivered configuration updated for service bulletin incorporations in conformance with the policy stated in the introduction section of the FCOM. The performance data is prepared for the owner/operator named on the title page. The intent of this information is to assist flight crews and airlines in knowing which performance package is applicable to a given airplane. The performance package model identification information is based on Boeing's knowledge of the airline's fleet at a point in time approximately three months prior to the page date. Notice of Change (NOC) will not be provided to airlines to identify airplanes that are moved between performance packages within this manual or airplanes added to the airline's fleet whose performance packages are already represented in this manual. These types of changes will be updated in the next block revision. Owners/operators are responsible for ensuring the operational documentation they are using is complete and matches the current configuration of their airplanes, and the accuracy and validity of all information furnished by the owner/operator or any other party. Owners/operators receiving active revision service are responsible to ensure that any modifications to the listed airplanes are properly reflected in this manual.

Serial and tabulation number are supplied by Boeing.

Tail Number	Registry Number	Serial Number	Tabulation Number
901	C-FFEL	64942	1J107
902	C-FLEJ	64941	1J104
903	C-FLHI	61804	1J103
904	C-FFBC	61805	1J105
905	C-FLKA	64943	1J106
906	C-FLKC	61807	1J111
907	C-FLKD	61806	1J110
908	C-FLKI	64944	1J108
909	C-FLKJ	64945	1J109
910	C-FLRS	61808	1J114

Tail Number	Registry Number	Serial Number	Tabulation Number
911	C-FFFX	61809	1J112
912	C-FFLZ	64946	1J113
913	C-FLDX	61803	1C845
914	C-FLER	62874	1L076
915	C-FLKO	62870	1L075
916	C-FLKS	62881	1L077
917	C-FLKZ	62883	1L078
918	C-FLUJ	62884	1K003
919	C-FLQZ	44307	1K002
920	C-FLQO	43565	1B392
921	C-FLUT	60134	1J022
922	C-FLQF	43300	1B397
923	C-FLQG	43619	1B390
924	C-FLQP	43566	1B393
925	C-FLBG	60135	1J023
926	C-FLGD	43564	1B391
927	C-GFOF	44302	1K001

Performance Dispatch Takeoff

Chapter PD Section 10

Takeoff Field Corrections - Dry Runway Table 1 of 3: Slope Correction

FIELD LENGTH		SLOPE CORRECTED FIELD LENGTH (FT)								
AVAILABLE		RUNWAY SLOPE (%)								
(FT)	-2.0	-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5	2.0	
4200	4230	4220	4210	4210	4200	4080	3960	3850	3730	
4600	4680	4660	4640	4620	4600	4460	4320	4180	4040	
5000	5130	5100	5060	5030	5000	4840	4680	4520	4360	
5400	5580	5540	5490	5450	5400	5220	5040	4850	4670	
5800	6030	5970	5920	5860	5800	5600	5390	5190	4990	
6200	6480	6410	6340	6270	6200	5980	5750	5530	5300	
6600	6930	6850	6770	6680	6600	6350	6110	5860	5610	
7000	7390	7290	7190	7100	7000	6730	6460	6200	5930	
7400	7840	7730	7620	7510	7400	7110	6820	6530	6240	
7800	8290	8170	8040	7920	7800	7490	7180	6870	6560	
8200	8740	8610	8470	8340	8200	7870	7540	7200	6870	
8600	9190	9040	8900	8750	8600	8250	7890	7540	7190	
9000	9640	9480	9320	9160	9000	8630	8250	7880	7500	
9400	10090	9920	9750	9570	9400	9000	8610	8210	7810	
9800	10550	10360	10170	9990	9800	9380	8960	8550	8130	
10200	11000	10800	10600	10400	10200	9760	9320	8880	8440	
10600	11450	11240	11020	10810	10600	10140	9680	9220	8760	
11000	11900	11680	11450	11230	11000	10520	10040	9550	9070	
11400	12350	12110	11880	11640	11400	10900	10390	9890	9390	
11800	12800	12550	12300	12050	11800	11280	10750	10230	9700	
12200	13250	12990	12730	12460	12200	11650	11110	10560	10010	
12600	13710	13430	13150	12880	12600	12030	11460	10900	10330	
13000	14160	13870	13580	13290	13000	12410	11820	11230	10640	
13400	14610	14310	14000	13700	13400	12790	12180	11570	10960	
13800	15060	14750	14430	14120	13800	13170	12540	11900	11270	
14200	15510	15180	14860	14530	14200	13550	12890	12240	11590	
14600	15960	15620	15280	14940	14600	13930	13250	12580	11900	
15000	16410	16060	15710	15350	15000	14300	13610	12910	12210	
15400	16870	16500	16130	15770	15400	14680	13960	13250	12530	
15800	17320	16940	16560	16180	15800	15060	14320	13580	12840	

737-8/LEAP-1B27 FAA CATB

737 Flight Crew Operations Manual

Takeoff Field Corrections - Dry Runway Table 2 of 3: Wind Correction

SLOPE CORR'D		SLOPE AND WIND CORRECTED FIELD LENGTH (FT)									
FIELD LENGTH		WIND COMPONENT (KTS)									
(FT)	-15	-10	-5	0	10	20	30	40			
4200	2970	3380	3790	4200	4310	4500	4760	5110			
4600	3320	3740	4170	4600	4720	4920	5190	5540			
5000	3660	4110	4550	5000	5130	5330	5610	5970			
5400	4000	4470	4930	5400	5540	5750	6040	6390			
5800	4350	4830	5320	5800	5950	6170	6460	6820			
6200	4690	5190	5700	6200	6360	6590	6880	7250			
6600	5030	5550	6080	6600	6770	7000	7310	7680			
7000	5380	5920	6460	7000	7180	7420	7730	8110			
7400	5720	6280	6840	7400	7590	7840	8160	8540			
7800	6060	6640	7220	7800	8000	8260	8580	8970			
8200	6410	7000	7600	8200	8410	8680	9010	9400			
8600	6750	7370	7980	8600	8820	9090	9430	9820			
9000	7090	7730	8360	9000	9230	9510	9850	10250			
9400	7440	8090	8750	9400	9640	9930	10280	10680			
9800	7780	8450	9130	9800	10050	10350	10700	11110			
10200	8120	8810	9510	10200	10460	10760	11130	11540			
10600	8470	9180	9890	10600	10870	11180	11550	11970			
11000	8810	9540	10270	11000	11280	11600	11970	12400			
11400	9150	9900	10650	11400	11690	12020	12400	12830			
11800	9500	10260	11030	11800	12090	12440	12820	13250			
12200	9840	10630	11410	12200	12500	12850	13250	13680			
12600	10180	10990	11790	12600	12910	13270	13670	14110			
13000	10530	11350	12180	13000	13320	13690	14090	14540			
13400	10870	11710	12560	13400	13730	14110	14520	14970			
13800	11210	12070	12940	13800	14140	14520	14940	15400			
14200	11560	12440	13320	14200	14550	14940	15370	15830			
14600	11900	12800	13700	14600	14960	15360	15790	16260			
15000	12240	13160	14080	15000	15370	15780	16210	16680			
15400	12590	13520	14460	15400	15780	16200	16640	17110			
15800	12930	13890	14840	15800	16190	16610	17060	17540			

Takeoff Field & Climb Limit Weights - Dry Runway Flaps 5

Based on engine bleed for packs on and anti-ice off Table 3(a) of 3: Sea Level Pressure Altitude

CORR'D FIELD		FIELD LIMIT WEIGHT (1000 KG)									
LENGTH		OAT (°C)									
(FT)	-40	2	6	10	14	18	22	26	30	40	50
4000	60.1	56.6	56.2	55.9	55.6	55.3	55.0	54.7	54.4	50.9	47.4
4200	61.8	58.2	57.8	57.5	57.2	56.9	56.5	56.2	55.9	52.4	48.7
4600	65.2	61.4	61.0	60.7	60.3	60.0	59.7	59.3	59.0	55.3	51.5
5000	68.4	64.4	64.1	63.7	63.4	63.0	62.7	62.3	62.0	58.0	54.1
5400	71.5	67.3	67.0	66.6	66.2	65.8	65.5	65.1	64.8	60.7	56.5
5800	74.5	70.1	69.7	69.3	68.9	68.5	68.2	67.8	67.4	63.1	58.8
6200	77.3	72.7	72.3	71.9	71.5	71.1	70.7	70.3	69.9	65.5	61.0
6600	79.9	75.2	74.8	74.4	73.9	73.5	73.1	72.7	72.3	67.7	63.1
7000	82.5	77.6	77.2	76.7	76.3	75.9	75.4	75.0	74.6	69.8	65.0
7400	84.9	79.8	79.4	78.9	78.5	78.0	77.6	77.2	76.7	71.8	66.9
7800	87.2	82.0	81.5	81.1	80.6	80.2	79.7	79.3	78.8	73.8	68.7
8200	89.6	84.2	83.8	83.3	82.8	82.3	81.9	81.4	81.0	75.8	70.5
8600	90.7	86.4	85.9	85.4	84.9	84.4	84.0	83.5	83.0	77.7	72.3
9000	90.7	88.3	87.8	87.3	86.8	86.3	85.8	85.4	84.9	79.5	74.0
9400	90.7	89.9	89.4	88.8	88.3	87.8	87.3	86.9	86.4	80.8	75.2
9800	90.7	90.7	90.7	90.4	89.9	89.4	88.9	88.4	87.9	82.2	76.5
10200	90.7	90.7	90.7	90.7	90.7	90.7	90.5	90.0	89.5	83.7	77.9
10600	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	85.2	79.2
11000	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	86.6	80.6
11400	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	88.0	81.9
11800	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	89.4	83.1
12200	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	84.4
12600	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	85.5
13000	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	86.7
13400	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	87.9
13800	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	89.1
14200	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.2
14600	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7
15000	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7
15400	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7
CLIMB LIMIT WT (1000 KG)	86.3	86.2	86.2	86.2	86.2	86.1	86.1	86.1	86.1	78.5	71.4

With engine bleed for packs off, increase field limit weight by $400 \ kg$ and climb limit weight by $1150 \ kg$.

Field Limit Weight Anti-Ice Adjustments

ANTI-ICE CONFIGURATION	FIELD LIMIT WEIGHT ADJUSTMENT (KG)					
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>				
ENGINE ON	-150	-900				
ENGINE AND WING ON	-150	-900				

ANTI-ICE CONFIGURATION	CLIMB LIMIT WEIGHT ADJUSTMENT (KG)					
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>				
ENGINE ON	-150	-1000				
ENGINE AND WING ON	-150	-1000				

Takeoff Field & Climb Limit Weights - Dry Runway Flaps 5

Based on engine bleed for packs on and anti-ice off Table 3(b) of 3: 2000 FT Pressure Altitude

CORR'D FIELD		FIELD LIMIT WEIGHT (1000 KG)									
LENGTH		OAT (°C)									
(FT)	-40	2	6	10	14	18	22	26	30	40	50
4000	56.9	53.3	53.0	52.5	52.2	51.9	51.6	51.3	50.4	47.1	43.4
4200	58.5	54.8	54.5	54.0	53.7	53.4	53.1	52.8	51.9	48.5	44.7
4600	61.8	57.9	57.5	57.0	56.7	56.3	56.1	55.8	54.8	51.2	47.2
5000	64.8	60.8	60.4	59.9	59.5	59.2	58.9	58.6	57.5	53.8	49.6
5400	67.8	63.5	63.1	62.6	62.2	61.8	61.5	61.2	60.1	56.2	51.8
5800	70.5	66.1	65.7	65.1	64.7	64.4	64.0	63.7	62.6	58.5	53.9
6200	73.2	68.6	68.2	67.6	67.1	66.8	66.4	66.1	64.9	60.7	55.9
6600	75.7	70.9	70.5	69.9	69.4	69.0	68.7	68.3	67.1	62.7	57.8
7000	78.1	73.1	72.7	72.1	71.6	71.2	70.8	70.5	69.2	64.7	59.6
7400	80.3	75.2	74.8	74.1	73.6	73.2	72.8	72.5	71.2	66.5	61.2
7800	82.5	77.3	76.8	76.1	75.6	75.2	74.8	74.4	73.1	68.3	62.9
8200	84.8	79.4	78.9	78.2	77.7	77.3	76.9	76.4	75.1	70.2	64.6
8600	86.9	81.3	80.8	80.2	79.7	79.2	78.8	78.4	77.0	72.0	66.2
9000	88.9	83.2	82.7	82.0	81.5	81.0	80.6	80.2	78.7	73.6	67.7
9400	90.4	84.7	84.2	83.4	82.9	82.4	82.0	81.6	80.1	74.9	68.9
9800	90.7	86.2	85.6	84.9	84.3	83.8	83.4	83.0	81.5	76.1	70.1
10200	90.7	87.7	87.2	86.4	85.8	85.3	84.9	84.4	82.9	77.5	71.3
10600	90.7	89.3	88.7	87.9	87.3	86.9	86.4	85.9	84.4	78.8	72.5
11000	90.7	90.7	90.1	89.4	88.8	88.3	87.9	87.4	85.8	80.2	73.7
11400	90.7	90.7	90.7	90.7	90.3	89.8	89.3	88.8	87.2	81.4	74.9
11800	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.2	88.6	82.7	76.0
12200	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	89.9	83.9	77.1
12600	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	85.1	78.2
13000	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	86.3	79.3
13400	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	87.4	80.4
13800	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	88.6	81.5
14200	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	89.8	82.5
14600	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	83.6
15000	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	84.6
15400	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	85.7
CLIMB LIMIT	81.6	81.3	81.3	81.2	81.2	81.2	81.3	81.4	79.5	72.4	65.0
WT (1000 KG)											

With engine bleed for packs off, increase field limit weight by $400~\mathrm{kg}$ and climb limit weight by $1150~\mathrm{kg}$.

Field Limit Weight Anti-Ice Adjustments

ANTI-ICE CONFIGURATION	FIELD LIMIT WEIGHT ADJUSTMENT (KG)					
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>				
ENGINE ON	-150	-900				
ENGINE AND WING ON	-150	-900				

	•	
ANTI-ICE CONFIGURATION	CLIMB LIMIT WEIGH	T ADJUSTMENT (KG)
	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>
ENGINE ON	-150	-1000
ENGINE AND WING ON	-150	-1000

Takeoff Field & Climb Limit Weights - Dry Runway Flaps 5

Based on engine bleed for packs on and anti-ice off

Table 3(c) of 3: 4000 FT Pressure Altitude

CORR'D FIELD		FIELD LIMIT WEIGHT (1000 KG)									
LENGTH		OAT (°C)									
(FT)	-40	2	6	10	14	18	22	26	30	40	50
4000	53.4	49.9	49.6	49.3	49.0	48.7	48.5	47.8	46.8	42.9	
4200	54.9	51.3	51.0	50.7	50.4	50.2	49.9	49.2	48.1	44.2	
4600	57.9	54.2	53.9	53.6	53.3	53.0	52.7	52.0	50.9	46.7	43.2
5000	60.8	56.9	56.6	56.3	55.9	55.6	55.3	54.6	53.4	49.1	45.4
5400	63.6	59.5	59.1	58.8	58.5	58.1	57.8	57.1	55.8	51.2	47.4
5800	66.2	61.9	61.5	61.2	60.8	60.5	60.2	59.4	58.1	53.3	49.3
6200	68.7	64.2	63.8	63.5	63.1	62.8	62.4	61.6	60.2	55.3	51.1
6600	71.0	66.4	66.0	65.6	65.2	64.9	64.5	63.7	62.3	57.1	52.8
7000	73.2	68.5	68.1	67.7	67.3	66.9	66.6	65.7	64.2	58.9	54.5
7400	75.3	70.4	70.0	69.6	69.2	68.8	68.4	67.5	66.0	60.6	56.0
7800	77.4	72.3	71.9	71.5	71.1	70.7	70.3	69.4	67.8	62.2	57.5
8200	79.5	74.3	73.8	73.4	73.0	72.6	72.2	71.3	69.7	63.9	59.0
8600	81.3	76.2	75.7	75.3	74.9	74.4	74.0	73.0	71.4	65.5	60.5
9000	83.3	77.9	77.4	77.0	76.5	76.1	75.7	74.7	73.0	67.0	61.9
9400	84.8	79.2	78.8	78.3	77.9	77.4	77.0	76.0	74.3	68.1	63.0
9800	86.3	80.6	80.1	79.7	79.2	78.8	78.3	77.3	75.6	69.3	64.0
10200	87.8	82.0	81.5	81.1	80.6	80.2	79.7	78.7	76.9	70.5	65.1
10600	89.4	83.5	83.0	82.5	82.0	81.6	81.1	80.1	78.2	71.7	66.2
11000	90.7	84.9	84.4	83.9	83.4	82.9	82.5	81.4	79.6	72.9	67.3
11400	90.7	86.3	85.8	85.2	84.8	84.3	83.8	82.7	80.8	74.0	68.3
11800	90.7	87.6	87.1	86.6	86.1	85.6	85.1	84.0	82.1	75.2	69.4
12200	90.7	88.9	88.4	87.8	87.3	86.9	86.4	85.2	83.3	76.3	70.4
12600	90.7	90.1	89.6	89.1	88.6	88.1	87.6	86.4	84.5	77.4	71.4
13000	90.7	90.7	90.7	90.3	89.8	89.3	88.8	87.6	85.6	78.4	72.4
13400	90.7	90.7	90.7	90.7	90.7	90.5	90.0	88.8	86.8	79.5	73.4
13800	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.0	88.0	80.6	74.4
14200	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	89.1	81.6	75.3
14600	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.3	82.6	76.3
15000	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	83.7	77.2
15400	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	84.7	78.1
CLIMB LIMIT WT (1000 KG)	76.9	76.7	76.6	76.6	76.6	76.6	76.6	75.6	73.5	65.4	59.0

With engine bleed for packs off, increase field limit weight by $400 \ kg$ and climb limit weight by $1150 \ kg$.

Field Limit Weight Anti-Ice Adjustments

ANTI-ICE CONFIGURATION	FIELD LIMIT WEIGHT ADJUSTMENT (KG)					
	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>				
ENGINE ON	-150	-900				
ENGINE AND WING ON	-150	-900				

ANTI-ICE CONFIGURATION	CLIMB LIMIT WEIGHT ADJUSTMENT (KG)					
	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>				
ENGINE ON	-150	-1000				
ENGINE AND WING ON	-150	-1000				

Takeoff Field & Climb Limit Weights - Dry Runway Flaps 5

Based on engine bleed for packs on and anti-ice off Table 3(d) of 3: 6000 FT Pressure Altitude

CORR'D FIELD		FIELD LIMIT WEIGHT (1000 KG)									
LENGTH				TILL		OAT (°C	,	KO)			
(FT)	-40	2	6	10	14	18	22	26	30	40	50
4000	49.8	46.7	46.4	46.2	45.9	45.6	45.1	44.3	43.2	40	30
4200	51.3	48.1	47.8	47.5	47.2	46.9	46.5	45.6	44.5		
4600	54.1	50.8	50.5	50.2	49.9	49.6	49.1	48.2	47.0		
5000	56.8	53.3	53.0	52.7	52.4	52.1	51.6	50.7	49.4	44.6	
5400	59.4	55.7	55.4	55.1	54.8	54.4	53.9	52.9	51.6	46.6	43.5
5800	61.8	58.0	57.7	57.3	57.0	56.7	56.1	55.1	53.7	48.5	45.2
6200	64.1	60.2	59.8	59.5	59.1	58.7	58.2	57.1	55.7	50.2	46.8
6600	66.3	62.2	61.8	61.5	61.1	60.7	60.1	59.0	57.6	51.9	48.4
7000	68.4	64.1	63.8	63.4	63.0	62.6	62.0	60.9	59.3	53.5	49.9
7400	70.3	65.9	65.6	65.2	64.8	64.4	63.7	62.6	61.0	54.9	51.2
7800	72.2	67.7	67.3	66.9	66.5	66.1	65.5	64.2	62.6	56.4	52.6
8200	74.2	69.5	69.2	68.7	68.3	67.9	67.2	66.0	64.3	57.9	54.0
8600	76.1	71.3	70.9	70.5	70.0	69.6	68.9	67.6	66.0	59.4	55.4
9000	77.8	72.9	72.5	72.1	71.6	71.2	70.5	69.2	67.5	60.8	56.6
9400	79.1	74.2	73.8	73.3	72.9	72.4	71.7	70.4	68.6	61.8	57.6
9800	80.5	75.5	75.0	74.6	74.1	73.7	73.0	71.6	69.8	62.8	58.6
10200	81.9	76.8	76.3	75.9	75.4	75.0	74.2	72.8	71.0	63.9	59.5
10600	83.4	78.1	77.7	77.2	76.7	76.3	75.5	74.1	72.2	65.0	60.5
11000	84.8	79.4	79.0	78.5	78.0	77.5	76.8	75.3	73.4	66.0	61.5
11400	86.1	80.7	80.2	79.8	79.3	78.8	78.0	76.5	74.6	67.1	62.4
11800	87.5	82.0	81.5	81.0	80.5	80.0	79.2	77.7	75.7	68.1	63.4
12200	88.8	83.2	82.7	82.2	81.7	81.2	80.4	78.8	76.9	69.1	64.3
12600	90.0	84.3	83.8	83.3	82.8	82.3	81.5	80.0	77.9	70.1	65.3
13000	90.7	85.5	85.0	84.5	84.0	83.5	82.6	81.1	79.0	71.1	66.2
13400	90.7	86.7	86.2	85.6	85.1	84.6	83.8	82.2	80.1	72.0	67.1
13800	90.7	87.8	87.3	86.8	86.3	85.7	84.9	83.3	81.2	73.0	68.0
14200	90.7	89.0	88.5	87.9	87.4	86.8	86.0	84.3	82.2	73.9	68.8
14600	90.7	90.1	89.6	89.1	88.5	88.0	87.1	85.4	83.3	74.8	69.7
15000	90.7	90.7	90.7	90.2	89.6	89.1	88.2	86.5	84.3	75.7	70.5
15400	90.7	90.7	90.7	90.7	90.7	90.2	89.3	87.6	85.3	76.6	71.3
CLIMB LIMIT	72.5	72.2	72.2	72.2	72.2	72.1	71.7	70.1	67.8	58.7	53.5
WT (1000 KG)	12.3	12.2	12.2	12.2	12.2	/2.1	/1./	/0.1	07.8	36.7	33.3

With engine bleed for packs off, increase field limit weight by $400~\mathrm{kg}$ and climb limit weight by $1150~\mathrm{kg}$.

Field Limit Weight Anti-Ice Adjustments

ANTI-ICE CONFIGURATION	FIELD LIMIT WEIGHT ADJUSTMENT (KG)					
	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>				
ENGINE ON	-150	-900				
ENGINE AND WING ON	-150	-900				

	•	
ANTI-ICE CONFIGURATION	CLIMB LIMIT WEIGH	T ADJUSTMENT (KG)
	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>
ENGINE ON	-150	-1000
ENGINE AND WING ON	-150	-1000

Takeoff Field & Climb Limit Weights - Dry Runway Flaps 5

Based on engine bleed for packs on and anti-ice off

Table 3(e) of 3: 8000 FT Pressure Altitude

CORR'D FIELD				FIEL	D LIMI	T WEIGI	TT (1000	KG)			
LENGTH					(OAT (°C)				
(FT)	-40	2	6	10	14	18	22	26	30	40	50
4000	46.7	43.7	43.4	43.2	42.9						
4200	48.0	45.0	44.7	44.5	44.2	43.0					
4600	50.7	47.6	47.3	47.0	46.7	45.4	44.2	42.9			
5000	53.3	50.0	49.7	49.4	49.1	47.8	46.4	45.1	43.8		
5400	55.7	52.2	51.9	51.6	51.3	49.9	48.5	47.1	45.8		
5800	58.0	54.3	54.0	53.7	53.4	51.9	50.5	49.0	47.6	44.3	
6200	60.1	56.3	56.0	55.7	55.3	53.8	52.3	50.8	49.3	45.9	42.8
6600	62.1	58.2	57.9	57.5	57.2	55.6	54.0	52.5	51.0	47.4	44.2
7000	64.1	60.0	59.7	59.3	59.0	57.3	55.7	54.1	52.5	48.9	45.6
7400	65.9	61.7	61.3	61.0	60.6	58.9	57.3	55.6	54.0	50.2	46.8
7800	67.7	63.4	63.0	62.6	62.2	60.5	58.8	57.1	55.4	51.5	48.0
8200	69.5	65.1	64.7	64.3	63.9	62.1	60.4	58.6	56.9	52.9	49.3
8600	71.3	66.8	66.3	65.9	65.5	63.7	61.9	60.1	58.4	54.3	50.6
9000	72.9	68.3	67.8	67.4	67.0	65.2	63.3	61.5	59.7	55.5	51.7
9400	74.1	69.4	69.0	68.6	68.2	66.3	64.4	62.5	60.7	56.4	52.6
9800	75.4	70.6	70.2	69.7	69.3	67.4	65.5	63.6	61.7	57.4	53.5
10200	76.7	71.8	71.4	70.9	70.5	68.6	66.6	64.7	62.8	58.3	54.3
10600	78.1	73.1	72.6	72.2	71.7	69.7	67.7	65.7	63.8	59.3	55.2
11000	79.4	74.3	73.8	73.4	72.9	70.9	68.8	66.8	64.8	60.2	56.1
11400	80.7	75.5	75.0	74.5	74.1	72.0	69.9	67.9	65.8	61.2	56.9
11800	81.9	76.6	76.2	75.7	75.2	73.1	71.0	68.9	66.9	62.1	57.8
12200	83.1	77.8	77.3	76.8	76.3	74.2	72.1	69.9	67.8	63.0	58.6
12600	84.3	78.9	78.4	77.9	77.4	75.3	73.1	70.9	68.8	63.9	59.5
13000	85.4	80.0	79.5	79.0	78.5	76.3	74.1	71.9	69.8	64.8	60.4
13400	86.6	81.1	80.5	80.0	79.6	77.3	75.1	72.9	70.7	65.7	61.2
13800	87.8	82.1	81.6	81.1	80.6	78.4	76.1	73.9	71.7	66.6	62.0
14200	88.9	83.2	82.7	82.2	81.7	79.4	77.1	74.8	72.6	67.4	62.7
14600	90.1	84.3	83.7	83.2	82.7	80.4	78.0	75.7	73.5	68.2	63.5
15000	90.7	85.3	84.8	84.2	83.7	81.4	79.0	76.7	74.4	69.0	64.2
15400	90.7	86.4	85.8	85.3	84.7	82.3	79.9	77.6	75.2	69.8	64.9
CLIMB LIMIT WT (1000 KG)	68.5	68.1	68.1	68.1	68.1	65.6	63.2	60.8	58.5	53.2	48.5

With engine bleed for packs off, increase field limit weight by $400~\mathrm{kg}$ and climb limit weight by $1150~\mathrm{kg}$.

Field Limit Weight Anti-Ice Adjustments

ANTI-ICE CONFIGURATION	FIELD LIMIT WEIGHT ADJUSTMENT (KG)					
	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>				
ENGINE ON	-150	-900				
ENGINE AND WING ON	-150	-900				

ANTI-ICE CONFIGURATION	CLIMB LIMIT WEIGHT ADJUSTMENT (KG)					
	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>				
ENGINE ON	-150	-1000				
ENGINE AND WING ON	-150	-1000				

Takeoff Field & Climb Limit Weights - Dry Runway Flaps 5

Based on engine bleed for packs on and anti-ice off Table 3(f) of 3: 10000 FT Pressure Altitude

CORR'D FIELD		FIELD LIMIT WEIGHT (1000 KG)									
LENGTH		OAT (°C)									
(FT)	-40	2	6	10	14	18	22	26	30	40	50
4000	43.7		U	10	14	10	22	20	30	40	30
4200	45.0										
4600	47.6	44.6	44.3	44.1	42.9						
5000	50.0	46.9	46.6	46.3	45.0	43.7					
5400	52.2	49.0	48.7	48.4	47.1	45.7	44.4	43.1			
5800	54.4	51.0	50.6	50.3	49.0	47.5	46.1	44.8	43.5		
6200	56.4	52.8	52.5	52.2	50.7	49.2	47.8	46.4	45.0		
6600	58.2	54.6	54.2	53.9	52.4	50.9	49.4	47.9	46.5	43.3	
7000	60.1	56.3	55.9	55.6	54.0	52.4	50.9	49.4	47.9	44.6	
7400	61.7	57.8	57.5	57.1	55.5	53.9	52.3	50.7	49.2	45.8	
7800	63.4	59.4	59.0	58.6	57.0	55.3	53.7	52.1	50.5	47.0	43.8
8200	65.1	61.0	60.6	60.2	58.6	56.8	55.1	53.5	51.9	48.2	44.9
8600	66.8	62.6	62.2	61.8	60.1	58.3	56.6	54.9	53.2	49.5	46.1
9000	68.3	63.9	63.5	63.1	61.4	59.6	57.8	56.1	54.4	50.6	47.1
9400	69.5	65.0	64.6	64.2	62.5	60.6	58.8	57.0	55.3	51.4	47.9
9800	70.6	66.2	65.7	65.3	63.5	61.6	59.8	58.0	56.3	52.3	48.7
10200	71.9	67.3	66.8	66.4	64.6	62.6	60.8	59.0	57.2	53.1	49.5
10600	73.1	68.4	68.0	67.6	65.7	63.7	61.8	59.9	58.1	54.0	50.2
11000	74.3	69.5	69.1	68.7	66.7	64.7	62.8	60.9	59.0	54.8	51.0
11400	75.5	70.6	70.2	69.7	67.8	65.7	63.8	61.8	60.0	55.7	51.8
11800	76.7	71.7	71.3	70.8	68.8	66.7	64.7	62.8	60.9	56.5	52.5
12200	77.8	72.8	72.3	71.9	69.8	67.7	65.7	63.7	61.8	57.3	53.3
12600	78.9	73.8	73.4	72.9	70.9	68.7	66.7	64.6	62.7	58.2	54.1
13000	80.0	74.9	74.4	73.9	71.9	69.7	67.6	65.6	63.6	59.0	54.9
13400	81.1	75.9	75.4	74.9	72.8	70.6	68.5	66.4	64.4	59.8	55.7
13800	82.2	76.9	76.4	75.9	73.8	71.6	69.4	67.3	65.3	60.6	56.4
14200	83.2	77.9	77.4	76.9	74.7	72.5	70.3	68.2	66.1	61.4	57.1
14600	84.3	78.8	78.3	77.8	75.7	73.4	71.1	69.0	66.9	62.1	57.7
15000	85.3	79.8	79.3	78.8	76.6	74.2	72.0	69.8	67.7	62.8	58.3
15400	86.4	80.8	80.2	79.7	77.5	75.1	72.8	70.6	68.4	63.4	58.9
CLIMB LIMIT	64.9	64.5	64.4	64.4	61.9	59.5	57.2	55.0	52.8	48.0	43.7
WT (1000 KG)	04.9	04.5	04.4	04.4	01.9	39.3	31.2	33.0	32.0	40.0	43.7

With engine bleed for packs off, increase field limit weight by $400~\mathrm{kg}$ and climb limit weight by $1150~\mathrm{kg}$.

Field Limit Weight Anti-Ice Adjustments

ANTI-ICE CONFIGURATION	FIELD LIMIT WEIGHT ADJUSTMENT (KG)				
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>			
ENGINE ON	-1450	-1450			
ENGINE AND WING ON	-1450	-1450			

	•				
ANTI-ICE CONFIGURATION	CLIMB LIMIT WEIGHT ADJUSTMENT (KG)				
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>			
ENGINE ON	-1350	-1400			
ENGINE AND WING ON	-1350	-1400			

Takeoff Field & Climb Limit Weights - Dry Runway Flaps 5

Based on engine bleed for packs on and anti-ice off Table 3(g) of 3: 12000 FT Pressure Altitude

CORR'D FIELD	FIELD LIMIT WEIGHT (1000 KG)										
LENGTH		OAT (°C)									
(FT)	-40	2	6	10	14	18	22	26	30	40	50
4600	44.1										
5000	46.3	43.5	43.2								
5400	48.4	45.4	45.1	43.8							
5800	50.3	47.2	46.9	45.5	44.1	42.8					
6200	52.2	49.0	48.6	47.2	45.7	44.4	43.0				
6600	53.9	50.6	50.2	48.8	47.2	45.8	44.4	43.1		P	
7000	55.6	52.1	51.8	50.2	48.7	47.2	45.8	44.4	43.0	E	
7400	57.1	53.6	53.2	51.6	50.0	48.5	47.0	45.5	44.2	R	
7800	58.6	55.0	54.6	53.0	51.3	49.8	48.2	46.7	45.3	F	
8200	60.2	56.5	56.1	54.4	52.7	51.1	49.5	48.0	46.5	О	
8600	61.8	57.9	57.5	55.8	54.0	52.4	50.8	49.2	47.8	R	
9000	63.2	59.2	58.8	57.1	55.3	53.6	51.9	50.3	48.8	M	
9400	64.3	60.2	59.8	58.0	56.2	54.5	52.8	51.2	49.6	A	
9800	65.3	61.3	60.8	59.0	57.1	55.4	53.7	52.0	50.4	N	
10200	66.5	62.3	61.8	60.0	58.1	56.3	54.6	52.9	51.3	C	
10600	67.6	63.3	62.9	61.0	59.0	57.2	55.4	53.7	52.1	Е	
11000	68.7	64.3	63.9	61.9	60.0	58.1	56.3	54.5	52.9		
11400	69.8	65.3	64.9	62.9	60.9	59.0	57.2	55.4	53.7	L	
11800	70.8	66.3	65.9	63.9	61.8	59.9	58.0	56.2	54.5	I	
12200	71.9	67.3	66.9	64.8	62.7	60.8	58.9	57.0	55.3	M	
12600	72.9	68.3	67.8	65.8	63.7	61.7	59.8	57.9	56.1	I	
13000	73.9	69.3	68.8	66.7	64.6	62.6	60.6	58.7	56.9	T	
13400	74.9	70.2	69.7	67.6	65.4	63.4	61.5	59.5	57.7	Е	
13800	75.9	71.1	70.6	68.5	66.3	64.3	62.3	60.3	58.4	D	
14200	76.9	72.0	71.5	69.4	67.1	65.1	63.0	61.0	59.2		
14600	77.9	72.9	72.4	70.2	67.9	65.8	63.8	61.8	59.8		
15000	78.8	73.8	73.3	71.0	68.7	66.6	64.5	62.4	60.5		
15400	79.7	74.6	74.1	71.8	69.5	67.3	65.2	63.1	61.1		
CLIMB LIMIT WT (1000 KG)	60.2	59.7	59.6	57.2	54.8	52.7	50.6	48.5	46.6		

With engine bleed for packs off, increase field limit weight by 400 kg and climb limit weight by 1150 kg.

Field Limit Weight Anti-Ice Adjustments

ANTI-ICE CONFIGURATION	FIELD LIMIT WEIGHT ADJUSTMENT (KG)				
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>			
ENGINE ON	-1450	-1450			
ENGINE AND WING ON	-1450	-1450			

ANTI-ICE CONFIGURATION	CLIMB LIMIT WEIGHT ADJUSTMENT (KG)				
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>			
ENGINE ON	-1350	-1400			
ENGINE AND WING ON	-1350	-1400			

Takeoff Field & Climb Limit Weights - Dry Runway Flaps 5

Based on engine bleed for packs on and anti-ice off Table 3(h) of 3: 14000 FT Pressure Altitude

CORR'D FIELD	FIELD LIMIT WEIGHT (1000 KG)										
LENGTH		OAT (°C)									
(FT)	-40	2	6	10	14	18	22	26	30	40	50
5000	42.9										
5400	44.8										
5800	46.6	43.7									
6200	48.3	45.3	44.0								
6600	49.9	46.8	45.4	44.0							
7000	51.5	48.2	46.8	45.3	43.8			P			
7400	52.9	49.5	48.1	46.5	45.0	43.5		Е			
7800	54.3	50.9	49.3	47.7	46.1	44.7	43.2	R			
8200	55.7	52.2	50.7	49.0	47.4	45.9	44.4	F			
8600	57.2	53.6	52.0	50.3	48.6	47.1	45.5	О			
9000	58.4	54.8	53.2	51.4	49.7	48.1	46.5	R			
9400	59.4	55.7	54.1	52.3	50.5	48.9	47.3	M			
9800	60.4	56.6	55.0	53.1	51.4	49.7	48.1	A			
10200	61.5	57.6	55.9	54.0	52.2	50.5	48.8	N			
10600	62.5	58.5	56.7	54.8	53.0	51.3	49.6	C			
11000	63.5	59.4	57.6	55.7	53.8	52.1	50.4	Е			
11400	64.5	60.3	58.5	56.6	54.7	52.9	51.1				
11800	65.5	61.3	59.4	57.4	55.5	53.6	51.9	L			
12200	66.4	62.2	60.3	58.3	56.3	54.5	52.7	I			
12600	67.4	63.1	61.2	59.1	57.2	55.3	53.5	M			
13000	68.3	64.0	62.1	60.0	58.0	56.1	54.2	I			
13400	69.3	64.9	62.9	60.8	58.8	56.8	55.0	T			
13800	70.2	65.7	63.7	61.6	59.5	57.6	55.7	Е			
14200	71.1	66.5	64.5	62.3	60.3	58.3	56.4	D			
14600	71.9	67.3	65.3	63.1	61.0	58.9	57.0				
15000	72.8	68.1	66.0	63.8	61.6	59.6	57.6				
15400	73.6	68.9	66.8	64.5	62.3	60.2	58.2				
CLIMB LIMIT WT (1000 KG)	55.7	55.3	53.1	50.8	48.6	46.5	44.5				

With engine bleed for packs off, increase field limit weight by $400~\mathrm{kg}$ and climb limit weight by $1150~\mathrm{kg}$.

Field Limit Weight Anti-Ice Adjustments

ANTI-ICE CONFIGURATION	FIELD LIMIT WEIGHT ADJUSTMENT (KG)				
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>			
ENGINE ON	-1450	-1450			
ENGINE AND WING ON	-1450	-1450			

ANTI-ICE CONFIGURATION	CLIMB LIMIT WEIGHT ADJUSTMENT (KG)					
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>				
ENGINE ON	-1350	-1400				
ENGINE AND WING ON	-1350	-1400				

Takeoff Field & Climb Limit Weights - Dry Runway Flaps 5

Based on engine bleed for packs on and anti-ice off

Table 3(i) of 3: 14500 FT Pressure Altitude

CORR'D FIELD				FIEL			HT (1000	KG)			
LENGTH						OAT (°C					
(FT)	-40	2	6	10	14	18	22	26	30	40	50
5400	44.0										
5800	45.7										
6200	47.4	44.3	42.9								
6600	49.0	45.7	44.3	42.8							
7000	50.5	47.1	45.6	44.1							
7400	51.8	48.4	46.8	45.3	43.8			P			
7800	53.2	49.6	48.1	46.5	44.9	43.4		E			
8200	54.7	51.0	49.4	47.7	46.1	44.6	43.2	R			
8600	56.1	52.3	50.7	49.0	47.3	45.8	44.3	F			
9000	57.3	53.5	51.8	50.0	48.4	46.8	45.3	О			
9400	58.3	54.4	52.7	50.9	49.2	47.6	46.0	R			
9800	59.3	55.3	53.5	51.7	50.0	48.3	46.8	M			
10200	60.3	56.2	54.4	52.6	50.8	49.1	47.5	A			
10600	61.3	57.1	55.3	53.4	51.6	49.9	48.2	N			
11000	62.2	58.0	56.1	54.2	52.4	50.6	49.0	C			
11400	63.2	58.9	57.0	55.0	53.2	51.4	49.7	Е			
11800	64.2	59.8	57.8	55.9	54.0	52.1	50.4				
12200	65.1	60.7	58.7	56.7	54.8	52.9	51.2	L			
12600	66.1	61.6	59.6	57.6	55.6	53.8	52.0	I			
13000	67.0	62.4	60.4	58.4	56.4	54.5	52.7	M			
13400	67.9	63.3	61.3	59.2	57.2	55.3	53.5	I			
13800	68.8	64.1	62.1	59.9	57.9	56.0	54.1	T			
14200	69.7	64.9	62.8	60.7	58.6	56.7	54.8	E			
14600	70.5	65.7	63.6	61.4	59.3	57.3	55.4	D			
15000	71.3	66.4	64.3	62.1	59.9	57.9	56.0				
15400	72.2	67.2	65.0	62.7	60.6	58.5	56.5				
CLIMB LIMIT WT (1000 KG)	54.7	53.8	51.5	49.3	47.1	45.1	43.2				

With engine bleed for packs off, increase field limit weight by 400 kg and climb limit weight by 1150 kg.

Field Limit Weight Anti-Ice Adjustments

ANTI-ICE CONFIGURATION	FIELD LIMIT WEIGHT ADJUSTMENT (KG)					
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>				
ENGINE ON	-1450	-1450				
ENGINE AND WING ON	-1450	-1450				

ANTI-ICE CONFIGURATION	CLIMB LIMIT WEIGHT ADJUSTMENT (KG)					
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>				
ENGINE ON	-1350	-1400				
ENGINE AND WING ON	-1350	-1400				

737 Flight Crew Operations Manual

Takeoff Field Corrections - Wet Runway Table 1 of 3: Slope Correction

FIELD LENGTH			SLOPE	E CORREC	TED FIEL	D LENGT	H (FT)		
AVAILABLE				RUNV	VAY SLOP	PE (%)	,		
(FT)	-2.0	-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5	2.0
4200	4230	4220	4210	4210	4200	4100	4010	3910	3820
4600	4680	4660	4640	4620	4600	4490	4380	4270	4150
5000	5130	5100	5070	5030	5000	4870	4750	4620	4490
5400	5580	5540	5490	5450	5400	5260	5120	4970	4830
5800	6040	5980	5920	5860	5800	5640	5480	5330	5170
6200	6490	6420	6340	6270	6200	6030	5850	5680	5510
6600	6940	6860	6770	6690	6600	6410	6220	6030	5850
7000	7390	7300	7200	7100	7000	6800	6590	6390	6180
7400	7850	7730	7620	7510	7400	7180	6960	6740	6520
7800	8300	8170	8050	7920	7800	7570	7330	7100	6860
8200	8750	8610	8480	8340	8200	7950	7700	7450	7200
8600	9200	9050	8900	8750	8600	8330	8070	7800	7540
9000	9660	9490	9330	9160	9000	8720	8440	8160	7880
9400	10110	9930	9750	9580	9400	9100	8810	8510	8220
9800	10560	10370	10180	9990	9800	9490	9180	8870	8550
10200	11010	10810	10610	10400	10200	9870	9550	9220	8890
10600	11470	11250	11030	10820	10600	10260	9920	9570	9230
11000	11920	11690	11460	11230	11000	10640	10280	9930	9570
11400	12370	12130	11890	11640	11400	11030	10650	10280	9910
11800	12820	12570	12310	12060	11800	11410	11020	10630	10250
12200	13280	13010	12740	12470	12200	11800	11390	10990	10580
12600	13730	13450	13160	12880	12600	12180	11760	11340	10920
13000	14180	13890	13590	13300	13000	12570	12130	11700	11260
13400	14630	14330	14020	13710	13400	12950	12500	12050	11600
13800	15090	14760	14440	14120	13800	13330	12870	12400	11940
14200	15540	15200	14870	14530	14200	13720	13240	12760	12280
14600	15990	15640	15300	14950	14600	14100	13610	13110	12620
15000	16440	16080	15720	15360	15000	14490	13980	13470	12950
15400	16900	16520	16150	15770	15400	14870	14350	13820	13290
15800	17350	16960	16570	16190	15800	15260	14720	14170	13630

Takeoff Field Corrections - Wet Runway Table 2 of 3: Wind Correction

SLOPE CORR'D		SLOF	E AND WI	ND CORRE	CTED FIEL	D LENGTH	I (FT)	
FIELD LENGTH			W	IND COMP	ONENT (KT	TS)		
(FT)	-15	-10	-5	0	10	20	30	40
4200	2860	3300	3750	4200	4360	4560	4800	5070
4600	3190	3660	4130	4600	4770	4980	5230	5520
5000	3530	4020	4510	5000	5180	5400	5660	5960
5400	3870	4380	4890	5400	5590	5830	6100	6410
5800	4200	4740	5270	5800	6000	6250	6530	6850
6200	4540	5090	5650	6200	6410	6670	6960	7300
6600	4880	5450	6030	6600	6830	7090	7400	7740
7000	5220	5810	6410	7000	7240	7510	7830	8190
7400	5550	6170	6780	7400	7650	7930	8260	8630
7800	5890	6530	7160	7800	8060	8360	8700	9080
8200	6230	6890	7540	8200	8470	8780	9130	9520
8600	6570	7240	7920	8600	8880	9200	9560	9970
9000	6900	7600	8300	9000	9290	9620	10000	10410
9400	7240	7960	8680	9400	9700	10040	10430	10860
9800	7580	8320	9060	9800	10110	10460	10860	11300
10200	7920	8680	9440	10200	10520	10890	11290	11750
10600	8250	9040	9820	10600	10930	11310	11730	12190
11000	8590	9390	10200	11000	11340	11730	12160	12640
11400	8930	9750	10580	11400	11750	12150	12590	13080
11800	9260	10110	10950	11800	12160	12570	13030	13530
12200	9600	10470	11330	12200	12570	12990	13460	13970
12600	9940	10830	11710	12600	12980	13420	13890	14420
13000	10280	11180	12090	13000	13400	13840	14330	14860
13400	10610	11540	12470	13400	13810	14260	14760	15310
13800	10950	11900	12850	13800	14220	14680	15190	15750
14200	11290	12260	13230	14200	14630	15100	15630	16200
14600	11630	12620	13610	14600	15040	15520	16060	16640
15000	11960	12980	13990	15000	15450	15950	16490	17090
15400	12300	13330	14370	15400	15860	16370	16930	17530
15800	12640	13690	14750	15800	16270	16790	17360	17980

Takeoff Field & Climb Limit Weights - Wet Runway Flaps 5

Based on engine bleed for packs on and anti-ice off Table 3(a) of 3: Sea Level Pressure Altitude

CORR'D FIELD				FIEL	D LIMI	WEIGI	HT (1000	KG)			
LENGTH					(OAT (°C)				
(FT)	-40	2	6	10	14	18	22	26	30	40	50
4100	61.2	57.2	56.8	56.5	56.2	55.8	55.5	55.1	54.8	51.2	47.9
4200	62.1	58.0	57.6	57.3	56.9	56.6	56.2	55.9	55.5	51.9	48.5
4600	65.3	61.0	60.7	60.3	59.9	59.6	59.2	58.8	58.5	54.6	51.1
5000	68.5	64.0	63.6	63.2	62.8	62.4	62.1	61.7	61.3	57.3	53.6
5400	71.6	66.8	66.4	66.0	65.6	65.2	64.8	64.4	64.0	59.7	55.9
5800	74.5	69.5	69.1	68.6	68.2	67.8	67.4	67.0	66.6	62.1	58.0
6200	77.3	72.1	71.6	71.2	70.7	70.3	69.9	69.4	69.0	64.4	60.1
6600	79.9	74.5	74.0	73.6	73.1	72.7	72.2	71.8	71.3	66.5	62.1
7000	82.4	76.8	76.3	75.8	75.4	74.9	74.4	74.0	73.5	68.5	64.0
7400	84.5	78.8	78.3	77.8	77.3	76.8	76.4	75.9	75.4	70.3	65.6
7800	86.7	80.8	80.3	79.8	79.3	78.8	78.3	77.8	77.4	72.1	67.3
8200	89.1	83.1	82.6	82.0	81.5	81.0	80.5	80.0	79.5	74.1	69.1
8600	90.7	85.3	84.8	84.2	83.7	83.2	82.6	82.0	81.4	76.0	70.9
9000	90.7	87.3	86.7	86.2	85.6	85.1	84.5	84.0	83.5	77.8	72.6
9400	90.7	88.8	88.2	87.7	87.1	86.6	86.0	85.5	84.9	79.1	73.8
9800	90.7	90.3	89.8	89.2	88.6	88.1	87.5	87.0	86.4	80.5	75.1
10200	90.7	90.7	90.7	90.7	90.3	89.7	89.1	88.6	88.0	82.0	76.5
10600	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.3	89.7	83.5	77.9
11000	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	85.0	79.3
11400	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	86.5	80.6
11800	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	88.0	82.0
12200	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	89.3	83.3
12600	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	84.5
13000	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	85.7
13400	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	86.9
13800	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	88.1
14200	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	89.3
14600	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.5
15000	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7
15400	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7
CLIMB LIMIT WT (1000 KG)	86.3	86.2	86.2	86.2	86.2	86.1	86.1	86.1	86.1	78.5	71.4

With engine bleed for packs off, increase field limit weight by $400~\mathrm{kg}$ and climb limit weight by $1150~\mathrm{kg}$.

Field Limit Weight Anti-Ice Adjustments

ANTI-ICE CONFIGURATION	FIELD LIMIT WEIGHT ADJUSTMENT (KG)						
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>					
ENGINE ON	-100	-550					
ENGINE AND WING ON	-100	-550					

ANTI-ICE CONFIGURATION	CLIMB LIMIT WEIGHT ADJUSTMENT (KG)					
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>				
ENGINE ON	-150	-1000				
ENGINE AND WING ON	-150	-1000				

Takeoff Field & Climb Limit Weights - Wet Runway Flaps 5

Based on engine bleed for packs on and anti-ice off Table 3(b) of 3: 2000 FT Pressure Altitude

CORR'D FIELD				FIEL			TT (1000	KG)			
LENGTH						OAT (°C					
(FT)	-40	2	6	10	14	18	22	26	30	40	50
4100	57.7	53.5	53.1	52.8	52.5	52.1	51.8	51.6	50.6	47.4	44.0
4200	58.5	54.2	53.9	53.5	53.2	52.9	52.5	52.3	51.3	48.1	44.6
4600	61.6	57.1	56.7	56.4	56.0	55.7	55.3	55.0	54.0	50.6	47.0
5000	64.6	59.9	59.5	59.1	58.7	58.3	58.0	57.7	56.6	53.0	49.3
5400	67.4	62.5	62.1	61.6	61.3	60.9	60.5	60.2	59.1	55.3	51.3
5800	70.2	65.0	64.5	64.1	63.7	63.3	62.9	62.6	61.4	57.5	53.3
6200	72.8	67.4	66.9	66.4	66.0	65.6	65.2	64.8	63.6	59.6	55.2
6600	75.2	69.6	69.1	68.7	68.2	67.8	67.4	67.0	65.7	61.5	57.0
7000	77.5	71.7	71.2	70.8	70.3	69.9	69.4	69.0	67.7	63.3	58.7
7400	79.6	73.6	73.1	72.6	72.1	71.7	71.2	70.8	69.5	65.0	60.2
7800	81.6	75.5	75.0	74.5	74.0	73.5	73.1	72.6	71.2	66.6	61.7
8200	83.9	77.6	77.0	76.5	76.0	75.5	75.1	74.6	73.2	68.4	63.4
8600	86.1	79.6	79.1	78.5	78.0	77.5	77.1	76.6	75.1	70.3	65.0
9000	88.1	81.5	80.9	80.3	79.8	79.3	78.8	78.4	76.9	71.9	66.5
9400	89.6	82.9	82.3	81.7	81.2	80.7	80.2	79.7	78.2	73.1	67.7
9800	90.7	84.3	83.7	83.2	82.6	82.1	81.6	81.1	79.6	74.4	68.9
10200	90.7	85.9	85.3	84.7	84.1	83.6	83.1	82.6	81.0	75.7	70.1
10600	90.7	87.5	86.9	86.3	85.7	85.2	84.7	84.2	82.5	77.1	71.4
11000	90.7	89.1	88.5	87.9	87.3	86.7	86.2	85.7	84.0	78.5	72.6
11400	90.7	90.7	90.0	89.4	88.8	88.2	87.7	87.2	85.5	79.9	73.9
11800	90.7	90.7	90.7	90.7	90.3	89.7	89.2	88.6	86.9	81.2	75.0
12200	90.7	90.7	90.7	90.7	90.7	90.7	90.6	90.0	88.3	82.4	76.2
12600	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	89.6	83.7	77.3
13000	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	84.9	78.5
13400	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	86.1	79.6
13800	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	87.3	80.6
14200	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	88.4	81.7
14600	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	89.6	82.7
15000	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	83.8
15400	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	84.8
CLIMB LIMIT WT (1000 KG)	81.6	81.3	81.3	81.2	81.2	81.2	81.3	81.4	79.5	72.4	65.0

With engine bleed for packs off, increase field limit weight by 400 kg and climb limit weight by 1150 kg.

Field Limit Weight Anti-Ice Adjustments

ANTI-ICE CONFIGURATION	FIELD LIMIT WEIGHT ADJUSTMENT (KG)					
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>				
ENGINE ON	-100	-550				
ENGINE AND WING ON	-100	-550				

ANTI-ICE CONFIGURATION	CLIMB LIMIT WEIGHT ADJUSTMENT (KG)					
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>				
ENGINE ON	-150	-1000				
ENGINE AND WING ON	-150	-1000				

Takeoff Field & Climb Limit Weights - Wet Runway Flaps 5

Based on engine bleed for packs on and anti-ice off Table 3(c) of 3: 4000 FT Pressure Altitude

CORR'D FIELD				FIEL	D LIMI	WEIGI	HT (1000	KG)			
LENGTH					(OAT (°C)				
(FT)	-40	2	6	10	14	18	22	26	30	40	50
4100	54.1	50.1	49.8	49.5	49.1	48.8	48.6	47.9	46.9	43.4	
4200	54.8	50.8	50.5	50.1	49.8	49.5	49.2	48.6	47.5	44.0	
4600	57.8	53.5	53.1	52.8	52.5	52.1	51.8	51.1	50.1	46.3	43.3
5000	60.5	56.1	55.7	55.3	55.0	54.6	54.3	53.6	52.5	48.5	45.3
5400	63.2	58.5	58.1	57.7	57.4	57.0	56.7	55.9	54.7	50.6	47.2
5800	65.7	60.8	60.4	60.0	59.6	59.2	58.9	58.1	56.8	52.5	49.0
6200	68.1	63.0	62.6	62.2	61.8	61.4	61.0	60.2	58.9	54.4	50.7
6600	70.4	65.1	64.7	64.2	63.8	63.4	63.0	62.2	60.8	56.1	52.3
7000	72.6	67.1	66.6	66.2	65.7	65.3	64.9	64.0	62.6	57.8	53.8
7400	74.4	68.8	68.3	67.9	67.4	67.0	66.6	65.7	64.2	59.3	55.2
7800	76.4	70.6	70.1	69.6	69.1	68.7	68.3	67.3	65.9	60.8	56.6
8200	78.5	72.5	72.0	71.5	71.0	70.6	70.1	69.2	67.7	62.4	58.1
8600	80.4	74.4	73.9	73.4	72.9	72.4	72.0	71.0	69.4	64.1	59.6
9000	82.4	76.1	75.6	75.1	74.6	74.1	73.6	72.6	71.0	65.5	61.0
9400	83.8	77.4	76.9	76.4	75.9	75.4	74.9	73.9	72.3	66.7	62.0
9800	85.3	78.8	78.2	77.7	77.2	76.7	76.2	75.2	73.5	67.8	63.1
10200	86.9	80.2	79.7	79.1	78.6	78.1	77.6	76.6	74.9	69.0	64.2
10600	88.5	81.7	81.2	80.6	80.1	79.6	79.1	78.0	76.2	70.3	65.4
11000	90.1	83.2	82.6	82.1	81.5	81.0	80.5	79.4	77.6	71.5	66.5
11400	90.7	84.6	84.0	83.5	82.9	82.4	81.9	80.7	78.9	72.7	67.6
11800	90.7	86.0	85.4	84.8	84.3	83.7	83.2	82.0	80.2	73.9	68.7
12200	90.7	87.4	86.8	86.2	85.6	85.0	84.5	83.3	81.5	75.0	69.7
12600	90.7	88.7	88.1	87.5	86.9	86.3	85.8	84.6	82.7	76.1	70.7
13000	90.7	90.0	89.4	88.7	88.1	87.6	87.0	85.8	83.9	77.2	71.8
13400	90.7	90.7	90.6	90.0	89.4	88.8	88.3	87.0	85.1	78.3	72.7
13800	90.7	90.7	90.7	90.7	90.6	90.0	89.5	88.2	86.2	79.4	73.7
14200	90.7	90.7	90.7	90.7	90.7	90.7	90.7	89.4	87.4	80.4	74.7
14600	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.6	88.5	81.4	75.6
15000	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	89.6	82.5	76.5
15400	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7	83.4	77.4
CLIMB LIMIT WT (1000 KG)	76.9	76.7	76.6	76.6	76.6	76.6	76.6	75.6	73.5	65.4	59.0

With engine bleed for packs off, increase field limit weight by 400 kg and climb limit weight by 1150 kg.

Field Limit Weight Anti-Ice Adjustments

ANTI-ICE CONFIGURATION	FIELD LIMIT WEIGHT ADJUSTMENT (KG)					
	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>				
ENGINE ON	-100	-550				
ENGINE AND WING ON	-100	-550				

ANTI-ICE CONFIGURATION	CLIMB LIMIT WEIGH	T ADJUSTMENT (KG)
	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>
ENGINE ON	-150	-1000
ENGINE AND WING ON	-150	-1000

Takeoff Field & Climb Limit Weights - Wet Runway Flaps 5

Based on engine bleed for packs on and anti-ice off Table 3(d) of 3: 6000 FT Pressure Altitude

CORR'D FIELD				FIEL			TT (1000	KG)			
LENGTH						OAT (°C)					
(FT)	-40	2	6	10	14	18	22	26	30	40	50
4100	50.5	46.9	46.6	46.3	46.0	45.7	45.3	44.5	43.4		
4200	51.2	47.5	47.2	46.9	46.6	46.3	45.9	45.1	44.0		
4600	54.0	50.1	49.7	49.4	49.1	48.8	48.3	47.5	46.3		
5000	56.5	52.5	52.1	51.8	51.5	51.1	50.6	49.7	48.6	44.4	
5400	59.0	54.7	54.4	54.0	53.7	53.3	52.8	51.8	50.6	46.2	43.4
5800	61.3	56.9	56.5	56.1	55.7	55.4	54.8	53.8	52.6	48.0	45.0
6200	63.6	58.9	58.5	58.1	57.7	57.4	56.8	55.7	54.4	49.6	46.5
6600	65.7	60.8	60.4	60.0	59.6	59.2	58.6	57.6	56.2	51.2	48.0
7000	67.6	62.6	62.2	61.8	61.4	61.0	60.4	59.3	57.8	52.7	49.4
7400	69.4	64.2	63.8	63.4	63.0	62.5	61.9	60.8	59.3	54.0	50.6
7800	71.2	65.9	65.4	65.0	64.6	64.1	63.5	62.3	60.8	55.3	51.9
8200	73.1	67.7	67.2	66.8	66.3	65.9	65.2	64.0	62.4	56.8	53.2
8600	75.1	69.5	69.0	68.5	68.1	67.6	66.9	65.7	64.1	58.3	54.6
9000	76.8	71.0	70.6	70.1	69.6	69.2	68.5	67.2	65.5	59.6	55.9
9400	78.1	72.3	71.8	71.3	70.8	70.4	69.7	68.3	66.7	60.7	56.8
9800	79.5	73.5	73.0	72.5	72.1	71.6	70.9	69.5	67.8	61.7	57.8
10200	80.9	74.9	74.4	73.9	73.4	72.9	72.1	70.8	69.1	62.8	58.8
10600	82.5	76.3	75.7	75.2	74.7	74.2	73.5	72.1	70.3	63.9	59.9
11000	83.9	77.6	77.1	76.6	76.0	75.5	74.8	73.3	71.5	65.0	60.9
11400	85.4	78.9	78.4	77.9	77.3	76.8	76.0	74.6	72.7	66.1	61.8
11800	86.8	80.2	79.7	79.1	78.6	78.1	77.3	75.8	73.9	67.2	62.8
12200	88.2	81.5	80.9	80.4	79.8	79.3	78.5	77.0	75.1	68.2	63.8
12600	89.5	82.7	82.1	81.6	81.0	80.5	79.6	78.1	76.2	69.2	64.7
13000	90.7	83.9	83.3	82.7	82.2	81.6	80.8	79.2	77.3	70.2	65.6
13400	90.7	85.1	84.5	83.9	83.3	82.8	81.9	80.4	78.3	71.1	66.5
13800	90.7	86.2	85.6	85.1	84.5	83.9	83.0	81.4	79.4	72.1	67.4
14200	90.7	87.4	86.8	86.2	85.6	85.0	84.1	82.5	80.5	73.0	68.3
14600	90.7	88.5	87.9	87.3	86.7	86.1	85.2	83.6	81.5	73.9	69.1
15000	90.7	89.6	89.0	88.4	87.8	87.2	86.3	84.6	82.5	74.8	69.9
15400	90.7	90.7	90.1	89.5	88.9	88.3	87.3	85.6	83.5	75.7	70.7
CLIMB LIMIT WT (1000 KG)	72.5	72.2	72.2	72.2	72.2	72.1	71.7	70.1	67.8	58.7	53.5

With engine bleed for packs off, increase field limit weight by 400 kg and climb limit weight by 1150 kg.

Field Limit Weight Anti-Ice Adjustments

ANTI-ICE CONFIGURATION	FIELD LIMIT WEIGHT ADJUSTMENT (KG)					
	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>				
ENGINE ON	-100	-550				
ENGINE AND WING ON	-100	-550				

ANTI-ICE CONFIGURATION	CLIMB LIMIT WEIGHT ADJUSTMENT (KG)				
	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>			
ENGINE ON	-150	-1000			
ENGINE AND WING ON	-150	-1000			

Takeoff Field & Climb Limit Weights - Wet Runway Flaps 5

Based on engine bleed for packs on and anti-ice off Table 3(e) of 3: 8000 FT Pressure Altitude

CORR'D FIELD		FIELD LIMIT WEIGHT (1000 KG)									
LENGTH					(OAT (°C)				
(FT)	-40	2	6	10	14	18	22	26	30	40	50
4100	47.4	43.9	43.6	43.4	43.1						
4200	48.0	44.5	44.2	43.9	43.7						
4600	50.6	46.9	46.6	46.3	46.0	44.9	43.7				
5000	53.0	49.1	48.8	48.5	48.2	47.0	45.8	44.6	43.5		
5400	55.3	51.2	50.9	50.5	50.2	49.0	47.7	46.5	45.3		
5800	57.5	53.2	52.8	52.5	52.2	50.8	49.5	48.2	47.0	44.0	
6200	59.5	55.1	54.7	54.3	54.0	52.6	51.2	49.9	48.6	45.5	
6600	61.5	56.9	56.5	56.1	55.7	54.3	52.9	51.5	50.1	46.9	44.0
7000	63.3	58.5	58.1	57.7	57.4	55.9	54.4	53.0	51.6	48.2	45.2
7400	64.9	60.0	59.6	59.2	58.8	57.3	55.8	54.3	52.9	49.4	46.3
7800	66.6	61.5	61.1	60.7	60.3	58.7	57.2	55.7	54.2	50.7	47.5
8200	68.4	63.2	62.8	62.3	61.9	60.3	58.7	57.2	55.6	52.0	48.7
8600	70.2	64.9	64.4	64.0	63.6	61.9	60.3	58.7	57.1	53.4	50.0
9000	71.8	66.4	65.9	65.4	65.0	63.3	61.6	60.0	58.4	54.6	51.1
9400	73.1	67.5	67.0	66.6	66.1	64.4	62.7	61.1	59.4	55.5	52.0
9800	74.3	68.7	68.2	67.7	67.3	65.5	63.8	62.1	60.4	56.5	52.9
10200	75.7	69.9	69.4	68.9	68.5	66.7	64.9	63.2	61.5	57.5	53.8
10600	77.1	71.2	70.7	70.2	69.7	67.9	66.1	64.3	62.6	58.5	54.7
11000	78.5	72.4	71.9	71.4	71.0	69.1	67.2	65.4	63.6	59.4	55.6
11400	79.8	73.7	73.1	72.6	72.1	70.2	68.4	66.5	64.7	60.4	56.5
11800	81.1	74.9	74.3	73.8	73.3	71.4	69.4	67.6	65.7	61.3	57.4
12200	82.4	76.0	75.5	74.9	74.4	72.5	70.5	68.6	66.7	62.3	58.2
12600	83.6	77.1	76.6	76.0	75.5	73.5	71.6	69.6	67.7	63.2	59.1
13000	84.8	78.3	77.7	77.1	76.6	74.6	72.6	70.6	68.7	64.1	59.9
13400	86.0	79.3	78.8	78.2	77.7	75.6	73.6	71.6	69.6	65.0	60.7
13800	87.2	80.4	79.8	79.3	78.8	76.7	74.6	72.5	70.5	65.8	61.5
14200	88.4	81.5	80.9	80.3	79.8	77.7	75.5	73.5	71.4	66.6	62.3
14600	89.5	82.5	81.9	81.3	80.8	78.6	76.5	74.4	72.3	67.5	63.0
15000	90.6	83.6	82.9	82.4	81.8	79.6	77.4	75.3	73.2	68.3	63.8
15400	90.7	84.6	83.9	83.3	82.8	80.6	78.3	76.2	74.1	69.0	64.5
CLIMB LIMIT WT (1000 KG)	68.5	68.1	68.1	68.1	68.1	65.6	63.2	60.8	58.5	53.2	48.5

With engine bleed for packs off, increase field limit weight by 400 kg and climb limit weight by 1150 kg.

Field Limit Weight Anti-Ice Adjustments

ANTI-ICE CONFIGURATION	FIELD LIMIT WEIGHT ADJUSTMENT (KG)					
	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>				
ENGINE ON	-100	-550				
ENGINE AND WING ON	-100	-550				

ANTI-ICE CONFIGURATION	CLIMB LIMIT WEIGH	IT ADJUSTMENT (KG)
	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>
ENGINE ON	-150	-1000
ENGINE AND WING ON	-150	-1000

Takeoff Field & Climb Limit Weights - Wet Runway

Flaps 5

Based on engine bleed for packs on and anti-ice off

Table 3(f) of 3: 10000 FT Pressure Altitude

CORR'D FIELD				FIEL			HT (1000	KG)			
LENGTH						OAT (°C	/				
(FT)	-40	2	6	10	14	18	22	26	30	40	50
4100	44.4										
4200	45.0										
4600	47.4	44.0	43.7	43.5							
5000	49.7	46.1	45.8	45.5	44.4	43.2					
5400	51.8	48.1	47.7	47.4	46.2	45.0	43.8				
5800	53.8	49.9	49.6	49.2	47.9	46.7	45.4	44.2	43.1		
6200	55.7	51.6	51.3	50.9	49.6	48.3	47.0	45.7	44.5		
6600	57.5	53.3	52.9	52.6	51.2	49.8	48.5	47.2	45.9	42.9	
7000	59.2	54.8	54.5	54.1	52.6	51.2	49.8	48.5	47.2	44.1	
7400	60.7	56.2	55.8	55.5	54.0	52.5	51.1	49.7	48.3	45.2	
7800	62.3	57.6	57.2	56.9	55.3	53.8	52.4	50.9	49.5	46.3	43.4
8200	64.0	59.2	58.8	58.4	56.8	55.3	53.8	52.3	50.9	47.5	44.5
8600	65.6	60.7	60.3	59.9	58.3	56.7	55.2	53.7	52.2	48.8	45.6
9000	67.1	62.1	61.7	61.3	59.6	58.0	56.4	54.9	53.3	49.8	46.7
9400	68.3	63.2	62.8	62.3	60.7	59.0	57.4	55.8	54.3	50.7	47.5
9800	69.5	64.3	63.8	63.4	61.7	60.0	58.4	56.8	55.2	51.6	48.3
10200	70.7	65.4	65.0	64.6	62.8	61.1	59.4	57.8	56.2	52.5	49.1
10600	72.0	66.6	66.1	65.7	63.9	62.1	60.4	58.8	57.1	53.4	49.9
11000	73.3	67.8	67.3	66.8	65.0	63.2	61.5	59.8	58.1	54.2	50.7
11400	74.5	68.9	68.4	67.9	66.1	64.2	62.5	60.7	59.0	55.1	51.5
11800	75.7	70.0	69.5	69.0	67.1	65.2	63.4	61.7	59.9	55.9	52.3
12200	76.9	71.1	70.6	70.1	68.2	66.2	64.4	62.6	60.8	56.8	53.1
12600	78.1	72.1	71.6	71.1	69.2	67.2	65.4	63.5	61.7	57.6	53.8
13000	79.2	73.1	72.6	72.1	70.1	68.2	66.3	64.4	62.6	58.4	54.6
13400	80.3	74.2	73.6	73.1	71.1	69.1	67.2	65.3	63.5	59.2	55.3
13800	81.4	75.2	74.6	74.1	72.1	70.0	68.1	66.2	64.3	59.9	56.0
14200	82.5	76.1	75.6	75.1	73.0	70.9	69.0	67.0	65.1	60.7	56.7
14600	83.5	77.1	76.6	76.0	73.9	71.8	69.8	67.8	65.9	61.4	57.3
15000	84.6	78.0	77.5	77.0	74.8	72.7	70.6	68.6	66.7	62.1	58.0
15400	85.6	79.0	78.4	77.9	75.7	73.5	71.4	69.4	67.4	62.8	58.6
CLIMB LIMIT WT (1000 KG)	64.9	64.5	64.4	64.4	61.9	59.5	57.2	55.0	52.8	48.0	43.7

With engine bleed for packs off, increase field limit weight by $400 \ kg$ and climb limit weight by $1150 \ kg$.

Field Limit Weight Anti-Ice Adjustments

ANTI-ICE CONFIGURATION	FIELD LIMIT WEIGHT ADJUSTMENT (KG)					
	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>				
ENGINE ON	-1250	-1000				
ENGINE AND WING ON	-1250	-1000				

ANTI-ICE CONFIGURATION	CLIMB LIMIT WEIGHT ADJUSTMENT (KG)				
	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>			
ENGINE ON	-1350	-1400			
ENGINE AND WING ON	-1350	-1400			

Takeoff Field & Climb Limit Weights - Wet Runway Flaps 5

Based on engine bleed for packs on and anti-ice off Table 3(g) of 3: 12000 FT Pressure Altitude

CORR'D FIELD		FIELD LIMIT WEIGHT (1000 KG)									
LENGTH						OAT (°C)				
(FT)	-40	2	6	10	14	18	22	26	30	40	50
4600	44.0										
5000	46.1	42.8									
5400	48.1	44.6	44.3	43.1							
5800	49.9	46.3	45.9	44.7	43.5						
6200	51.6	47.9	47.5	46.2	44.9	43.7				P	
6600	53.3	49.4	49.0	47.7	46.3	45.0	43.8			E	
7000	54.8	50.8	50.4	49.0	47.6	46.3	45.0	43.7		R	
7400	56.2	52.0	51.7	50.2	48.8	47.5	46.1	44.8	43.6	F	
7800	57.6	53.3	53.0	51.5	50.0	48.6	47.3	45.9	44.6	О	
8200	59.2	54.8	54.4	52.9	51.3	49.9	48.5	47.1	45.8	R	
8600	60.7	56.2	55.8	54.2	52.7	51.2	49.8	48.3	47.0	M	
9000	62.1	57.5	57.0	55.5	53.9	52.4	50.9	49.4	48.0	Α	
9400	63.2	58.5	58.0	56.4	54.8	53.3	51.8	50.3	48.9	N	
9800	64.3	59.5	59.0	57.4	55.7	54.2	52.7	51.1	49.7	C	
10200	65.4	60.5	60.1	58.4	56.7	55.1	53.6	52.0	50.6	E	
10600	66.6	61.6	61.1	59.4	57.7	56.1	54.5	52.9	51.4		
11000	67.8	62.6	62.2	60.4	58.7	57.0	55.4	53.7	52.2	L	
11400	68.9	63.7	63.2	61.4	59.6	57.9	56.2	54.6	53.0	I	
11800	70.0	64.7	64.2	62.4	60.5	58.8	57.1	55.4	53.8	M	
12200	71.1	65.7	65.2	63.3	61.4	59.7	58.0	56.3	54.6	I	
12600	72.1	66.6	66.1	64.2	62.3	60.6	58.8	57.1	55.4	T	
13000	73.2	67.6	67.1	65.1	63.2	61.4	59.6	57.9	56.2	E	
13400	74.2	68.5	68.0	66.0	64.1	62.3	60.4	58.7	57.0	D	
13800	75.2	69.4	68.9	66.9	64.9	63.1	61.2	59.4	57.7		
14200	76.1	70.3	69.8	67.8	65.7	63.9	62.0	60.1	58.4		
14600	77.1	71.2	70.6	68.6	66.5	64.6	62.7	60.9	59.1		
15000	78.0	72.0	71.5	69.4	67.3	65.4	63.4	61.6	59.8		
15400	79.0	72.8	72.3	70.2	68.1	66.1	64.1	62.2	60.4		
CLIMB LIMIT WT (1000 KG)	60.2	59.7	59.6	57.2	54.8	52.7	50.6	48.5	46.6		

With engine bleed for packs off, increase field limit weight by 400 kg and climb limit weight by 1150 kg.

Field Limit Weight Anti-Ice Adjustments

ANTI-ICE CONFIGURATION	FIELD LIMIT WEIGHT ADJUSTMENT (KG)						
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>					
ENGINE ON	-1250	-1000					
ENGINE AND WING ON	-1250	-1000					

ANTI-ICE CONFIGURATION	CLIMB LIMIT WEIGHT ADJUSTMENT (KG)						
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>					
ENGINE ON	-1350	-1400					
ENGINE AND WING ON	-1350	-1400					

Takeoff Field & Climb Limit Weights - Wet Runway

Flaps 5

Based on engine bleed for packs on and anti-ice off

Table 3(h) of 3: 14000 FT Pressure Altitude

CORR'D FIELD				FIEL	D LIMI	Γ WEIGI	HT (1000	KG)			
LENGTH					(OAT (°C)				
(FT)	-40	2	6	10	14	18	22	26	30	40	50
5000	42.8										
5400	44.6										
5800	46.3	42.8									
6200	47.8	44.3	43.2					P			
6600	49.3	45.7	44.5	43.2				E			
7000	50.8	47.0	45.7	44.4	43.1			R			
7400	52.0	48.2	46.9	45.5	44.1	42.8		F			
7800	53.3	49.3	48.0	46.6	45.2	43.8		О			
8200	54.8	50.7	49.3	47.8	46.4	45.0	43.7	R			
8600	56.2	52.0	50.6	49.0	47.6	46.1	44.8	M			
9000	57.5	53.1	51.7	50.1	48.6	47.2	45.8	A			
9400	58.5	54.1	52.6	51.0	49.5	48.0	46.6	N			
9800	59.5	55.0	53.5	51.9	50.3	48.8	47.4	C			
10200	60.5	56.0	54.4	52.8	51.2	49.7	48.2	E			
10600	61.6	56.9	55.4	53.7	52.0	50.5	48.9				
11000	62.6	57.9	56.3	54.6	52.9	51.3	49.7	L			
11400	63.7	58.8	57.2	55.4	53.7	52.1	50.5	I			
11800	64.7	59.7	58.1	56.3	54.5	52.9	51.2	M			
12200	65.6	60.6	58.9	57.1	55.3	53.6	52.0	I			
12600	66.6	61.5	59.8	57.9	56.2	54.4	52.7	T			
13000	67.6	62.4	60.6	58.8	56.9	55.2	53.5	E			
13400	68.5	63.2	61.4	59.5	57.7	55.9	54.2	D			
13800	69.4	64.0	62.2	60.3	58.4	56.6	54.9				
14200	70.3	64.8	63.0	61.1	59.2	57.3	55.5				
14600	71.2	65.6	63.8	61.8	59.9	58.0	56.2				
15000	72.0	66.4	64.5	62.5	60.5	58.6	56.8				
15400	72.8	67.1	65.2	63.2	61.2	59.3	57.4				
CLIMB LIMIT WT (1000 KG)	55.7	55.3	53.1	50.8	48.6	46.5	44.5				

With engine bleed for packs off, increase field limit weight by 400 kg and climb limit weight by 1150 kg.

Field Limit Weight Anti-Ice Adjustments

ANTI-ICE CONFIGURATION	FIELD LIMIT WEIGHT ADJUSTMENT (KG)						
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>					
ENGINE ON	-1250	-1000					
ENGINE AND WING ON	-1250	-1000					

ANTI-ICE CONFIGURATION	CLIMB LIMIT WEIGHT ADJUSTMENT (KG)						
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>					
ENGINE ON	-1350	-1400					
ENGINE AND WING ON	-1350	-1400					

Takeoff Field & Climb Limit Weights - Wet Runway Flaps 5

Based on engine bleed for packs on and anti-ice off Table 3(i) of 3: 14500 FT Pressure Altitude

CORR'D FIELD				FIEL	D LIMI	T WEIGH	HT (1000	KG)			
LENGTH						OAT (°C)				
(FT)	-40	2	6	10	14	18	22	26	30	40	50
5400	43.8										
5800	45.4										
6200	46.9	43.3						P			
6600	48.4	44.6	43.4					E			
7000	49.8	45.9	44.6	43.3				R			
7400	51.0	47.0	45.7	44.3	43.0			F			
7800	52.3	48.2	46.8	45.4	44.0			О			
8200	53.7	49.5	48.1	46.6	45.2	43.8		R			
8600	55.1	50.8	49.3	47.8	46.3	44.9	43.6	M			
9000	56.3	51.9	50.4	48.9	47.4	45.9	44.6	A			
9400	57.3	52.8	51.3	49.7	48.2	46.7	45.3	N			
9800	58.3	53.7	52.2	50.6	49.0	47.5	46.1	C			
10200	59.3	54.6	53.1	51.5	49.9	48.3	46.9	Е			
10600	60.4	55.6	54.0	52.3	50.7	49.1	47.7				
11000	61.4	56.5	54.9	53.2	51.5	49.9	48.4	L			
11400	62.4	57.4	55.7	54.0	52.3	50.7	49.1	I			
11800	63.4	58.3	56.6	54.8	53.1	51.4	49.9	M			
12200	64.3	59.2	57.4	55.6	53.9	52.2	50.6	I			
12600	65.3	60.0	58.3	56.4	54.7	53.0	51.3	T			
13000	66.2	60.9	59.1	57.2	55.4	53.7	52.0	E			
13400	67.1	61.7	59.9	58.0	56.2	54.4	52.7	D			
13800	68.0	62.5	60.6	58.7	56.9	55.1	53.4				
14200	68.9	63.3	61.4	59.5	57.6	55.8	54.0				
14600	69.7	64.0	62.1	60.2	58.3	56.4	54.7				
15000	70.6	64.8	62.9	60.9	58.9	57.0	55.3				
15400	71.4	65.5	63.5	61.5	59.5	57.6	55.8				
CLIMB LIMIT WT (1000 KG)	54.7	53.8	51.5	49.3	47.1	45.1	43.2				

With engine bleed for packs off, increase field limit weight by 400 kg and climb limit weight by 1150 kg.

Field Limit Weight Anti-Ice Adjustments

ANTI-ICE CONFIGURATION	FIELD LIMIT WEIGHT ADJUSTMENT (KG)						
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>					
ENGINE ON	-1250	-1000					
ENGINE AND WING ON	-1250	-1000					

ANTI-ICE CONFIGURATION	CLIMB LIMIT WEIGHT ADJUSTMENT (KG)						
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>					
ENGINE ON	-1350	-1400					
ENGINE AND WING ON	-1350	-1400					

Takeoff Obstacle Limit Weight

Flaps 5

Based on engine bleed for packs on and anti-ice off Table 1 of 4: Sea Level, 30°C and Below, Zero Wind

OBSTACLE			REF	ERENC	E OBS	TACLE :	LIMIT V	WEIGH	Γ (1000	KG)		
HEIGHT			Ε	ISTAN	CE FRO	M BRA	KE REI	LEASE ([1000 F]	Γ)		
(FT)	8	10	12	14	16	18	20	22	24	26	28	30
10	77.0	85.0	90.2									
50	71.8	79.2	84.6	88.1	90.5							
100	67.2	74.2	79.4	83.5	86.3	88.3	89.8					
150	63.5	70.3	75.5	79.5	82.7	84.9	86.9	88.3	89.5	90.5		
200	60.5	67.1	72.3	76.3	79.5	82.1	84.2	85.7	87.2	88.3	89.2	90.1
250	57.9	64.3	69.5	73.6	76.9	79.5	81.7	83.6	85.0	86.3	87.4	88.3
300	55.6	61.9	67.0	71.2	74.5	77.2	79.5	81.4	83.1	84.4	85.5	86.6
350	53.5	59.8	64.8	69.0	72.4	75.1	77.5	79.5	81.2	82.7	83.9	84.9
400	51.7	57.8	62.8	67.0	70.4	73.2	75.6	77.7	79.4	81.0	82.3	83.5
450	50.0	56.0	61.0	65.1	68.6	71.5	73.9	76.0	77.8	79.4	80.8	82.0
500	48.3	54.4	59.3	63.4	66.9	69.8	72.3	74.5	76.3	77.9	79.4	80.6
550	46.8	52.9	57.7	61.8	65.3	68.3	70.8	73.0	74.9	76.5	78.0	79.3
600	45.3	51.4	56.3	60.4	63.8	66.8	69.4	71.6	73.5	75.2	76.7	78.1
650	43.9	50.1	54.9	59.0	62.4	65.4	68.0	70.2	72.2	74.0	75.5	76.9
700	42.8	48.8	53.6	57.6	61.1	64.1	66.7	69.0	71.0	72.7	74.3	75.7
750		47.6	52.4	56.4	59.9	62.8	65.5	67.8	69.8	71.6	73.2	74.6
800		46.4	51.2	55.2	58.7	61.7	64.3	66.6	68.7	70.5	72.1	73.6
850		45.3	50.1	54.1	57.5	60.5	63.2	65.5	67.6	69.4	71.1	72.5
900		44.2	49.0	53.0	56.5	59.5	62.1	64.4	66.5	68.4	70.0	71.5
950		43.2	48.0	52.0	55.4	58.4	61.1	63.4	65.5	67.4	69.1	70.6
1000		42.8	47.0	51.0	54.4	57.4	60.1	62.4	64.5	66.4	68.1	69.7

Obstacle height must be calculated from lowest point of the runway to conservatively account for runway slope.

For FAA operators adhering to EASA standards, when using line-up allowances, the obstacle distance from brake release must be reduced by the ASDA adjustment.

Table 2 of 4: OAT Adjustment

			OBSTA	ACLE LI	MIT WE	IGHT AI	DJUSTM	ENT (10	00 KG)			
OAT (°C)			REFE	RENCE	OBSTAC	CLE LIM	IT WEIG	GHT (100	00 KG)			
	40	45	50	55	60	65	70	75	80	85	90	
30 & BELOW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
32	-0.6	-0.7	-0.8	-0.9	-1.0	-1.1	-1.2	-1.3	-1.4	-1.4	-1.5	
34	-1.2	-1.4	-1.6	-1.8	-2.0	-2.1	-2.3	-2.5	-2.7	-2.9	-3.1	
36	-1.8	-2.1	-2.4	-2.7	-2.9	-3.2	-3.5	-3.8	-4.1	-4.3	-4.6	
38	-2.4	-2.8	-3.2	-3.5	-3.9	-4.3	-4.7	-5.0	-5.4	-5.8	-6.1	
40	-3.0	-3.5	-4.0	-4.4	-4.9	-5.4	-5.8	-6.3	-6.8	-7.2	-7.7	
42	-3.7	-4.2	-4.8	-5.3	-5.9	-6.4	-7.0	-7.5	-8.1	-8.6	-9.2	
44	-4.3	-5.0	-5.6	-6.2	-6.8	-7.5	-8.1	-8.7	-9.4	-10.0	-10.6	
46	-5.0	-5.7	-6.4	-7.1	-7.8	-8.5	-9.3	-10.0	-10.7	-11.4	-12.1	
48	-5.6	-6.4	-7.2	-8.0	-8.8	-9.6	-10.4	-11.2	-12.0	-12.8	-13.6	
50	-6.3	-7.1	-8.0	-8.9	-9.8	-10.7	-11.5	-12.4	-13.3	-14.2	-15.1	

Takeoff Obstacle Limit Weight

Flaps 5

Based on engine bleed for packs on and anti-ice off

Table 3 of 4: Pressure Altitude Adjustment

DDEGG ALT			OBSTA	CLE LI	MIT WE	IGHT AI	DJUSTM	ENT (10	00 KG)			
PRESS ALT (FT)			OAT ADJUSTED OBSTACLE LIMIT WEIGHT (1000 KG)									
(1.1)	40	45	50	55	60	65	70	75	80	85	90	
S.L. & BELOW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1000	-1.6	-1.8	-1.9	-2.1	-2.3	-2.5	-2.7	-2.9	-3.1	-3.3	-3.5	
2000	-3.1	-3.5	-3.9	-4.3	-4.7	-5.1	-5.5	-5.9	-6.3	-6.7	-7.1	
3000	-4.6	-5.1	-5.7	-6.3	-6.8	-7.4	-8.0	-8.6	-9.1	-9.7	-10.3	
4000	-6.0	-6.7	-7.5	-8.2	-9.0	-9.7	-10.5	-11.2	-12.0	-12.7	-13.5	
5000	-7.6	-8.6	-9.5	-10.4	-11.4	-12.3	-13.3	-14.2	-15.1	-16.1	-17.0	
6000	-9.3	-10.4	-11.5	-12.6	-13.8	-14.9	-16.0	-17.1	-18.3	-19.4	-20.5	
7000	-10.7	-12.1	-13.5	-14.9	-16.3	-17.7	-19.1	-20.5	-21.9	-23.3	-24.6	
8000	-12.2	-13.8	-15.5	-17.1	-18.8	-20.5	-22.1	-23.8	-25.5	-27.1	-28.8	
9000	-13.6	-15.4	-17.2	-19.1	-20.9	-22.7	-24.6	-26.4	-28.2	-30.1	-31.9	
10000	-15.0	-17.0	-19.0	-21.0	-23.0	-25.0	-27.0	-29.0	-31.0	-33.0	-35.0	
11000	-16.2	-18.5	-20.7	-22.9	-25.1	-27.2	-29.5	-31.6	-33.9	-36.0	-38.2	
12000	-17.5	-19.9	-22.3	-24.7	-27.1	-29.5	-31.9	-34.3	-36.7	-39.1	-41.5	

Table 4 of 4: Wind Adjustment

			OBSTA	CLE LI	MIT WE	IGHT AI	DJUSTM	ENT (10	00 KG)	•	
WIND (KTS)		OAT AND ALT ADJUSTED OBSTACLE LIMIT WEIGHT (1000 KG)									
	40	45	50	55	60	65	70	75	80	85	90
15 TW	-9.8	-9.7	-9.5	-9.3	-9.2	-9.0	-8.8	-8.7	-8.5	-8.3	-8.2
10 TW	-6.6	-6.4	-6.3	-6.2	-6.1	-6.0	-5.9	-5.8	-5.7	-5.6	-5.4
5 TW	-3.3	-3.2	-3.2	-3.1	-3.1	-3.0	-2.9	-2.9	-2.8	-2.8	-2.7
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10 HW	0.8	0.7	0.6	0.6	0.5	0.5	0.4	0.4	0.3	0.3	0.2
20 HW	1.5	1.4	1.3	1.2	1.1	1.0	0.9	0.8	0.7	0.6	0.5
30 HW	2.2	2.1	1.9	1.8	1.6	1.5	1.3	1.2	1.0	0.9	0.8
40 HW	3.0	2.8	2.6	2.4	2.2	2.0	1.8	1.6	1.4	1.2	1.0

With engine bleed for packs off, increase weight by 600 kg.

Anti-Ice Adjustments

Pressure Altitude ≤ 8000 FT

ANTI-ICE CONFIGURATION	OBSTACLE LIMIT WEIGHT ADJUSTMENT (KG)						
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>					
ENGINE ON	-250	-1200					
ENGINE AND WING ON	-250	-1200					

Pressure Altitude > 8000 FT

ANTI-ICE CONFIGURATION	OBSTACLE LIMIT WEIGHT ADJUSTMENT (KG)						
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>					
ENGINE ON	-1500	-1500					
ENGINE AND WING ON	-1500	-1500					

Brake Energy Limits VMBE

Flaps 5

Maximum Brake Energy Speed

				REFERE	NCE VMB	E (KIAS)			
OAT (°C)				PRESSU	RE ALTITU	JDE (FT)			
	0	2000	4000	6000	8000	10000	12000	14000	14500
54	178	171	165	159	153				
50	179	172	166	160	154				
46	179	173	167	161	155				
42	180	174	168	162	156	150			
38	181	175	169	163	157	151			
34	182	176	169	163	158	152			
30	183	177	170	164	159	153			
26	184	178	171	165	159	154	148		
22	186	179	172	166	160	154	149		
18	187	180	174	167	161	155	150		
14	189	182	175	169	162	156	151		
10	190	183	177	170	163	157	151	146	
6	192	185	178	171	165	158	152	147	145
2	194	186	179	173	166	159	153	147	146
0	195	187	180	173	167	160	154	148	147
-10	199	191	184	177	170	164	157	151	150
-20	204	196	188	181	174	167	161	155	153
-30	209	201	193	186	178	171	165	158	157
-40	210	206	198	190	183	176	169	162	160

Weight Adjusted VMBE

WEIGHT		REFERENCE VMBE (KIAS)													
(1000 KG)	140	145	150	155	160	165	170	175	180	185	190	195	200	205	210
45	181	188	195	201	208	210	210	210	210	210	210	210	210	210	210
50	170	176	182	189	195	201	207	210	210	210	210	210	210	210	210
55	159	165	171	177	183	189	195	201	207	210	210	210	210	210	210
60	152	158	163	169	174	180	185	191	196	202	207	210	210	210	210
65	144	149	155	160	165	171	176	181	187	192	197	203	208	210	210
70	140	145	150	155	160	165	170	175	180	185	190	195	200	205	210
75	134	139	144	148	153	158	163	167	172	177	182	186	191	196	200
80	129	134	138	143	147	152	157	161	166	170	175	179	184	188	192
85	125	129	134	138	143	147	152	156	160	165	169	174	178	182	186
90	120	124	129	133	137	142	146	150	155	159	163	168	172	176	180

Increase VMBE by 2 knots per 1% uphill runway slope. Decrease VMBE by 3 knots per 1% downhill runway slope.

Increase VMBE by 3 knots per 10 knots headwind. Decrease VMBE by 18 knots per 10 knots tailwind.

Decrease brake release weight by 650 kg for each knot V1 exceeds VMBE.

Determine normal V1, VR, V2 speeds for lower brake release weight.

Fuel Jettison Limit Weight

Valid for approach with flaps 15 and landing with flaps 40

Based on engine bleed for packs on and anti-ice off

AIRPORT						EIGHT (10			
OAT			AIR	PORT PRI	ESSURE A	LTITUDE	(FT)		
(°C)	0	2000	4000	6000	8000	10000	12000	14000	14500
54	66.7								
52	68.3								
50	70.1	63.7							
48	71.3	64.8							
46	72.6	65.9	60.1						
44	73.9	67.6	61.1						
42	75.4	69.4	62.2	56.6					
40	76.9	71.1	64.1	57.6					
38	78.3	72.5	66.1	58.7	53.2				
36	79.7	73.9	67.9	60.8	54.2				
34	81.1	75.3	69.4	63.0	55.2	50.0			
32	82.5	76.6	70.8	64.9	56.2	50.9	45.0		
30	83.8	77.8	72.0	66.3	57.3	51.9	45.9		
28	83.9	78.6	73.2	67.6	58.4	52.9	46.8		
26	83.9	79.5	74.1	68.5	59.5	53.9	47.7		
24	83.9	79.5	74.6	69.6	60.7	55.0	48.7		
22	83.9	79.4	75.1	70.2	61.8	56.1	49.7	43.8	
20	83.9	79.4	75.0	70.5	62.9	57.2	50.7	44.8	43.4
18	83.9	79.4	75.0	70.7	64.1	58.2	51.7	45.7	44.3
16	83.9	79.4	75.0	70.7	65.4	59.3	52.7	46.7	45.3
14	83.9	79.4	75.0	70.7	66.5	60.5	53.7	47.7	46.3
12	83.9	79.4	75.0	70.7	66.5	61.8	54.8	48.7	47.3
10	84.0	79.4	75.0	70.7	66.5	62.9	56.0	49.8	48.3
0	84.0	79.5	75.1	70.7	66.5	63.0	58.4	54.1	53.0
-10	84.0	79.6	75.1	70.8	66.6	63.1	58.6	54.2	53.1
-20	84.1	79.6	75.1	70.9	66.7	63.2	58.7	54.3	53.3
-30	84.1	79.7	75.2	71.0	66.9	63.3	58.8	54.4	53.4
-40	84.1	79.7	75.3	71.0	66.9	63.4	58.8	54.5	53.5

Table valid for Zero Fuel Weight up to 72500 kg.

With engine bleed for packs off, increase weight by 1250 kg.

Icing Adjustments

	FUEL JETTISON LIMIT WEIGHT ADJUSTMENT (KG)											
	AIRPORT PRESSURE ALTITUDE (FT)											
0	2000	4000	6000	8000	10000	12000	14000	14500				
-5800	-5650	-5650	-5600	-4950	-4650	-4350	-4050	-3950				

When operating in icing conditions during any part of the flight with forecast landing temperature at or below 10°C, decrease weight by the Fuel Jettison Limit Weight Icing Adjustment shown above.

Anti-Ice Adjustments

Pressure Altitude ≤ 8000 FT

ANTI-ICE CONFIGURATION	FUEL JETTISON LIMIT WEIGHT ADJUSTMENT (KG)						
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>					
ENGINE ON	-100	-1000					
ENGINE AND WING ON	-250	-2050					

Pressure Altitude > 8000 FT

ANTI-ICE CONFIGURATION	FUEL JETTISON LIMIT WEIGHT ADJUSTMENT (KG)						
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>					
ENGINE ON	-1300	-1300					
ENGINE AND WING ON	-3600	-3850					

Performance Dispatch Enroute

Chapter PD Section 11

Long Range Cruise Maximum Operating Altitude Max Cruise Thrust

ISA + 10°C and Below

WEIGHT	OPTIMUM	TAT	MAF	RGIN TO INIT	IAL BUFFET '	G' (BANK AN	GLE)
(1000 KG)	ALT (FT)	(°C)	1.20 (33°)	1.25 (36°)	1.30 (39°)	1.40 (44°)	1.50 (48°)
85	33500	-12	35000*	35000*	35000*	34200	32600
80	34800	-15	36200*	36200*	36200*	35500	33900
75	36200	-18	37400*	37400*	37400*	36800	35200
70	37600	-18	38700*	38700*	38700*	38200	36700
65	39100	-18	40000*	40000*	40000*	39800	38200
60	40800	-18	41000	41000	41000	41000	39900
55	41000	-18	41000	41000	41000	41000	41000
50	41000	-18	41000	41000	41000	41000	41000
45	41000	-18	41000	41000	41000	41000	41000
40	41000	-18	41000	41000	41000	41000	41000

ISA + 15°C

WEIGHT	OPTIMUM	TAT	MAF	RGIN TO INIT	IAL BUFFET '	G' (BANK AN	GLE)
(1000 KG)	ALT (FT)	(°C)	1.20 (33°)	1.25 (36°)	1.30 (39°)	1.40 (44°)	1.50 (48°)
85	33500	-6	34000*	34000*	34000*	34000*	32600
80	34800	-9	35500*	35500*	35500*	35500	33900
75	36200	-12	36700*	36700*	36700*	36700*	35200
70	37600	-12	37900*	37900*	37900*	37900*	36700
65	39100	-12	39200*	39200*	39200*	39200*	38200
60	40800	-12	40400*	40400*	40400*	40400*	39900
55	41000	-12	41000	41000	41000	41000	41000
50	41000	-12	41000	41000	41000	41000	41000
45	41000	-12	41000	41000	41000	41000	41000
40	41000	-12	41000	41000	41000	41000	41000

ISA + 20°C

WEIGHT	OPTIMUM	TAT	MAF	RGIN TO INIT	IAL BUFFET '	G' (BANK AN	GLE)
(1000 KG)	ALT (FT)	(°C)	1.20 (33°)	1.25 (36°)	1.30 (39°)	1.40 (44°)	1.50 (48°)
85	33500	-1	32400*	32400*	32400*	32400*	32400*
80	34800	-4	34300*	34300*	34300*	34300*	33900
75	36200	-7	35800*	35800*	35800*	35800*	35200
70	37600	-7	37000*	37000*	37000*	37000*	36700
65	39100	-7	38200*	38200*	38200*	38200*	38200
60	40800	-7	39500*	39500*	39500*	39500*	39500*
55	41000	-7	40900*	40900*	40900*	40900*	40900*
50	41000	-7	41000	41000	41000	41000	41000
45	41000	-7	41000	41000	41000	41000	41000
40	41000	-7	41000	41000	41000	41000	41000

^{*}Denotes altitude thrust limited in level flight, 100 fpm residual rate of climb.

737 Flight Crew Operations Manual

Long Range Cruise Trip Fuel and Time Table 1 of 3: Ground to Air Miles Conversion

	AIR D	ISTANCE	E (NM)		GROUND		AIR D	ISTANCE	E (NM)	
HE.	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TA	ILWIND	COMPO	NENT (K	ΓS)
100	80	60	40	20	(NM)	20	40	60	80	100
276	257	240	225	212	200	190	181	173	166	159
548	511	477	448	423	400	381	364	348	334	321
820	765	715	672	634	600	573	547	524	503	484
1091	1018	953	896	846	800	764	730	700	672	646
1361	1271	1190	1120	1057	1000	955	914	875	840	809
1630	1523	1427	1342	1268	1200	1147	1097	1051	1010	972
1899	1775	1663	1565	1479	1400	1338	1280	1227	1179	1135
2167	2026	1899	1788	1689	1600	1529	1464	1403	1348	1298
2435	2277	2135	2010	1900	1800	1721	1647	1579	1517	1461
2702	2528	2370	2233	2111	2000	1912	1830	1755	1686	1624
2968	2778	2606	2455	2322	2200	2104	2014	1932	1856	1787
3233	3027	2841	2677	2532	2400	2295	2198	2108	2026	1951
3499	3276	3075	2899	2743	2600	2487	2382	2285	2196	2115
3763	3525	3310	3121	2953	2800	2679	2566	2462	2366	2279
4027	3773	3544	3342	3163	3000	2870	2750	2638	2536	2443
4290	4021	3778	3564	3374	3200	3062	2933	2815	2706	2607
4553	4269	4011	3785	3584	3400	3253	3117	2991	2876	2771
4815	4516	4245	4006	3794	3600	3445	3301	3168	3046	2935
5077	4763	4478	4227	4004	3800	3637	3485	3345	3216	3099
5339	5009	4711	4448	4214	4000	3829	3669	3522	3386	3263
5600	5256	4943	4669	4424	4200	4020	3853	3698	3556	3427
5860	5501	5176	4890	4634	4400	4212	4036	3875	3726	3591
6120	5747	5408	5110	4843	4600	4403	4220	4051	3896	3755
6380	5992	5641	5331	5053	4800	4595	4404	4228	4066	3919
6639	6237	5873	5551	5263	5000	4787	4589	4405	4237	4083

Long Range Cruise Trip Fuel and Time Table 2 of 3: Reference Fuel and Time Required

A ID				PRESS	URE ALT	ITUDE (10	00 FT)			
AIR DIST	2	9	3	1	3	3	3	5	3	7
(NM)	FUEL	TIME (HR:MIN)	FUEL	TIME	FUEL	TIME	FUEL	TIME	FUEL	TIME
200									,	
200	1.2	0:38	1.2	0:37	1.2	0:37	1.3	0:37	1.3	0:36
400	2.1	1:10	2.1	1:08	2.0	1:07	2.0	1:06	2.0	1:04
600	3.0	1:41	2.9	1:39	2.9	1:36	2.8	1:34	2.8	1:32
800	3.8	2:13	3.8	2:09	3.7	2:06	3.6	2:03	3.6	2:00
1000	4.7	2:44	4.6	2:40	4.5	2:35	4.4	2:32	4.3	2:28
1200	5.6	3:15	5.5	3:09	5.3	3:04	5.2	3:00	5.1	2:55
1400	6.5	3:46	6.3	3:39	6.2	3:33	6.1	3:28	5.9	3:23
1600	7.4	4:16	7.2	4:09	7.0	4:02	6.9	3:56	6.7	3:50
1800	8.3	4:46	8.1	4:38	7.9	4:31	7.7	4:24	7.5	4:17
2000	9.2	5:17	9.0	5:08	8.7	4:59	8.5	4:52	8.3	4:44
2200	10.1	5:46	9.8	5:37	9.6	5:27	9.4	5:19	9.2	5:10
2400	11.1	6:16	10.7	6:05	10.4	5:56	10.2	5:47	10.0	5:37
2600	12.0	6:46	11.7	6:34	11.3	6:23	11.1	6:14	10.8	6:04
2800	12.9	7:15	12.6	7:03	12.2	6:51	11.9	6:41	11.7	6:30
3000	13.9	7:44	13.5	7:31	13.1	7:19	12.8	7:08	12.5	6:57
3200	14.9	8:13	14.4	7:59	14.0	7:46	13.7	7:35	13.4	7:23
3400	15.8	8:42	15.3	8:27	14.9	8:14	14.5	8:02	14.2	7:50
3600	16.8	9:10	16.3	8:55	15.8	8:41	15.4	8:28	15.1	8:16
3800	17.8	9:39	17.2	9:23	16.7	9:08	16.3	8:55	16.0	8:42
4000	18.8	10:07	18.2	9:51	17.6	9:35	17.2	9:21	16.8	9:09
4200	19.8	10:35	19.2	10:18	18.6	10:02	18.1	9:48	17.8	9:35
4400	20.8	11:03	20.1	10:45	19.5	10:29	19.1	10:14	18.7	10:01
4600	21.8	11:31	21.1	11:12	20.5	10:55	20.0	10:40	19.6	10:28
4800	22.8	11:58	22.1	11:39	21.4	11:22	20.9	11:07	20.5	10:54

23.1 Table 3 of 3: Fuel Required Adjustment (1000 KG)

12:06

REFERENCE FUEL			LANDING	WEIGHT ((1000 KG)		
REQUIRED (1000 KG)	40	45	50	55	60	65	70
2	-0.2	-0.1	0.0	0.1	0.2	0.3	0.5
4	-0.3	-0.2	0.0	0.2	0.4	0.7	1.0
6	-0.5	-0.3	0.0	0.3	0.7	1.1	1.5
8	-0.7	-0.4	0.0	0.4	0.9	1.5	2.2
10	-0.9	-0.5	0.0	0.5	1.2	2.0	2.9
12	-1.1	-0.6	0.0	0.7	1.5	2.4	3.6
14	-1.3	-0.7	0.0	0.8	1.8	3.0	4.4
16	-1.4	-0.8	0.0	1.0	2.1	3.5	5.2
18	-1.6	-0.9	0.0	1.1	2.5	4.1	6.1
20	-1.8	-1.0	0.0	1.3	2.9	4.7	7.1
22	-2.0	-1.1	0.0	1.5	3.2	5.4	8.1
24	-2.2	-1.2	0.0	1.7	3.7	6.0	9.1

22.4

11:48

21.9

11:33

21.5

11:20

Based on 280/.78 climb, Long Range Cruise speed and .78/280/250 descent.

5000

23.9

12:26

Long Range Cruise Step Climb Table 1 of 2: Ground to Air Miles Conversion

	AIR D	ISTANCE	(NM)		GROUND		AIR D	ISTANCE	E (NM)	
HE	HEAD WIND COMPONENT (KTS)			DISTANCE	TAIL WIND COMPONENT (KTS)				ΓS)	
100	80	60	40	20	(NM)	20	40	60	80	100
1316	1237	1168	1106	1050	1000	954	912	874	839	807
1829	1723	1629	1545	1469	1400	1337	1280	1227	1179	1134
2342	2209	2090	1984	1887	1800	1720	1648	1581	1519	1462
2854	2694	2551	2422	2306	2200	2104	2015	1934	1859	1790
3367	3179	3011	2861	2724	2600	2487	2383	2287	2199	2118
3879	3664	3472	3299	3142	3000	2870	2751	2641	2540	2446
4391	4149	3932	3737	3561	3400	3253	3119	2995	2880	2774
4903	4634	4393	4176	3979	3800	3636	3486	3348	3221	3102
5414	5118	4853	4614	4397	4200	4020	3854	3702	3561	3431
5926	5603	5313	5052	4815	4600	4403	4222	4056	3902	3759
6437	6087	5773	5490	5234	5000	4786	4590	4409	4242	4088

Table 2 of 2: Trip Fuel and Time Required

AIR			TRIP	FUEL (1000) KG)			TIME
DIST			(HR:MIN)					
(NM)	40	45	50	55	60	65	70	(TIK.WIIV)
1000	3.8	4.0	4.2	4.5	4.8	5.1	5.4	2:24
1400	5.2	5.4	5.7	6.2	6.6	7.0	7.4	3:17
1800	6.5	6.9	7.3	7.8	8.4	8.9	9.5	4:10
2200	7.9	8.3	8.9	9.6	10.2	10.9	11.6	5:03
2600	9.3	9.8	10.5	11.3	12.1	12.9	13.8	5:55
3000	10.8	11.4	12.2	13.1	14.1	15.0	16.0	6:48
3400	12.2	12.9	13.9	15.0	16.1	17.1	18.2	7:40
3800	13.7	14.5	15.6	16.8	18.1	19.3	20.5	8:33
4200	15.2	16.2	17.4	18.8	20.2	21.5	22.9	9:25
4600	16.7	17.9	19.2	20.8	22.3	23.8	25.3	10:17
5000	18.3	19.6	21.1	22.8	24.5	26.1	27.8	11:10

Based on 280/.78 climb, Long Range Cruise speed and .78/280/250 descent.

Valid for all pressure altitudes with 4000 ft step climb to 2000 ft above optimum altitude.

Short Trip Fuel and Time

Table 1 of 2: Ground to Air Miles Conversion

	AIR D	ISTANCE	(NM)		GROUND	AIR DISTANCE (NM)				
HEA	HEAD WIND COMPONENT (KTS)			DISTANCE	TAIL WIND COMPONENT (KTS				ΓS)	
100	80	60	40	20	(NM)	20	40	60	80	100
93	79	69	61	55	50	46	42	39	36	34
160	143	129	118	108	100	93	87	82	77	73
226	205	188	173	161	150	141	132	125	118	112
290	266	246	228	213	200	188	178	169	160	153
353	326	303	283	266	250	236	224	213	203	193
416	386	360	338	318	300	284	270	257	245	235
479	446	417	392	370	350	332	316	301	288	276
542	506	475	447	422	400	380	362	346	331	317
607	567	532	502	475	450	428	408	390	373	358
673	629	591	557	527	500	476	453	433	415	398

Table 2 of 2: Trip Fuel and Time Required

	AID DICT OILO]	LANDING	WEIGHT	(1000 KG)		TIME
1	AIR DIST (NM)	40	45	50	55	60	65	70	(HR:MIN)
50	FUEL (1000 KG)	0.4	0.5	0.5	0.5	0.5	0.6	0.6	0:14
30	ALT (FT)	13000	11000	11000	9000	9000	9000	9000	0.14
100	FUEL (1000 KG)	0.7	0.7	0.8	0.8	0.8	0.9	0.9	0:22
100	ALT (FT)	19000	19000	17000	17000	17000	15000	15000	0.22
150	FUEL (1000 KG)	0.9	1.0	1.0	1.1	1.1	1.2	1.2	0:30
150	ALT (FT)	27000	25000	25000	25000	23000	23000	21000	0.50
200	FUEL (1000 KG)	1.1	1.2	1.2	1.3	1.4	1.4	1.5	0:37
200	ALT (FT)	31000	29000	29000	29000	29000	27000	27000	0.57
250	FUEL (1000 KG)	1.3	1.4	1.4	1.5	1.6	1.7	1.7	0:44
230	ALT (FT)	41000	41000	37000	35000	33000	31000	31000	0.44
300	FUEL (1000 KG)	1.5	1.5	1.6	1.7	1.8	1.9	2.0	0:50
300	ALT (FT)	41000	41000	41000	39000	37000	35000	33000	0.50
350	FUEL (1000 KG)	1.6	1.7	1.8	1.9	2.0	2.1	2.2	0:56
330	ALT (FT)	41000	41000	41000	39000	37000	35000	35000	0.50
400	FUEL (1000 KG)	1.8	1.9	2.0	2.1	2.2	2.4	2.5	1:03
400	ALT (FT)	41000	41000	41000	39000	37000	37000	35000	1.03
450	FUEL (1000 KG)	2.0	2.1	2.2	2.3	2.4	2.6	2.7	1:09
430	ALT (FT)	41000	41000	41000	39000	39000	37000	35000	1.09
500	FUEL (1000 KG)	2.1	2.2	2.4	2.5	2.7	2.8	3.0	1:17
500	ALT (FT)	41000	41000	41000	41000	39000	37000	35000	1.1/

Based on 280/.78 climb, Long Range Cruise and .78/280/250 descent.

737-8/LEAP-1B27

FAA CATB

737 Flight Crew Operations Manual

Holding Planning Flaps Up

				TOTAL F	UEL FLOW	(KG/HR)					
WEIGHT (1000 KG)	PRESSURE ALTITUDE (FT)										
(1000 KG)	1500	5000	10000	15000	20000	25000	30000	35000	41000		
85	2430	2400	2400	2370	2370	2390	2440				
80	2310	2270	2270	2250	2240	2240	2270	2380			
75	2180	2150	2130	2140	2130	2100	2120	2200			
70	2050	2030	2000	2020	2000	1950	1970	2030			
65	1930	1910	1870	1880	1870	1810	1830	1860			
60	1810	1790	1750	1740	1730	1680	1690	1710	1860		
55	1690	1670	1630	1610	1600	1560	1560	1580	1690		
50	1580	1560	1510	1480	1460	1450	1440	1450	1550		
45	1480	1450	1400	1360	1340	1330	1310	1320	1390		
40	1370	1330	1290	1250	1220	1200	1190	1190	1240		

This table includes 5% additional fuel for holding in a racetrack pattern.

Flight Crew Requirements for Chemical Passenger Oxygen System Required Pressure (PSI) for 114/115 Cubic Ft. Cylinder

BOTTLE TEMPERATURE		NUMBER OF CREW USING OXYGEN						
°C	°F	2	3	4				
50	122	530	735	945				
45	113	520	725	930				
40	104	510	715	915				
35	95	505	700	900				
30	86	495	690	885				
25	77	485	680	870				
20	68	480	670	860				
15	59	470	655	840				
10	50	460	645	830				
5	41	455	635	815				
0	32	445	620	800				
-5	23	440	610	785				
-10	14	430	600	770				

737 Flight Crew Operations Manual

Flight Crew Requirements for Large Capacity Descent Passenger Oxygen Table 1 of 5

NUMBER OF CREW	OXYGEN REQUIRED (LITERS)
2	660
3	990
4	1320

Table 2 of 5

NUMBER OF	OXYGEN REQUIRED FOR LEVEL OFF AT 14000 FT (LITERS)						
CREW	TOTAL POST DECOMPRESSION TIME (HR)						
CKEW	2	3	4	5			
2	660	960	1270	1570			
3	980	1440	1900	2360			
4	1310	1920	2530	3140			

Table 3 of 5

MIMDED	ADDITIONAL LITERS REQUIRED FOR EACH MINUTE HELD AT INTERMEDIATE ALTITUDE OTHER THAN 14000 FT							
NUMBER	INTERMEDIATE PRESSURE ALTITUDE (FT)							
OF CREW	UP	4.4000	14001	18000	22000			
	TO	14000	TO	TO	TO			
	13999		17999	21999	29000			
	REGULATOR ON "NORMAL" OR (100%)							
2	0 (26)	0 (22)	1 (20)	3 (16)	6 (12)			
3	0 (39)	0 (33)	2 (30)	5 (24)	8 (18)			
4	0 (52)	0 (44)	2 (40)	6 (32)	11 (24)			

For more extensive than normal crew usage, add 2.05 liters/person/minute for each crew member at 6000 ft cabin altitude when regulator setting is NORMAL or 13 liters/person/minute when regulator setting is 100%.

Instructions:

- 1. Determine protective breathing requirements from Table 1.
- 2. Determine supplemental requirements for level off at 14000 ft from Table 2 and correct for level off altitudes other than 14000 ft using Table 3.
- 3. Flight crew system oxygen requirement is the larger of protective breathing (Table 1) and supplemental breathing (Tables 2 and 3) requirements.

Flight Crew Requirements for Large Capacity Descent Passenger Oxygen Cylinder Volume to Pressure Conversion

Table 4(a) of 5: One 115 Cubic Ft. Cylinder

OXYGEN VOLUME	CYLINDER PRESSURE AT 21°C	
(1000 LITERS)	(PSI)	
0.1	200	
0.3	300	
0.5	400	
0.7	500	
0.8	600	
1.0	700	
1.2	800	
1.4	900	
1.5	1000	
1.7	1100	
1.9	1200	
2.1	1300	
2.2	1400	
2.4	1500	
2.6	1600	
2.7	1700	
2.9	1800	
3.1	1900	
3.3	2000	

Check maximum pressure in shaded area. Maximum cylinder pressure is 1850 PSI at 21°C. Adjust maximum cylinder pressure by +32 PSI/-32 PSI for every 5°C above/below 21°C.

Table 4(b) of 5: Two 115 Cubic Ft. Cylinders

OXYGEN VOLUME	CYLINDER PRESSURE AT 21°C	
(1000 LITERS)	(PSI)	
0.3	200	
0.7	300	
1.0	400	
1.4	500	
1.7	600	
2.1	700	
2.4	800	
2.8	900	
3.1	1000	
3.5	1100	
3.8	1200	
4.2	1300	
4.5	1400	
4.9	1500	
5.2	1600	
5.5	1700	
5.9	1800	
6.2	1900	
6.6	2000	

Check maximum pressure in shaded area. Maximum cylinder pressure is 1850 PSI at 21°C. Adjust maximum cylinder pressure by +32 PSI/-32 PSI for every 5°C above/below 21°C.

737 Flight Crew Operations Manual

Flight Crew Requirements for Large Capacity Descent Passenger Oxygen Table 5 of 5: Temperature Corrections

CYLINDER PRESSURE	PRESSURE CORRECTION FOR EACH	
AT 21°C	5°C ABOVE/BELOW 21°C	
(PSI)	(PSI)	
400	+7/-7	
600	+11/-11	
800	+14/-14	
1000	+17/-17	
1200	+21/-21	
1400	+24/-24	
1600	+28/-28	
1800	+31/-31	
2000	+34/-34	

ENGINE INOP

MAX CONTINUOUS THRUST

Net Level Off Weight

	LE	EVEL OFF WEIG	HT	ANTI-ICE ADJUSTMENT		
PRESSURE ALTITUDE		(1000 KG)		(1000) KG)	
(1000 FT)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C	ENGINE ON	ENGINE AND WING ON	
28	47.4	46.5	44.8	-1.2		
27	49.5	48.2	46.4	-1.4		
26	51.6	50.0	48.2	-1.6	-5.5	
25	53.7	51.8	49.8	-1.6	-5.7	
24	56.2	54.2	51.9	-1.7	-6.3	
23	58.3	56.0	53.3	-1.9	-6.8	
22	60.6	58.1	54.5	-2.3	-7.4	
21	62.7	60.1	55.2	-2.7	-7.7	
20	64.4	61.0	55.3	-1.9	-7.2	
19	63.4	62.0	56.8	-2.0	-7.7	
18	65.1	62.8	58.3	-1.9	-7.7	
17	66.7	63.6	59.7	-1.8	-7.6	
16	68.3	64.8	61.2	-1.7	-7.4	
15	69.8	66.4	62.7	-1.7	-7.1	
14	72.5	69.6	65.8	-2.5	-7.9	
13	75.2	72.9	69.1	-2.2	-7.4	
12	78.0	75.9	72.6	-2.2	-7.3	
11	81.2	79.1	76.3	-2.2	-7.4	
10	84.7	82.4	80.2	-2.4	-7.6	
9	87.1	84.9	82.4	-1.2	-3.4	
8	89.3	87.3	84.5	-0.1	-0.4	
7	90.7	89.7	86.6	0.0	0.0	
6	90.7	90.7	88.7	0.0	0.0	
5	90.7	90.7	90.7	0.0	0.0	

Intentionally Blank

Performance Dispatch Landing

Chapter PD Section 12

Landing Field Limit Weight - Dry Runway - Low Altitudes Flaps 40

Based on anti-skid operative and automatic speedbrakes

Table 1 of 2: Wind Adjusted Field Length (FT)

Table 1 of 2. White Hajasted 1 leid Bengen (1 1)										
FIELD LENGTH			WI	ND COMP	ONENT (K	TS)				
AVAILABLE (FT)	-15	-10	-5	0	10	20	30	40		
3000			2670	3000	3090	3190	3280	3380		
3400		2690	3040	3400	3520	3630	3750	3870		
3800	2640	3030	3410	3800	3940	4080	4220	4360		
4200	2960	3370	3790	4200	4360	4520	4680	4840		
4600	3270	3710	4160	4600	4780	4970	5150	5330		
5000	3590	4060	4530	5000	5200	5410	5610	5820		
5400	3900	4400	4900	5400	5630	5850	6080	6310		
5800	4210	4740	5270	5800	6050	6300	6550	6800		
6200	4530	5090	5640	6200	6470	6740	7010	7280		
6600	4840	5430	6010	6600	6890	7190	7480	7770		
7000	5160	5770	6390	7000	7310	7630	7940	8260		
7400	5470	6110	6760	7400	7740	8070	8410	8750		
7800	5790	6460	7130	7800	8160	8520	8880	9240		
8200	6100	6800	7500	8200	8580	8960	9340	9720		
8600	6410	7140	7870	8600	9000	9410	9810	10210		
9000	6730	7490	8240	9000	9430	9850	10280	10700		
9400	7040	7830	8610	9400	9850	10290	10740	11190		
9800	7360	8170	8990	9800	10270	10740	11210	11680		
10200	7670	8510	9360	10200	10690	11180	11670	12160		
10600	7990	8860	9730	10600	11110	11630	12140			

Table 2 of 2: Field Limit Weight (1000 KG)

WIND CORRECTED		AIRPORT PRESSURE ALTITUDE (FT)								
FIELD LENGTH (FT)	0	2000	4000	6000	8000	10000				
3400	41.8									
3800	48.6	45.8	43.1	40.4						
4200	55.4	52.2	49.1	46.0	43.1	40.3				
4600	61.9	58.5	55.1	51.6	48.3	45.2				
5000	69.4	64.5	60.9	57.1	53.5	50.1				
5400	76.8	72.7	66.8	62.5	58.7	55.0				
5800	80.6	78.0	74.4	69.0	63.8	59.9				
6200	84.1	81.5	78.8	75.6	70.8	64.8				
6600	87.0	84.4	81.7	79.0	76.2	71.9				
7000	89.6	86.9	84.2	81.5	78.8	76.1				
7400	92.1	89.3	86.5	83.8	81.1	78.3				
7800		91.6	88.8	86.0	83.2	80.4				
8200			90.9	88.0	85.2	82.4				
8600				90.0	87.1	84.2				
9000				91.9	89.0	86.0				
9400					90.7	87.7				
9800					92.4	89.3				
10200						90.9				

Decrease field limit weight by 7150 kg when using manual speedbrakes.

737 Flight Crew Operations Manual

Landing Field Limit Weight - Dry Runway - Low Altitudes Flaps 40

Based on anti-skid inoperative and manual speedbrakes Table 1 of 2: Wind Adjusted Field Length (FT)

	T -								
FIELD LENGTH	WIND COMPONENT (KTS)								
AVAILABLE (FT)	-15	-10	-5	0	10	20	30	40	
6000				6000	6510	7040	7560	8100	
6400				6400	6930	7460	8000	8550	
6800			5970	6800	7340	7880	8430	8990	
7200			6360	7200	7750	8300	8860	9440	
7600		5890	6740	7600	8160	8720	9300	9880	
8000		6270	7130	8000	8570	9140	9730	10330	
8400	5780	6640	7520	8400	8980	9570	10160	10770	
8800	6140	7010	7900	8800	9390	9990	10600	11220	
9200	6500	7390	8290	9200	9800	10410	11030	11660	
9600	6860	7760	8670	9600	10210	10830	11460	12110	
10000	7220	8130	9060	10000	10620	11250	11900	12560	
10400	7580	8510	9450	10400	11030	11670	12330	13000	
10800	7940	8880	9830	10800	11440	12100	12760	13450	
11200	8300	9250	10220	11200	11850	12520	13200	13890	
11600	8670	9630	10600	11600	12260	12940	13630	14340	
12000	9030	10000	10990	12000	12670	13360	14070	14780	
12400	9390	10370	11380	12400	13080	13780	14500	15230	
12800	9750	10750	11760	12800	13490	14200	14930	15670	
13200	10110	11120	12150	13200	13910	14630	15370	16120	
13600	10470	11490	12530	13600	14320	15050	15800	16560	
14000	10830	11860	12910	14000	14730	15470	16230	17010	
14400	11190	12230	13290	14400	15140	15890	16660	17450	
14800	11550	12600	13670	14800	15550	16310	17090	17900	
15200	11910	12970	14050	15200	15960	16730	17520	18340	
15600	12270	13340	14430	15600	16370	17150	17950	18790	
16000	12630	13710	14810	16000	16780	17570	18380	19230	
16400	12990	14080	15190	16400	17190	17990	18810	19680	
16800	13350	14450	15570	16800	17600	18410	19240	20120	
17200	13710	14820	15950	17200	18010	18830	19670	20570	
17600	14070	15190	16330	17600	18420	19250	20100	21010	

Landing Field Limit Weight - Dry Runway - Low Altitudes Flaps 40

Based on anti-skid inoperative and manual speedbrakes

Table 2 of 2: Field Limit Weight (1000 KG)

WIND CORRECTED	AIRPORT PRESSURE ALTITUDE (FT)								
FIELD LENGTH (FT)	0	2000	4000	6000	8000	10000			
6800	40.8								
7200	44.1	41.3							
7600	47.3	44.3	41.0						
8000	50.6	47.4	43.9	40.7					
8400	53.7	50.5	46.8	43.4	40.5				
8800	56.9	53.5	49.7	46.1	43.0	40.0			
9200	60.0	56.4	52.5	48.8	45.5	42.3			
9600	63.1	59.3	55.3	51.4	48.0	44.7			
10000	66.3	62.3	58.1	54.0	50.4	47.0			
10400	70.1	65.2	60.8	56.6	52.9	49.3			
10800	73.6	68.3	63.6	59.2	55.3	51.6			
11200	76.5	72.1	66.5	61.8	57.8	53.9			
11600	79.2	75.0	69.8	64.5	60.2	56.3			
12000	81.9	77.7	72.9	67.3	62.7	58.6			
12400	84.5	80.3	75.6	70.6	65.2	60.9			
12800	87.1	82.8	78.1	73.5	67.9	63.2			
13200	89.7	85.3	80.6	76.0	71.3	65.7			
13600	92.2	87.7	83.0	78.4	73.8	68.2			
14000		90.2	85.3	80.7	76.2	71.4			
14400		92.6	87.7	83.0	78.4	73.8			
14800			90.0	85.2	80.6	76.1			
15200			92.3	87.4	82.8	78.1			
15600				89.5	84.9	80.2			
16000				91.7	86.9	82.2			
16400					89.0	84.2			
16800					91.0	86.1			
17200						88.0			
17600						89.9			

737 Flight Crew Operations Manual

Landing Field Limit Weight - Dry Runway - High Altitudes Flaps 40

Based on anti-skid operative and automatic speedbrakes Table 1 of 2: Wind Adjusted Field Length (FT)

			• •					
FIELD LENGTH			WI	ND COMP	ONENT (K	TS)		
AVAILABLE	-15	-10	-5	0	10	20	30	40
(FT)				Ť				
3800	2810	3140	3470	3800	3910	4030	4140	4260
4200	3110	3480	3840	4200	4340	4470	4610	4740
4600	3420	3810	4210	4600	4760	4910	5070	5230
5000	3730	4150	4580	5000	5180	5360	5540	5710
5400	4030	4490	4940	5400	5600	5800	6000	6200
5800	4340	4830	5310	5800	6020	6240	6460	6690
6200	4640	5160	5680	6200	6440	6690	6930	7170
6600	4950	5500	6050	6600	6860	7130	7390	7660
7000	5260	5840	6420	7000	7290	7570	7860	8140
7400	5560	6180	6790	7400	7710	8010	8320	8630
7800	5870	6510	7160	7800	8130	8460	8790	9110
8200	6180	6850	7530	8200	8550	8900	9250	9600
8600	6480	7190	7890	8600	8970	9340	9710	10090
9000	6790	7530	8260	9000	9390	9790	10180	10570
9400	7090	7860	8630	9400	9810	10230	10640	11060
9800	7400	8200	9000	9800	10240	10670	11110	11540
10200	7710	8540	9370	10200	10660	11110	11570	12030
10600	8010	8880	9740	10600	11080	11560	12040	12510
11000	8310	9220	10110	11000	11500	12010	12510	12990
11400	8620	9560	10480	11400	11920	12450	12970	13480
11800	8920	9900	10850	11800	12340	12900	13440	13960
12200	9230	10240	11220	12200	12760	13340	13900	14450
12600	9540	10580	11590	12600	13180	13780	14360	14940

Landing Field Limit Weight - Dry Runway - High Altitudes Flaps 40

Based on anti-skid operative and automatic speedbrakes Table 2 of 2: Field Limit Weight (1000 KG)

WIND CORRECTED		AIRPORT PRESSURE ALTITUDE (FT)									
FIELD LENGTH	10000	11000	12000	13000	14000	14500					
(FT)	10.0										
4200	40.3										
4600	45.2	43.7	42.2	40.8							
5000	50.1	48.4	46.8	45.2	43.7	42.9					
5400	55.0	53.2	51.4	49.7	48.0	47.2					
5800	59.9	58.0	56.1	54.2	52.4	51.5					
6200	64.8	62.8	60.8	58.9	56.9	56.0					
6600	71.9	68.0	65.6	63.4	61.4	60.4					
7000	76.1	74.2	72.3	69.1	65.9	64.7					
7400	78.3	77.0	75.7	74.0	72.3	71.2					
7800	80.4	79.0	77.7	76.4	75.0	74.3					
8200	82.4	81.0	79.6	78.2	76.9	76.2					
8600	84.2	82.8	81.4	80.0	78.6	77.9					
9000	86.0	84.5	83.1	81.7	80.2	79.5					
9400	87.7	86.2	84.7	83.3	81.8	81.1					
9800	89.3	87.8	86.3	84.8	83.3	82.6					
10200	90.9	89.3	87.8	86.3	84.8	84.0					
10600		90.8	89.2	87.7	86.2	85.4					
11000			90.6	89.1	87.5	86.8					
11400			92.0	90.4	88.8	88.0					
11800				91.7	90.1	89.3					
12200					91.3	90.5					
12600						91.6					

Decrease field limit weight by 6500 kg when using manual speedbrakes.

737 Flight Crew Operations Manual

Landing Field Limit Weight - Dry Runway - High Altitudes Flaps 40

Based on anti-skid inoperative and manual speedbrakes Table 1 of 2: Wind Adjusted Field Length (FT)

FIELD LENGTH		WIND COMPONENT (KTS)							
AVAILABLE (FT)	-15	-10	-5	0	10	20	30	40	
8000				8000	8600	9200	9800	10410	
8400				8400	9010	9620	10230	10850	
8800			7870	8800	9420	10040	10660	11290	
9200			8260	9200	9820	10450	11090	11730	
9600		7690	8640	9600	10230	10870	11520	12170	
10000		8070	9030	10000	10640	11290	11950	12610	
10400		8450	9420	10400	11050	11710	12370	13050	
10800	7840	8820	9810	10800	11460	12130	12800	13490	
11200	8210	9200	10190	11200	11870	12550	13230	13930	
11600	8570	9570	10580	11600	12280	12970	13660	14370	
12000	8940	9950	10970	12000	12690	13380	14090	14810	
12400	9310	10330	11360	12400	13100	13800	14520	15250	
12800	9670	10700	11740	12800	13510	14220	14950	15690	
13200	10040	11080	12130	13200	13920	14640	15380	16130	
13600	10400	11450	12520	13600	14320	15060	15810	16570	
14000	10770	11830	12910	14000	14730	15480	16230	17010	
14400	11130	12210	13300	14400	15140	15900	16660	17450	
14800	11500	12580	13680	14800	15550	16310	17090	17880	
15200	11860	12960	14070	15200	15960	16730	17520	18320	
15600	12230	13340	14460	15600	16370	17150	17950	18760	
16000	12600	13710	14850	16000	16780	17570	18380	19200	
16400	12960	14090	15240	16400	17190	17990	18810	19640	
16800	13330	14460	15630	16800	17600	18410	19240	20080	
17200	13690	14840	16020	17200	18010	18830	19670	20520	
17600	14060	15210	16410	17600	18420	19250	20100	20960	
18000	14420	15590	16800	18000	18830	19670	20530	21400	
18400	14790	15960	17190	18400	19240	20090	20960	21840	
18800	15150	16340	17580	18800	19650	20510	21390	22280	
19200	15520	16710	17970	19200	20060	20930	21820	22720	
19600	15880	17090	18360	19600	20470	21350	22250	23160	

Landing Field Limit Weight - Dry Runway - High Altitudes Flaps 40

Based on anti-skid inoperative and manual speedbrakes Table 2 of 2: Field Limit Weight (1000 KG)

WIND CORRECTED	AIRPORT PRESSURE ALTITUDE (FT)								
FIELD LENGTH (FT)	10000	11000	12000	13000	14000	14500			
8800	40.0								
9200	42.3	40.9							
9600	44.7	43.1	41.5	40.1					
10000	47.0	45.3	43.7	42.2	40.7				
10400	49.3	47.6	45.9	44.3	42.7	41.9			
10800	51.6	49.8	48.1	46.4	44.8	43.9			
11200	53.9	52.1	50.2	48.5	46.8	46.0			
11600	56.3	54.3	52.4	50.6	48.9	48.0			
12000	58.6	56.6	54.6	52.7	50.9	50.0			
12400	60.9	58.9	56.9	54.9	53.0	52.0			
12800	63.2	61.1	59.1	57.0	55.1	54.1			
13200	65.7	63.4	61.3	59.2	57.2	56.2			
13600	68.2	65.8	63.5	61.4	59.3	58.2			
14000	71.4	68.3	65.8	63.6	61.4	60.3			
14400	73.8	71.1	68.2	65.8	63.5	62.4			
14800	76.1	73.7	71.3	68.1	65.7	64.5			
15200	78.1	75.8	73.6	70.8	67.9	66.6			
15600	80.2	77.9	75.7	73.2	70.8	69.2			
16000	82.2	79.8	77.6	75.3	72.9	71.7			
16400	84.2	81.8	79.5	77.2	75.0	73.7			
16800	86.1	83.7	81.3	79.0	76.8	75.6			
17200	88.0	85.6	83.2	80.8	78.5	77.4			
17600	89.9	87.5	85.0	82.6	80.2	79.1			
18000	91.9	89.3	86.8	84.4	81.9	80.8			
18400		91.2	88.6	86.1	83.7	82.4			
18800			90.4	87.9	85.4	84.1			
19200			92.2	89.6	87.1	85.8			
19600				91.4	88.8	87.4			

Landing Field Limit Weight - Wet Runway - Low Altitudes Flaps 40

Based on anti-skid operative and automatic speedbrakes Table 1 of 2: Wind Adjusted Field Length (FT)

	•		• •					
FIELD LENGTH			WI	ND COMP	ONENT (K	TS)		
AVAILABLE (FT)	-15	-10	-5	0	10	20	30	40
3400			3030	3400	3510	3610	3720	3830
3800		2990	3400	3800	3930	4060	4190	4310
4200		3340	3770	4200	4350	4500	4650	4800
4600	3220	3680	4140	4600	4770	4950	5120	5290
5000	3530	4020	4510	5000	5190	5390	5580	5780
5400	3850	4370	4880	5400	5620	5830	6050	6270
5800	4160	4710	5250	5800	6040	6280	6520	6750
6200	4480	5050	5630	6200	6460	6720	6980	7240
6600	4790	5390	6000	6600	6880	7160	7450	7730
7000	5110	5740	6370	7000	7300	7610	7910	8220
7400	5420	6080	6740	7400	7730	8050	8380	8710
7800	5730	6420	7110	7800	8150	8500	8850	9190
8200	6050	6770	7480	8200	8570	8940	9310	9680
8600	6360	7110	7850	8600	8990	9390	9780	10170
9000	6680	7450	8230	9000	9410	9830	10240	10660
9400	6990	7790	8600	9400	9840	10270	10710	11150
9800	7310	8140	8970	9800	10260	10720	11180	11630
10200	7620	8480	9340	10200	10680	11160	11640	12120
10600	7930	8820	9710	10600	11100	11600	12110	12610
11000	8240	9160	10080	11000	11520	12040	12580	13100
11400	8550	9500	10450	11400	11940	12480	13040	13590
11800	8860	9840	10820	11800	12360	12920	13510	14080

Table 2 of 2: Field Limit Weight (1000 KG)

Tuble 2 of 2. Field Elimit Weight (1000 Feb)						
WIND CORRECTED	AIRPORT PRESSURE ALTITUDE (FT)					
FIELD LENGTH	0	2000	4000	6000	8000	10000
(FT)	U	2000	4000	6000	8000	10000
3800	40.2					
4200	46.1	43.4	40.8			
4600	52.0	49.0	46.1	43.2	40.5	
5000	57.8	54.6	51.3	48.1	45.1	42.1
5400	63.4	59.9	56.5	52.9	49.6	46.4
5800	70.6	65.2	61.5	57.7	54.1	50.6
6200	76.7	72.6	66.7	62.4	58.6	54.9
6600	80.1	77.5	73.5	67.5	63.0	59.2
7000	83.1	80.6	77.9	74.1	68.0	63.4
7400	85.9	83.3	80.6	78.0	74.3	68.2
7800	88.2	85.5	82.9	80.2	77.5	74.2
8200	90.4	87.7	85.0	82.3	79.6	76.9
8600	92.6	89.8	87.0	84.2	81.5	78.8
9000		91.8	88.9	86.1	83.4	80.6
9400			90.8	87.9	85.1	82.3
9800				89.6	86.8	83.9
10200				91.3	88.4	85.4
10600					89.9	86.9
11000					91.4	88.4
11400						89.8
11800						91.1

Decrease field limit weight by 7150 kg when using manual speedbrakes.

Landing Field Limit Weight - Wet Runway - Low Altitudes Flaps 40

Based on anti-skid inoperative and manual speedbrakes Table 1 of 2: Wind Adjusted Field Length (FT)

FIELD LENGTH			WI	ND COMP	ONENT (K	TS)		
AVAILABLE	-15	-10	-5	0	10	20	30	40
(FT)	-13	-10	-3	U	-	-		-
6000					6570	7140	7720	8310
6400					6980	7560	8160	8760
6800				6800	7390	7990	8590	9200
7200				7200	7800	8410	9020	9650
7600			6660	7600	8210	8830	9460	10100
8000			7040	8000	8620	9250	9890	10540
8400		6460	7430	8400	9030	9670	10320	10990
8800		6830	7810	8800	9440	10090	10760	11430
9200		7210	8200	9200	9850	10520	11190	11880
9600	6590	7580	8590	9600	10260	10940	11620	12320
10000	6950	7950	8970	10000	10670	11360	12060	12770
10400	7310	8330	9360	10400	11080	11780	12490	13210
10800	7670	8700	9740	10800	11500	12200	12920	13660
11200	8030	9070	10130	11200	11910	12620	13360	14100
11600	8390	9450	10520	11600	12320	13050	13790	14550
12000	8760	9820	10900	12000	12730	13470	14220	15000
12400	9120	10190	11290	12400	13140	13890	14660	15440
12800	9480	10570	11670	12800	13550	14310	15090	15890
13200	9840	10940	12060	13200	13960	14730	15520	16330
13600	10200	11310	12450	13600	14370	15150	15960	16780
14000	10560	11680	12840	14000	14780	15570	16400	17230
14400	10910	12050	13220	14400	15190	15990	16830	17670
14800	11270	12420	13610	14800	15600	16410	17270	18120
15200	11620	12790	13990	15200	16010	16830	17700	18560
15600	11980	13160	14380	15600	16420	17250	18140	19010
16000	12330	13530	14760	16000	16830	17670	18570	19450
16400	12690	13900	15150	16400	17240	18090	19010	19900
16800	13040	14270	15530	16800	17650	18510	19440	20340
17200	13400	14640	15920	17200	18060	18930	19880	20790
17600	13750	15010	16300	17600	18470	19350	20310	21230

737-8/LEAP-1B27 FAA CATB

737 Flight Crew Operations Manual

Landing Field Limit Weight - Wet Runway - Low Altitudes Flaps 40

Based on anti-skid inoperative and manual speedbrakes Table 2 of 2: Field Limit Weight (1000 KG)

WIND CORRECTED		AIRI	PORT PRESSU	RE ALTITUDI	E (FT)	
FIELD LENGTH (FT)	0	2000	4000	6000	8000	10000
8000	42.1					
8400	44.9	42.1				
8800	47.7	44.7	41.4			
9200	50.6	47.4	43.9	40.7		
9600	53.3	50.1	46.5	43.1	40.2	
10000	56.0	52.7	48.9	45.4	42.4	
10400	58.8	55.3	51.4	47.7	44.5	41.4
10800	61.5	57.8	53.9	50.0	46.7	43.5
11200	64.2	60.4	56.3	52.3	48.8	45.5
11600	67.0	62.9	58.7	54.6	51.0	47.5
12000	70.4	65.5	61.1	56.9	53.1	49.5
12400	73.4	68.2	63.5	59.1	55.2	51.5
12800	76.0	71.5	66.0	61.4	57.4	53.5
13200	78.4	74.2	68.8	63.7	59.5	55.6
13600	80.7	76.5	71.7	66.0	61.6	57.6
14000	83.0	78.8	74.1	68.6	63.8	59.6
14400	85.3	81.0	76.4	71.6	66.0	61.6
14800	87.5	83.2	78.6	73.9	68.4	63.7
15200	89.8	85.4	80.7	76.1	71.4	65.8
15600	92.0	87.5	82.8	78.1	73.6	68.0
16000		89.6	84.8	80.2	75.7	70.9
16400		91.8	86.9	82.2	77.7	73.0
16800			88.9	84.1	79.6	75.0
17200			90.9	86.0	81.5	76.9
17600				87.9	83.3	78.7

Landing Field Limit Weight - Wet Runway - High Altitudes Flaps 40

Based on anti-skid operative and automatic speedbrakes Table 1 of 2: Wind Adjusted Field Length (FT)

FIELD LENGTH			WI	ND COMP	ONENT (K	TS)		WIND COMPONENT (KTS)								
AVAILABLE (FT)	-15	-10	-5	0	10	20	30	40								
4600	3400	3800	4200	4600	4740	4890	5030	5180								
5000	3710	4140	4570	5000	5170	5330	5500	5660								
5400	4020	4480	4940	5400	5590	5770	5960	6150								
5800	4320	4810	5310	5800	6010	6220	6420	6630								
6200	4630	5150	5680	6200	6430	6660	6890	7120								
6600	4930	5490	6040	6600	6850	7100	7350	7600								
7000	5240	5830	6410	7000	7270	7540	7820	8090								
7400	5550	6160	6780	7400	7690	7990	8280	8580								
7800	5850	6500	7150	7800	8120	8430	8750	9060								
8200	6160	6840	7520	8200	8540	8870	9210	9550								
8600	6470	7180	7890	8600	8960	9320	9670	10030								
9000	6770	7510	8260	9000	9380	9760	10140	10520								
9400	7080	7850	8630	9400	9800	10200	10600	11000								
9800	7380	8190	8990	9800	10220	10640	11070	11490								
10200	7690	8530	9360	10200	10640	11090	11530	11980								
10600	8000	8860	9730	10600	11070	11530	12000	12460								
11000	8310	9190	10100	11000	11500	11970	12470	12940								
11400	8620	9520	10470	11400	11920	12420	12930	13430								
11800	8930	9850	10840	11800	12350	12860	13400	13910								
12200	9240	10180	11210	12200	12770	13310	13860	14400								
12600	9550	10510	11580	12600	13200	13750	14330	14880								
13000	9860	10840	11950	13000	13620	14200	14790	15370								
13400	10170	11170	12320	13400	14050	14640	15260	15850								
13800	10480	11500	12690	13800	14470	15090	15720	16340								
14200	10790	11830	13060	14200	14890	15540	16180	16830								
14600	11100	12160	13430	14600	15310	15990	16640	17320								

Landing Field Limit Weight - Wet Runway - High Altitudes Flaps 40

Based on anti-skid operative and automatic speedbrakes Table 2 of 2: Field Limit Weight (1000 KG)

		•	•			
WIND CORRECTED		AIRP	ORT PRESSU	RE ALTITUDE	E (FT)	•
FIELD LENGTH	10000	11000	12000	13000	14000	14500
(FT)			12000	13000	14000	14300
5000	42.1	40.7				
5400	46.4	44.8	43.3	41.9	40.4	
5800	50.6	48.9	47.3	45.7	44.2	43.4
6200	54.9	53.1	51.3	49.6	47.9	47.1
6600	59.2	57.3	55.4	53.5	51.7	50.9
7000	63.4	61.5	59.5	57.6	55.6	54.7
7400	68.2	65.7	63.6	61.5	59.6	58.6
7800	74.2	71.4	68.1	65.6	63.4	62.4
8200	76.9	75.3	73.8	71.1	67.6	66.3
8600	78.8	77.4	76.1	74.6	73.1	72.0
9000	80.6	79.2	77.8	76.5	75.2	74.5
9400	82.3	80.9	79.5	78.1	76.8	76.1
9800	83.9	82.5	81.0	79.6	78.3	77.6
10200	85.4	84.0	82.5	81.1	79.7	79.0
10600	86.9	85.5	84.0	82.5	81.1	80.4
11000	88.4	86.9	85.4	83.9	82.4	81.7
11400	89.8	88.2	86.7	85.2	83.8	83.0
11800	91.1	89.6	88.0	86.5	85.0	84.3
12200		90.9	89.3	87.7	86.2	85.5
12600			90.5	88.9	87.4	86.6
13000			91.7	90.1	88.5	87.7
13400				91.2	89.6	88.8
13800					90.7	89.9
14200					91.7	90.9

Decrease field limit weight by 6500 kg when using manual speedbrakes.

Landing Field Limit Weight - Wet Runway - High Altitudes Flaps 40

Based on anti-skid inoperative and manual speedbrakes Table 1 of 2: Wind Adjusted Field Length (FT)

FIELD LENGTH		WIND COMPONENT (KTS)							
AVAILABLE	-15	-10	-5	0	10	20	30	40	
(FT)	-13	-10	-3	U	10	-		-	
8000						9320	9990	10650	
8400					9070	9740	10410	11090	
8800				8800	9480	10160	10840	11530	
9200				9200	9890	10580	11270	11970	
9600				9600	10300	11000	11700	12410	
10000			8930	10000	10710	11420	12130	12850	
10400			9320	10400	11110	11830	12560	13290	
10800			9710	10800	11520	12250	12990	13730	
11200		9000	10100	11200	11930	12670	13420	14170	
11600		9370	10480	11600	12340	13090	13840	14610	
12000		9750	10870	12000	12750	13510	14270	15050	
12400	9000	10130	11260	12400	13160	13930	14700	15490	
12800	9370	10500	11650	12800	13570	14340	15130	15930	
13200	9730	10880	12030	13200	13980	14760	15560	16370	
13600	10100	11250	12420	13600	14390	15180	15990	16810	
14000	10460	11630	12810	14000	14800	15600	16420	17250	
14400	10830	12010	13200	14400	15200	16020	16850	17690	
14800	11200	12380	13580	14800	15610	16440	17280	18130	
15200	11560	12760	13970	15200	16020	16860	17700	18570	
15600	11930	13140	14360	15600	16430	17270	18130	19010	
16000	12290	13520	14750	16000	16840	17690	18560	19450	
16400	12650	13890	15130	16400	17250	18110	18990	19890	
16800	13010	14270	15520	16800	17660	18530	19420	20330	
17200	13370	14640	15900	17200	18070	18950	19850	20770	
17600	13730	15020	16290	17600	18480	19370	20280	21210	
18000	14090	15390	16670	18000	18890	19790	20710	21650	
18400	14450	15770	17060	18400	19300	20210	21140	22090	
18800	14810	16140	17440	18800	19710	20630	21570	22530	
19200	15170	16520	17830	19200	20120	21050	22000	22970	
19600	15530	16890	18210	19600	20530	21470	22430	23410	

737-8/LEAP-1B27 FAA CATB

737 Flight Crew Operations Manual

Landing Field Limit Weight - Wet Runway - High Altitudes Flaps 40

Based on anti-skid inoperative and manual speedbrakes Table 2 of 2: Field Limit Weight (1000 KG)

WIND CORRECTED	AIRPORT PRESSURE ALTITUDE (FT)									
FIELD LENGTH (FT)	10000	11000	12000	13000	14000	14500				
10400	41.4	40.0								
10800	43.5	41.9	40.4							
11200	45.5	43.9	42.3	40.8						
11600	47.5	45.8	44.2	42.6	41.1	40.3				
12000	49.5	47.8	46.1	44.5	42.9	42.1				
12400	51.5	49.7	48.0	46.3	44.7	43.9				
12800	53.5	51.7	49.9	48.1	46.5	45.6				
13200	55.6	53.6	51.7	50.0	48.2	47.4				
13600	57.6	55.6	53.7	51.8	50.0	49.1				
14000	59.6	57.6	55.6	53.6	51.8	50.9				
14400	61.6	59.6	57.5	55.5	53.6	52.6				
14800	63.7	61.5	59.5	57.4	55.4	54.4				
15200	65.8	63.5	61.4	59.3	57.3	56.2				
15600	68.0	65.6	63.3	61.2	59.1	58.1				
16000	70.9	67.7	65.3	63.1	60.9	59.9				
16400	73.0	70.2	67.4	65.0	62.8	61.7				
16800	75.0	72.5	69.9	67.0	64.6	63.5				
17200	76.9	74.5	72.2	69.4	66.5	65.3				
17600	78.7	76.4	74.1	71.6	68.7	67.2				
18000	80.4	78.1	75.9	73.5	71.1	69.6				
18400	82.2	79.8	77.6	75.3	72.9	71.7				
18800	83.9	81.5	79.2	77.0	74.7	73.5				
19200	85.6	83.2	80.8	78.6	76.3	75.2				
19600	87.3	84.8	82.4	80.1	77.8	76.7				

Landing Climb Limit Weight

Valid for approach with flaps 15 and landing with flaps 40

Based on engine bleed for packs on and anti-ice off

AIRPORT			LANDI	NG CLIMI	B LIMIT W	EIGHT (1	000 KG)		
OAT			AIR	PORT PRE	ESSURE A	LTITUDE	(FT)		
(°C)	0	2000	4000	6000	8000	10000	12000	14000	14500
54	66.3								
52	67.8								
50	69.6	63.3							
48	70.8	64.4							
46	72.1	65.5	59.6						
44	73.5	67.1	60.6						
42	74.9	68.9	61.8	56.1					
40	76.4	70.6	63.6	57.2					
38	77.8	72.0	65.6	58.3	52.8				
36	79.2	73.5	67.4	60.4	53.8				
34	80.6	74.8	69.0	62.6	54.8	49.5			
32	82.0	76.2	70.4	64.5	55.8	50.5	44.5		
30	83.3	77.3	71.6	65.9	56.9	51.5	45.4		
28	83.3	78.2	72.8	67.1	58.0	52.5	46.3		
26	83.4	79.0	73.6	68.1	59.1	53.5	47.2		
24	83.4	79.0	74.1	69.2	60.2	54.5	48.2		
22	83.4	79.0	74.6	69.8	61.4	55.6	49.2	43.4	
20	83.4	78.9	74.6	70.0	62.5	56.7	50.2	44.3	42.9
18	83.4	78.9	74.6	70.2	63.7	57.8	51.2	45.3	43.9
16	83.4	78.9	74.5	70.2	64.9	58.9	52.3	46.3	44.8
14	83.4	78.9	74.5	70.2	66.1	60.1	53.3	47.3	45.8
12	83.4	78.9	74.5	70.2	66.0	61.4	54.4	48.3	46.9
10	83.4	78.9	74.5	70.3	66.0	62.5	55.5	49.3	47.9
0	83.5	79.0	74.6	70.3	66.1	62.5	58.0	53.6	52.6
-10	83.5	79.1	74.6	70.3	66.2	62.7	58.1	53.7	52.7
-20	83.6	79.2	74.6	70.4	66.3	62.8	58.2	53.9	52.8
-30	83.6	79.2	74.7	70.5	66.4	62.9	58.3	54.0	52.9
-40	83.6	79.2	74.8	70.6	66.5	62.9	58.4	54.1	53.0

With engine bleed for packs off, increase weight by 1250 kg.

Icing Adjustments

	,								
LANDING CLIMB LIMIT WEIGHT ADJUSTMENT (KG)									
	AIRPORT PRESSURE ALTITUDE (FT)								
0	2000	4000	6000	8000	10000	12000	14000	14500	
-5800	-5650	-5650	-5600	-4950	-4650	-4350	-4050	-3950	

When operating in icing conditions during any part of the flight with forecast landing temperature at or below 10°C, decrease weight by the Landing Climb Limit Weight Icing Adjustment shown above.

Anti-Ice Adjustments

Pressure Altitude ≤ 8000 FT

ANTI-ICE CONFIGURATION	LANDING CLIMB LIMIT WEIGHT ADJUSTMENT (KG)					
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>				
ENGINE ON	-100	-1000				
ENGINE AND WING ON	-250	-2050				

Pressure Altitude > 8000 FT

ANTI-ICE CONFIGURATION	LANDING CLIMB LIMIT WEIGHT ADJUSTMENT (KG)					
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>				
ENGINE ON	-1300	-1300				
ENGINE AND WING ON	-3600	-3850				

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

ENGINE INOP

Go-Around Climb Gradient

Flaps 15, Gear Up

Based on engine bleed for packs on and anti-ice off

Table 1 of 3: Reference Go-Around Gradient (%)

AIRPORT		RE	FERENCE G	O-AROUND	GRADIENT ((%)	
OAT			PRESS	URE ALTITU	DE (FT)		
(°C)	0	2000	4000	6000	8000	10000	12000
54	2.55						
50	3.14	2.01					
46	3.62	2.42	1.35				
42	4.14	3.06	1.74	0.72			
38	4.72	3.62	2.48	1.11	0.12		
34	5.28	4.16	3.08	1.93	0.49		
30	5.85	4.64	3.56	2.56	0.89		
26	5.85	4.99	3.95	2.96	1.31	0.29	
22	5.86	4.98	4.14	3.25	1.74	0.69	
18	5.86	4.98	4.14	3.33	2.18	1.09	
14	5.87	4.97	4.14	3.34	2.62	1.52	0.28
10	5.87	4.97	4.13	3.34	2.62	1.98	0.70
6	5.88	4.98	4.13	3.34	2.62	1.98	1.12
2	5.88	4.99	4.14	3.34	2.62	1.99	1.14

Table 2 of 3: Weight Adjustment

WEIGHT		REFERENCE GO-AROUND GRADIENT (%)								
(1000 KG)	0	1	2	3	4	5	6	7		
90	-2.40	-2.73	-3.05	-3.37	-3.68	-3.97	-4.27	-4.55		
85	-2.10	-2.38	-2.66	-2.93	-3.19	-3.45	-3.70	-3.95		
80	-1.71	-1.94	-2.15	-2.37	-2.58	-2.79	-2.99	-3.19		
75	-1.23	-1.39	-1.54	-1.70	-1.85	-1.99	-2.14	-2.28		
70	-0.66	-0.75	-0.83	-0.91	-0.99	-1.07	-1.14	-1.22		
65	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
60	0.71	0.80	0.88	0.97	1.06	1.15	1.25	1.34		
55	1.65	1.84	2.05	2.25	2.46	2.67	2.88	3.10		
50	2.80	3.14	3.48	3.83	4.19	4.54	4.91	5.28		
45	4.18	4.68	5.20	5.72	6.24	6.78	7.32	7.86		
40	5.77	6.47	7.19	7.90	8.63	9.37	10.11	10.86		

Table 3 of 3: Speed Adjustment

SPEED		WEIGHT ADJUSTED GO-AROUND GRADIENT (%)									
(KIAS)	0	1	2	3	4	5	6	7	8	9	10
VREF40	-0.64	-0.65	-0.66	-0.67	-0.67	-0.68	-0.68	-0.68	-0.68	-0.68	-0.68
VREF40+5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
VREF40+10	0.09	0.09	0.10	0.10	0.10	0.11	0.11	0.11	0.11	0.10	0.10
VREF40+15	0.13	0.13	0.14	0.14	0.14	0.14	0.14	0.14	0.13	0.12	0.12
VREF40+20	0.13	0.12	0.12	0.11	0.11	0.10	0.09	0.08	0.07	0.06	0.05
VREF40+25	0.08	0.06	0.04	0.02	0.00	-0.02	-0.04	-0.06	-0.08	-0.10	-0.11
VREF40+30	-0.02	-0.06	-0.10	-0.14	-0.18	-0.22	-0.25	-0.28	-0.31	-0.34	-0.36

With engine bleed for packs off, increase gradient by 0.2%.

With engine anti-ice on, decrease gradient by 0.3%.

With engine and wing anti-ice on, decrease gradient by 0.9%.

When operating in icing conditions during any part of the flight with forecast landing temperature at or below 10° C, decrease gradient by 1.2%.

Quick Turnaround Limit Weight Flaps 40 Limit Weight (1000 KG)

AIRPORT		AIRPORT PRESSURE ALTITUDE (FT)							
OAT (°C)	0	2000	4000	6000	8000	10000	12000	14000	14500
54	74.7								
50	75.2	72.4							
45	75.8	73.0	70.3						
40	76.3	73.6	70.8	67.7					
35	76.9	74.2	71.4	68.3	65.5				
30	77.5	74.8	72.0	69.1	66.1	63.5	60.9		
25	78.1	75.4	72.6	69.8	66.7	64.0	61.4	58.9	58.3
20	78.7	76.0	73.2	70.4	67.2	64.5	62.0	59.4	58.8
15	79.3	76.6	73.9	71.0	67.8	65.1	62.5	60.0	59.3
10	79.9	77.2	74.5	71.6	68.5	65.7	63.0	60.5	59.8
5	80.6	77.8	75.1	72.2	69.3	66.2	63.6	61.0	60.3
0	81.3	78.5	75.7	72.9	70.0	66.8	64.1	61.5	60.9
-5	81.9	79.1	76.3	73.5	70.6	67.4	64.7	62.1	61.4
-10	82.7	79.8	77.0	74.2	71.3	68.1	65.3	62.7	62.0
-15	83.4	80.5	77.7	74.9	72.0	69.0	66.0	63.3	62.6
-20	84.2	81.3	78.4	75.6	72.8	69.9	66.6	63.9	63.3
-30	85.8	82.8	79.9	77.0	74.2	71.3	68.1	65.2	64.5
-40	87.4	84.4	81.5	78.6	75.8	72.8	69.9	66.7	65.9
-50	89.2	86.2	83.2	80.2	77.3	74.4	71.5	68.2	67.5
-54	90.0	86.9	83.9	80.9	77.9	75.1	72.1	69.0	68.1

Increase weight by 600 kg per 1% uphill slope. Decrease weight by 1000 kg per 1% downhill slope. Increase weight by 1500 kg per 10 knots headwind. Decrease weight by 7600 kg per 10 knots tailwind. After landing at weights exceeding those shown above, adjusted for slope and wind, wait at least 48 minutes and check that wheel thermal plugs have not melted before executing a takeoff.

If a Brake Temperature Monitoring System (BTMS) is installed:

No sooner than 10 and no later than 15 minutes after parking, check the BRAKE TEMP light. If the BRAKE TEMP light is not on, no ground waiting period is required. If the BRAKE TEMP light is on, do not dispatch until at least 48 minutes after landing, or until all the BTMS readings on the systems Display are below 3.0 and the BRAKE TEMP light is off. Check that wheel thermal plugs have not melted before making a subsequent takeoff.

Note: If any brake temperature display digit is blank or indicates 0.0 or 0.1, then this method cannot be used.

Intentionally Blank

Performance Dispatch Gear Down

Chapter PD Section 13

GEAR DOWN

Takeoff Climb Limit Weight Flaps 5

Based on engine bleed for packs on and anti-ice off

based on eng	inc biccu i	_					
AIRPORT			TAKEOFF CI	LIMB WEIGH	HT (1000 KG)		
OAT			AIRPORT PR	RESSURE AL	FITUDE (FT)		
°C	0	2000	4000	6000	8000	10000	12000
54	58.4	55.6	50.6	45.0			
52	59.6	55.5	51.8	46.0			
50	60.8	55.8	52.9	47.1			
48	62.1	57.0	52.9	48.1	42.8		
46	63.5	58.2	53.2	49.2	43.7		
44	65.0	59.5	54.4	49.7	44.7		
42	66.5	60.8	55.5	50.0	45.7		
40	68.1	62.2	56.7	51.2	46.7		
38	69.9	63.6	58.0	52.3	47.1		
36	71.4	65.1	59.4	53.5	48.2		
34	73.0	66.6	60.7	54.7	49.3		
32	74.7	68.1	62.1	56.0	50.4	43.5	
30	76.2	69.9	63.5	57.3	51.6	44.6	
28	77.3	71.4	64.9	58.6	52.8	45.6	
26	77.3	72.9	66.3	59.9	54.0	46.7	
24	77.3	72.9	67.6	61.2	55.2	47.7	
22	77.3	72.9	68.6	62.3	56.4	48.9	
20	77.3	72.9	68.6	63.4	57.6	50.0	
18	77.3	72.9	68.6	64.4	58.7	51.1	43.4
16	77.3	72.8	68.6	64.6	59.5	52.3	44.5
14	77.3	72.8	68.6	64.6	60.4	53.4	45.5
12	77.3	72.8	68.6	64.6	61.0	54.5	46.7
10 & BLW	77.3	72.8	68.6	64.6	61.0	55.6	47.9

With engine bleed for packs off, increase weight by 50 kg.

With engine anti-ice on, decrease weight by 1500 kg.

With engine and wing anti-ice on, decrease weight by 5600 kg.

GEAR DOWN

Takeoff Obstacle Limit Weight

Flaps 5
Based on engine bleed for packs on and anti-ice off
Table 1 of 4: Sea Level, 30°C and Below, Zero Wind

OBSTACLE			REF	FERENC	E OBS	TACLE :	LIMIT	WEIGH	Γ (1000	KG)		
HEIGHT			Γ	DISTAN	CE FRO	M BRA	KE REI	LEASE ([1000 F]	Γ)		
(FT)	8	10	12	14	16	18	20	22	24	26	28	30
10	75.9											
50	69.9	75.5										
100	65.0	70.6	74.5	77.1								
150	61.4	67.0	71.0	73.9	76.1							
200	58.5	63.9	68.1	71.2	73.6	75.4	76.9					
250	56.0	61.4	65.5	68.8	71.3	73.3	74.9	76.2	77.3	77.6	77.6	77.6
300	53.8	59.1	63.3	66.6	69.3	71.4	73.1	74.5	75.7	76.7	77.5	77.5
350	51.8	57.1	61.3	64.7	67.4	69.6	71.4	72.9	74.2	75.3	76.2	77.0
400	50.0	55.3	59.5	62.9	65.6	67.9	69.8	71.4	72.8	73.9	74.9	75.8
450	48.3	53.6	57.8	61.2	64.0	66.4	68.3	70.0	71.4	72.6	73.7	74.6
500	46.7	52.1	56.3	59.7	62.6	64.9	66.9	68.7	70.1	71.4	72.5	73.5
550	45.2	50.7	54.9	58.3	61.2	63.6	65.6	67.4	68.9	70.2	71.4	72.4
600	43.7	49.3	53.5	57.0	59.9	62.3	64.4	66.2	67.7	69.1	70.3	71.3
650	42.7	48.0	52.2	55.7	58.6	61.1	63.2	65.0	66.6	68.0	69.3	70.3
700		46.8	51.1	54.5	57.4	59.9	62.1	63.9	65.5	67.0	68.3	69.
750		45.6	49.9	53.4	56.3	58.8	61.0	62.9	64.5	66.0	67.3	68.
800		44.4	48.8	52.3	55.3	57.8	60.0	61.9	63.5	65.0	66.4	67.:
850		43.3	47.8	51.3	54.2	56.8	59.0	60.9	62.6	64.1	65.4	66.
900		42.7	46.8	50.3	53.3	55.8	58.0	60.0	61.7	63.2	64.6	65.
950			45.8	49.4	52.3	54.9	57.1	59.1	60.8	62.4	63.7	65.
1000			44.9	48.5	51.4	54.0	56.3	58.2	60.0	61.5	62.9	64.

Obstacle height must be calculated from lowest point of the runway to conservatively account for runway slope.

For FAA operators adhering to EASA standards, when using line-up allowances, the obstacle distance from brake release must be reduced by the ASDA adjustment.

Table 2 of 4: OAT Adjustment

		OBSTACLE LIMIT WEIGHT ADJUSTMENT (1000 KG)							
OAT (°C)		R	EFERENC	E OBSTA	CLE LIMI	T WEIGH	Г (1000 КО	i)	
	40	45	50	55	60	65	70	75	80
30 & BELOW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
32	-0.7	-0.8	-0.9	-1.0	-1.1	-1.2	-1.3	-1.4	-1.5
34	-1.3	-1.5	-1.7	-1.9	-2.1	-2.3	-2.5	-2.7	-2.9
36	-2.0	-2.3	-2.6	-2.9	-3.2	-3.5	-3.8	-4.1	-4.4
38	-2.7	-3.1	-3.5	-3.9	-4.3	-4.7	-5.1	-5.5	-5.9
40	-3.3	-3.8	-4.3	-4.8	-5.3	-5.8	-6.3	-6.8	-7.3
42	-3.9	-4.5	-5.1	-5.7	-6.3	-6.9	-7.5	-8.0	-8.6
44	-4.5	-5.2	-5.8	-6.5	-7.2	-7.9	-8.6	-9.3	-10.0
46	-5.0	-5.8	-6.6	-7.4	-8.2	-8.9	-9.7	-10.5	-11.3
48	-5.6	-6.5	-7.4	-8.2	-9.1	-10.0	-10.9	-11.7	-12.6
50	-6.2	-7.1	-8.1	-9.1	-10.1	-11.0	-12.0	-13.0	-13.9

GEAR DOWN

Takeoff Obstacle Limit Weight

Flaps 5

Based on engine bleed for packs on and anti-ice off

Table 3 of 4: Pressure Altitude Adjustment

PRESS ALT		OBSTACLE LIMIT WEIGHT ADJUSTMENT (1000 KG)							
(FT)		OAT ADJUSTED OBSTACLE LIMIT WEIGHT (1000 KG)							
(11)	40	45	50	55	60	65	70	75	80
S.L. & BELOW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1000	-1.5	-1.8	-2.0	-2.2	-2.4	-2.6	-2.8	-3.0	-3.2
2000	-3.1	-3.5	-3.9	-4.4	-4.8	-5.2	-5.6	-6.1	-6.5
3000	-4.5	-5.1	-5.7	-6.3	-6.9	-7.5	-8.1	-8.7	-9.3
4000	-6.0	-6.8	-7.5	-8.3	-9.1	-9.8	-10.6	-11.3	-12.1
5000	-7.2	-8.2	-9.1	-10.0	-11.0	-11.9	-12.8	-13.8	-14.7
6000	-8.5	-9.6	-10.7	-11.8	-12.9	-14.0	-15.1	-16.2	-17.2
7000	-10.4	-11.8	-13.2	-14.6	-16.0	-17.4	-18.8	-20.1	-21.5
8000	-12.3	-14.0	-15.7	-17.4	-19.1	-20.8	-22.5	-24.1	-25.8
9000	-13.2	-15.1	-17.0	-19.0	-20.9	-22.9	-24.8	-26.7	-28.7
10000	-14.0	-16.2	-18.4	-20.6	-22.8	-24.9	-27.1	-29.3	-31.5

Table 4 of 4: Wind Adjustment

		OBSTACLE LIMIT WEIGHT ADJUSTMENT (1000 KG)							
WIND (KTS)		OAT AND ALT ADJUSTED OBSTACLE LIMIT WEIGHT (1000 KG)							
	40	45	50	55	60	65	70	75	80
15 TW	-9.5	-9.2	-9.0	-8.7	-8.4	-8.1	-7.8	-7.5	-7.3
10 TW	-6.3	-6.2	-6.0	-5.8	-5.6	-5.4	-5.2	-5.0	-4.8
5 TW	-3.2	-3.1	-3.0	-2.9	-2.8	-2.7	-2.6	-2.5	-2.4
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10 HW	0.8	0.8	0.7	0.6	0.5	0.5	0.4	0.3	0.3
20 HW	1.7	1.5	1.4	1.2	1.1	0.9	0.8	0.6	0.5
30 HW	2.5	2.3	2.0	1.8	1.6	1.4	1.2	1.0	0.8
40 HW	3.3	3.0	2.7	2.4	2.2	1.9	1.6	1.3	1.0

With engine bleed for packs off, increase weight by 100 kg.

Anti-Ice Adjustments

Pressure Altitude ≤ 8000 FT

ANTI-ICE CONFIGURATION	OBSTACLE LIMIT WEIG	GHT ADJUSTMENT (KG)
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>
ENGINE ON	-300	-1550
ENGINE AND WING ON	-1050	-5050

Pressure Altitude > 8000 FT

ANTI-ICE CONFIGURATION	OBSTACLE LIMIT WEIG	GHT ADJUSTMENT (KG)
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>
ENGINE ON	-1300	-1550
ENGINE AND WING ON	-4800	-5950

GEAR DOWN

Fuel Jettison Limit Weight

Valid for approach with flaps 15 and landing with flaps 40 Based on engine bleed for packs on and anti-ice off

AIRPORT		FUEL JETTISON LIMIT WEIGHT (1000 KG)							
OAT			AIR	PORT PRI	ESSURE A	LTITUDE	(FT)		
(°C)	0	2000	4000	6000	8000	10000	12000	14000	14500
54	61.1								
52	62.6								
50	64.0	58.4							
48	65.2	59.4							
46	66.4	60.4	55.0						
44	67.6	62.0	56.0						
42	69.0	63.5	57.0	51.9					
40	70.4	65.0	58.8	52.8					
38	71.8	66.3	60.7	53.9	48.8				
36	73.2	67.7	62.3	55.9	49.8				
34	74.6	69.0	63.6	57.9	50.7				
32	76.0	70.3	64.9	59.7	51.7	46.8			
30	77.5	71.4	66.0	61.0	52.7	47.7			
28	77.5	72.3	67.2	62.1	53.7	48.6			
26	77.5	73.1	68.0	63.0	54.8	49.6			
24	77.5	73.1	68.4	63.9	55.8	50.6			
22	77.5	73.1	68.9	64.4	56.9	51.6			
20	77.5	73.1	68.9	64.6	57.9	52.6			
18	77.5	73.0	68.9	64.8	59.1	53.6	47.6		
16	77.5	73.0	68.8	64.8	60.2	54.6	48.5		
14	77.6	73.0	68.9	64.8	61.3	55.8	49.5		
12	77.6	73.0	68.9	64.8	61.3	57.0	50.5		
10	77.6	73.0	68.9	64.9	61.2	58.0	51.6		
0	77.6	73.1	68.9	64.9	61.3	58.1	53.9	49.9	48.9
-10	77.6	73.2	68.9	64.9	61.4	58.2	54.0	50.0	49.0
-20	77.7	73.3	68.9	65.0	61.5	58.3	54.1	50.1	49.1
-30	77.7	73.3	69.0	65.1	61.6	58.4	54.2	50.2	49.3
-40	77.7	73.3	69.1	65.2	61.7	58.4	54.3	50.3	49.3

Table valid for Zero Fuel Weight up to $72500~{\rm kg}$. With engine bleed for packs off, increase weight by $1150~{\rm kg}$.

Icing Adjustments

	FUEL JETTISON LIMIT WEIGHT ADJUSTMENT (KG)							
AIRPORT PRESSURE ALTITUDE (FT)								
0	0 2000 4000 6000 8000 10000 12000 14000 14500							
-8250	-8250 -7850 -7400 -6650 -6250 -5900 -5450 -5050 -4950							

When operating in icing conditions during any part of the flight with forecast landing temperature at or below 10°C, decrease weight by the Fuel Jettison Limit Weight Icing Adjustment shown above.

GEAR DOWN

Fuel Jettison Limit Weight Anti-Ice Adjustments Pressure Altitude ≤ 8000 FT

ANTI-ICE CONFIGURATION	FUEL JETTISON LIMIT WI	EIGHT ADJUSTMENT (KG)
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>
ENGINE ON	-100	-900
ENGINE AND WING ON	-400	-2700

Pressure Altitude > 8000 FT

ANTI-ICE CONFIGURATION	FUEL JETTISON LIMIT WEIGHT ADJUSTMENT (KG)				
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>			
ENGINE ON	-1200	-1250			
ENGINE AND WING ON	-4450	-4450			

GEAR DOWN

Landing Climb Limit Weight

Valid for approach with flaps 15 and landing with flaps 40 Based on engine bleed for packs on and anti-ice off

AIRPORT						/EIGHT (1			
OAT			AIR	PORT PRI	ESSURE A	LTITUDE	(FT)		
(°C)	0	2000	4000	6000	8000	10000	12000	14000	14500
54	60.7								
52	62.1								
50	63.6	58.0							
48	64.7	59.0							
46	65.9	60.0	54.6						
44	67.2	61.5	55.5						
42	68.6	63.1	56.6	51.4					
40	70.3	64.6	58.4	52.4					
38	71.6	65.9	60.2	53.4	48.4				
36	73.0	67.3	61.9	55.4	49.3				
34	74.3	68.6	63.2	57.5	50.2	45.4			
32	75.7	70.1	64.4	59.2	51.2	46.3			
30	77.1	71.2	65.6	60.6	52.2	47.2			
28	77.1	72.1	66.7	61.7	53.3	48.2			
26	77.2	72.9	67.5	62.6	54.3	49.1	43.4		
24	77.2	72.9	68.0	63.5	55.4	50.1	44.3		
22	77.2	72.9	68.5	64.0	56.4	51.1	45.2		
20	77.2	72.8	68.5	64.2	57.5	52.2	46.1		
18	77.2	72.8	68.4	64.4	58.6	53.2	47.1		
16	77.2	72.8	68.4	64.4	59.8	54.2	48.1		
14	77.2	72.8	68.4	64.4	60.9	55.3	49.1	43.5	
12	77.2	72.8	68.4	64.4	60.8	56.5	50.1	44.4	43.1
10	77.2	72.8	68.4	64.4	60.8	57.6	51.1	45.4	44.1
0	77.3	72.9	68.5	64.4	60.9	57.6	53.4	49.4	48.5
-10	77.3	73.0	68.5	64.5	60.9	57.8	53.6	49.5	48.6
-20	77.4	73.1	68.5	64.6	61.0	57.9	53.7	49.7	48.7
-30	77.4	73.1	68.7	64.7	61.2	58.0	53.8	49.8	48.8
-40	77.4	73.1	68.7	64.7	61.2	58.0	53.8	49.8	48.9

With engine bleed for packs off, increase weight by 1150 kg.

Icing Adjustments

	-	,										
1	LANDING CLIMB LIMIT WEIGHT ADJUSTMENT (KG)											
1	AIRPORT PRESSURE ALTITUDE (FT)											
1	0 2000 4000 6000 8000 10000 12000 14000 14500											
1	-8250	-7850	-7400	-6650	-6250	-5900	-5450	-5050	-4950			

When operating in icing conditions during any part of the flight with forecast landing temperature at or below 10° C, decrease weight by the Landing Climb Limit Weight Icing Adjustment shown above.

GEAR DOWN

Landing Climb Limit Weight Anti-Ice Adjustments

Pressure Altitude ≤ 8000 FT

ANTI-ICE CONFIGURATION	LANDING CLIMB LIMIT WEIGHT ADJUSTMENT (KG)				
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>			
ENGINE ON	-100	-900			
ENGINE AND WING ON	-400	-2700			

Pressure Altitude > 8000 FT

ANTI-ICE CONFIGURATION	LANDING CLIMB LIMIT WEIGHT ADJUSTMENT (KG)				
ANTI-ICE CONFIGURATION	OAT≤5°C	5°C <oat≤10°c< td=""></oat≤10°c<>			
ENGINE ON	-1200	-1250			
ENGINE AND WING ON	-4450	-4450			

737-8/LEAP-1B27 FAA CATB

737 Flight Crew Operations Manual

GEAR DOWN

Long Range Cruise Altitude Capability

Max Cruise Thrust, 100 ft/min residual rate of climb

WEIGHT (1000 KG)		PRESSURE ALTITUDE (FT)	
WEIGHT (1000 KG)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C
85	16500	13900	11200
80	18800	16500	13800
75	21500	19000	16500
70	24900	22400	19300
65	27000	25700	23800
60	29100	27900	26700
55	31300	30400	29100
50	33300	32700	32100
45	35600	34900	34500
40	38000	37500	37100

GEAR DOWN

Long Range Cruise Trip Fuel and Time Table 1 of 3: Ground to Air Miles Conversion

	AIR D	ISTANCE	(NM)		GROUND		AIR D	ISTANCE	E (NM)	
HE	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TA	ILWIND	COMPON	NENT (KT	rs)
100	80	60	40	20	(NM)	20	40	60	80	100
349	305	269	241	219	200	187	175	165	156	148
523	458	404	362	329	300	280	263	247	234	223
696	611	538	483	438	400	374	351	330	312	297
868	762	673	603	548	500	468	439	414	391	371
1039	913	806	724	657	600	562	528	497	470	446
1209	1063	939	843	766	700	656	616	580	548	521
1378	1212	1072	963	876	800	750	704	663	627	596
1545	1361	1205	1083	985	900	844	793	747	706	672
1712	1509	1337	1202	1094	1000	938	881	830	786	747
1878	1657	1469	1321	1203	1100	1032	970	914	865	823
2043	1804	1600	1440	1312	1200	1126	1058	998	944	898
2207	1950	1730	1559	1420	1300	1219	1146	1081	1023	973
2370	2095	1861	1677	1529	1400	1313	1235	1165	1103	1049
2532	2241	1992	1796	1638	1500	1408	1324	1249	1183	1125
2693	2385	2122	1915	1746	1600	1502	1413	1333	1263	1201
2853	2529	2251	2033	1855	1700	1596	1502	1417	1342	1277
3013	2672	2380	2150	1963	1800	1690	1591	1502	1422	1353
3172	2815	2509	2268	2071	1900	1785	1680	1586	1502	1429
3330	2957	2638	2385	2179	2000	1879	1769	1670	1582	1506

Table 2 of 3: Reference Fuel and Time Required

			PRF	SSURE ALT	ITUDE (1000	FT)		
AIR	1	0		4		.0	2	.4
DIST (NM)	FUEL	TIME	FUEL	TIME	FUEL	TIME	FUEL	TIME
(14141)	(1000 KG)	(HR:MIN)	(1000 KG)	(HR:MIN)	(1000 KG)	(HR:MIN)	(1000 KG)	(HR:MIN)
200	2.1	0:55	2.0	0:53	1.9	0:50	1.8	0:49
300	3.1	1:21	2.9	1:17	2.7	1:12	2.6	1:09
400	4.1	1:46	3.9	1:41	3.6	1:34	3.4	1:30
500	5.1	2:11	4.8	2:05	4.5	1:55	4.2	1:50
600	6.2	2:36	5.8	2:28	5.3	2:17	5.1	2:10
700	7.2	3:01	6.7	2:52	6.2	2:38	5.9	2:30
800	8.2	3:26	7.7	3:15	7.1	2:59	6.7	2:50
900	9.3	3:50	8.7	3:38	8.0	3:20	7.6	3:10
1000	10.3	4:14	9.7	4:01	8.9	3:41	8.4	3:30
1100	11.4	4:38	10.7	4:23	9.8	4:02	9.2	3:49
1200	12.5	5:02	11.7	4:46	10.7	4:22	10.1	4:09
1300	13.6	5:25	12.7	5:08	11.6	4:43	11.0	4:28
1400	14.7	5:48	13.7	5:30	12.5	5:03	11.8	4:47
1500	15.8	6:11	14.7	5:52	13.5	5:23	12.7	5:06
1600	16.9	6:34	15.8	6:13	14.4	5:43	13.6	5:25
1700	18.0	6:57	16.8	6:35	15.4	6:03	14.5	5:44
1800	19.1	7:19	17.9	6:56	16.3	6:23	15.4	6:03
1900	20.3	7:42	19.0	7:17	17.3	6:42	16.3	6:21
2000	21.4	8:04	20.0	7:39	18.3	7:02	17.2	6:40

GEAR DOWN

Long Range Cruise Trip Fuel and Time Table 3 of 3: Fuel Required Adjustment (1000 KG)

REFERENCE FUEL		LA	ANDING WEI	GHT (1000 K	G)	
REQUIRED (1000 KG)	40	45	50	55	60	65
2	-0.2	-0.1	0.0	0.1	0.2	0.3
4	-0.4	-0.2	0.0	0.2	0.4	0.7
6	-0.5	-0.3	0.0	0.3	0.7	1.1
8	-0.7	-0.4	0.0	0.4	0.9	1.4
10	-0.9	-0.4	0.0	0.6	1.2	1.8
12	-1.1	-0.5	0.0	0.7	1.4	2.2
14	-1.2	-0.6	0.0	0.8	1.7	2.6
16	-1.4	-0.7	0.0	1.0	1.9	3.0
18	-1.6	-0.8	0.0	1.1	2.2	3.3
20	-1.7	-0.9	0.0	1.2	2.5	3.7
22	-1.9	-1.0	0.0	1.3	2.7	4.1

Based on VREF40+70 climb, Long Range Cruise, and VREF40+70 descent.

GEAR DOWN

Short Trip Fuel and Time Table 1 of 2: Ground to Air Miles Conversion

	AIR D	ISTANCE	(NM)		GROUND		AIR D	ISTANCE	E (NM)	
HEA	AD WIND	СОМРО	NENT (K	TS)	DISTANCE	TAIL WIND COMPONENT (KTS)			ΓS)	
100	80	60	40	20	(NM)	20	40	60	80	100
102	84	72	63	56	50	45	42	38	36	33
177	153	135	121	110	100	92	85	79	74	70
253	222	198	179	163	150	139	129	121	113	107
328	291	261	237	217	200	186	173	162	152	144
403	359	324	295	271	250	232	217	204	192	181
477	427	386	352	324	300	279	261	245	231	219
551	494	448	410	378	350	326	305	287	271	256
626	562	511	467	431	400	373	350	329	310	294
700	630	573	525	485	450	420	394	371	350	331
776	699	635	583	538	500	467	438	412	389	369

Table 2 of 2: Trip Fuel and Time

	ID DICT ADA			LANDING	WEIGHT	(1000 KG)			TIME
A	IR DIST (NM)	40	45	50	55	60	65	70	(HR:MIN)
50	FUEL (1000 KG)	0.6	0.6	0.7	0.7	0.7	0.8	0.8	0:15
30	ALT (FT)	5000	5000	5000	5000	5000	5000	5000	0:13
100	FUEL (1000 KG)	1.1	1.1	1.2	1.2	1.3	1.4	1.4	0:26
100	ALT (FT)	11000	9000	9000	11000	11000	11000	11000	0.20
150	FUEL (1000 KG)	1.5	1.6	1.7	1.7	1.8	1.9	2.0	0:37
130	ALT (FT)	13000	15000	15000	13000	13000	13000	13000	0.57
200	FUEL (1000 KG)	1.9	2.0	2.1	2.2	2.3	2.4	2.5	0:47
200	ALT (FT)	17000	15000	15000	15000	15000	15000	15000	0:47
250	FUEL (1000 KG)	2.3	2.5	2.6	2.7	2.8	2.9	3.1	0:57
230	ALT (FT)	17000	17000	15000	17000	17000	17000	17000	0.57
300	FUEL (1000 KG)	2.7	2.9	3.0	3.2	3.3	3.5	3.6	1:07
300	ALT (FT)	19000	17000	17000	17000	17000	17000	17000	1.07
350	FUEL (1000 KG)	3.1	3.3	3.5	3.6	3.8	4.0	4.1	1:17
330	ALT (FT)	19000	19000	19000	19000	19000	17000	17000	1.17
400	FUEL (1000 KG)	3.5	3.7	3.9	4.1	4.3	4.5	4.7	1:27
400	ALT (FT)	19000	19000	19000	19000	19000	19000	19000	1:27
450	FUEL (1000 KG)	3.9	4.1	4.3	4.5	4.8	5.0	5.2	1:37
430	ALT (FT)	21000	19000	19000	19000	19000	19000	17000	1.57
500	FUEL (1000 KG)	4.3	4.5	4.8	5.0	5.2	5.5	5.8	1:47
500	ALT (FT)	21000	21000	19000	19000	19000	19000	17000	1.4/

GEAR DOWN

Holding Planning Flaps Up

WEIGHT			TO	TAL FUEL I	FLOW (KG/I	IR)						
(1000 KG)	PRESSURE ALTITUDE (FT)											
(1000 KG)	1500	5000	10000	15000	20000	25000	30000	35000				
85	3630	3620	3650	3700	3780							
80	3420	3400	3410	3460	3520							
75	3200	3190	3190	3220	3270	3390						
70	3000	2990	2980	3000	3030	3110						
65	2830	2800	2790	2790	2820	2870						
60	2650	2620	2610	2590	2610	2640	2720					
55	2470	2440	2430	2400	2400	2420	2470					
50	2300	2270	2250	2230	2220	2220	2240					
45	2130	2120	2080	2070	2060	2030	2030	2090				
40	1960	1950	1910	1910	1890	1840	1850	1870				

This table includes 5% additional fuel for holding in a racetrack pattern.

MAX CONTINUOUS THRUST

Net Level Off Weight

PRESSURE	LEVEL OFF WEIGHT			ANTI-ICE ADJUSTMENT	
ALTITUDE	(1000 KG)			(1000 KG)	
(1000 FT)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C	ENGINE ON	ENGINE AND WING ON
20	43.9				
19	45.0	43.4			
18	46.4	44.6			
17	47.8	45.9	43.5		
16	49.3	47.1	44.6	-1.2	
15	50.8	48.3	45.8	-1.1	
14	52.8	50.7	48.0	-1.2	-4.9
13	54.8	53.1	50.3	-1.2	-4.9
12	56.8	55.6	52.7	-1.3	-4.8
11	59.1	57.8	55.3	-1.3	-4.8
10	61.3	60.1	58.1	-1.3	-4.8
9	63.1	61.7	59.6	-0.6	-2.1
8	64.9	63.5	61.2	-0.1	-0.3
7	66.7	65.3	62.8	0.0	-0.3
6	68.8	67.3	64.5	0.0	-0.3
5	70.9	69.3	66.1	-0.1	-0.3
4	72.8	70.8	67.4	-0.1	-0.3
3	74.8	72.3	68.9	-0.1	-0.4
2	76.7	73.7	70.2	0.0	-0.3
1	78.5	75.2	71.5	0.0	-0.3

When operating in icing conditions during any part of the flight, decrease net level off weight by 4800 kg.

Intentionally Blank

Performance Dispatch Text

Chapter PD Section 14

Introduction

This chapter contains self dispatch performance data intended primarily for use by flight crews in the event that information cannot be obtained from the airline dispatch office. The data provided is for a single takeoff flap at max takeoff thrust. The range of conditions covered is limited to those normally encountered in airline operation. In the event of conflict between data presented in this chapter and that contained in the approved Airplane Flight Manual, the Flight Manual shall always take precedence.

Takeoff

The maximum allowable takeoff weight is the least of the Field, Climb, Obstacle, Brake Energy, Tire Speed, and Fuel Jettison Climb Limit Weights as determined from the tables in this chapter.

Brake Energy or Tire Speed Limit Weight tables are only provided if they are limiting for the range of conditions covered in the FCOM Section PD.

For operators following EASA standards, regulations require that the runway length be adjusted to account for alignment of the airplane prior to takeoff. The table below provides TORA, TODA and ASDA adjustments for both 90 degree taxiway entry and 180 degree turnaround. These values may be used when obtaining takeoff weights from the Airplane Flight Manual or a takeoff analysis program. When using line-up allowances with the Field Length Limit chart, the field length available must be reduced by the ASDA adjustment.

	90 DEGREE TAXIWAY ENTRY	180 DEGREE TURNAROUND	
	MINIMUM LINE-UP DISTANCE	NOMINAL LINE-UP DISTANCE	
	FT (M)	FT (M)	
TORA & TODA	35 (11)	64 (19)	
ASDA	86 (26)	115 (35)	

Field Limit Weight - Slope and Wind Corrections

These tables for dry and wet runways provide corrections to the field length available for the effects of runway slope and wind component along the runway. Enter the Slope Correction table (Table 1) with the available field length and runway slope to determine the slope corrected field length. Next enter the Wind Correction table (Table 2) with slope corrected field length and wind component to determine the slope and wind corrected field length.

737-8/LEAP-1B27 FAA CATB

737 Flight Crew Operations Manual

Field and Climb Limit Weight

Tables are presented for selected airport pressure altitudes and runway condition and show both Field and Climb Limit Weights. Enter the appropriate table (Table 3) for pressure altitude and runway condition with "Slope and Wind Corrected Field Length" (determined above) and airport OAT to obtain Field Limit Weight. Also read Climb Limit Weight for the same OAT. Intermediate altitudes may be interpolated or use next higher altitude. If the "Slope and Wind Corrected Field Length" is less than the minimum field length shown in the table, do not extrapolate the data.

When finding a maximum weight for a wet runway, the dry runway limit weight must also be determined and the lower of the two weights used.

Obstacle Limit Weight

Obtain reference obstacle limit weight by entering Table 1 with obstacle height above the runway surface and distance from brake release. Next enter the correction tables to correct the reference obstacle limit weight for the effects of OAT (Table 2), pressure altitude (Table 3) and wind (Table 4) as indicated. In the case of multiple obstacles, enter the tables successively with each obstacle and determine the most limiting weight.

For operators following EASA standards who are using line-up allowances with the Obstacle Limit chart, the obstacle distance from brake release must be reduced by the ASDA adjustment.

Brake Energy Limit VMBE

Brake Energy Limit Weight tables are only provided if they are limiting for the range of conditions covered in the FCOM Section PD.

The Maximum Brake Energy Speed table provides the Reference VMBE for a variety of airport pressure altitudes and temperatures. Enter the Weight Adjusted VMBE table to adjust the Reference VMBE for the actual brake release gross weight. Correct VMBE for slope and wind. If V1 exceeds VMBE, decrease brake release weight as indicated for each knot that V1 exceeds VMBE and determine V1, VR, and V2 for the lower brake release weight.

Tire Speed Limit

Tire Speed Limit Weight tables are only provided if they are limiting for the range of conditions covered in the FCOM Section PD.

Maximum tire speed limited weights are presented for 235 MPH tires. To determine the tire speed limit weight, enter the table with OAT and airport pressure altitude. Adjust the tire speed limit weight according to the notes below the table to account for wind.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

Fuel Jettison Climb Limit Weight

The Return to Land Fuel Jettison Climb Limit weight is defined as the landing climb limit weight plus the fuel burned over 15 minutes.

The table presented provides the Fuel Jettison Climb Limit Weight for a given altitude and temperature. Enter the table with airport OAT and pressure altitude to read Fuel Jettison Climb Limit Weight. Apply the noted adjustments for anti-ice and inflight icing as required. Intermediate altitudes or temperatures may be interpolated.

Enroute

Long Range Cruise Maximum Operating Altitude

These tables provide the maximum operating altitude in the same manner as the FMC. Maximum altitudes are shown for a given cruise weight and maneuver capability. Note that these tables consider both thrust and buffet limits, providing the more limiting of the two. Any data that is thrust limited is denoted by an asterisk and represents only a thrust limited condition in level flight with 100 ft/min residual rate of climb.

For FAA operators adhering to EASA standards, refer to the data for buffet limits corresponding to a maneuver margin of 1.3g (39° bank).

Flying above these altitudes with sustained banks in excess of approximately 13° may cause the airplane to lose speed and/or altitude. The altitudes shown in the table are limited to the maximum certified altitude of 41000 ft.

Long Range Cruise Trip Fuel and Time

These tables are provided to determine trip fuel and time required to destination. Data is based on economy climb and descent speeds, and Long Range Cruise. Tables are presented for low altitudes for shorter trip distances and high altitudes for longer trip distances.

To determine trip fuel and time for a constant altitude cruise, first enter the Ground to Air Miles Conversion table (Table 1) to convert ground distance and enroute wind to an equivalent still-air distance. Next, enter the Reference Fuel and Time table (Table 2) with air distance from the Ground to Air Miles Conversion table and the desired altitude and read reference fuel and time required. Lastly, enter the Fuel Required Adjustment table (Table 3) with the reference fuel and the planned landing weight to obtain fuel required at the planned landing weight.

Long Range Cruise Step Climb Trip Fuel and Time

These tables are provided to determine trip fuel and time required to destination when flying a step climb profile. Step climb profiles are based on 4000 ft step climbs to keep the flight within 2000 ft of the optimum altitude for the current cruise weight. To determine trip fuel and time, enter the Ground to Air Miles Conversion table (Table 1) and determine air distance as discussed above. Then enter the Trip Fuel and Time Required table (Table 2) with air distance and planned landing weight to read trip fuel. Continue across the table to read trip time.

Short Trip Fuel and Time

These tables are provided to determine trip fuel and time for short distances or alternates. The data are based on the use of the FMC short trip optimum altitude. Obtain air distance from the Ground to Air Miles Conversion table (Table 1) using the ground distance and wind component to the alternate. Enter the Trip Fuel and Time table (Table 2) with air distance and read trip fuel required for the expected landing weight. Continue across the table to read trip time. For distances greater than shown or other altitudes, use the Long Range Cruise Trip Fuel and Time tables.

Holding Planning

These tables provide total fuel flow information necessary for planning Flaps Up holding and reserve fuel requirements. Data is based on the FMC holding speed schedule which is the higher of the maximum endurance and flap maneuver speeds. As noted, the fuel flow is based on flight in a racetrack holding pattern. For holding in straight and level flight, reduce table values by 5%.

Flight Crew Requirements for Chemical Passenger Oxygen System

The flight crew oxygen system is a gaseous system. Flight crew oxygen tables are provided for both chemical and gaseous passenger oxygen systems. Use the tables corresponding to the appropriate passenger oxygen system installed.

Regulations require that sufficient oxygen be provided to the flight crew to account for the greater of supplemental breathing oxygen in the event of a cabin depressurization or protective breathing in the event of smoke or harmful fumes in the flight deck. The oxygen quantity associated with the above requirements is achieved for the flight crew with the minimum dispatch oxygen cylinder pressure.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

Tables are provided to determine the flight crew oxygen dispatch requirements for a chemical passenger oxygen system. To determine the minimum dispatch oxygen cylinder pressure enter the appropriate flight crew oxygen table with the number of crew plus observers using oxygen and read the minimum cylinder pressure required for the appropriate cylinder temperature.

Flight Crew Requirements for Large Capacity Descent Passenger Oxygen System

The flight crew oxygen system is a gaseous system. Flight crew oxygen tables are provided for both Standard or Medium Capacity Descent passenger oxygen systems and the Large Capacity Descent passenger oxygen. Standard or Medium Capacity Descent options utilize the chemical passenger oxygen system. The Large Capacity Descent option utilizes the pulse oxygen system. Use the tables corresponding to the appropriate passenger oxygen system installed.

Regulations require that sufficient oxygen be provided to the flight crew to account for the greater of supplemental breathing oxygen in the event of a cabin depressurization or protective breathing in the event of smoke or harmful fumes in the flight deck.

Tables are provided to determine the flight crew oxygen dispatch requirements for a Large Capacity Descent passenger oxygen system. Table 1 shows minimum oxygen quantity necessary to ensure that protective breathing requirements are satisfied. Table 2 shows the supplemental oxygen requirement to complete an emergency descent to 14000 ft, level off and continue for the duration of the post decompression time period to 10000 ft. For post decompression flight times less than 2 hours, use the data provided for 2 hours. Table 3 shows adjustments which must be applied to Table 2 values in situations where the enroute altitude after decompression exceeds 14000 ft. Table 3 adjustments reflect only the incremental increase in oxygen quantity associated with periods of post decompression flight at altitudes other than 14000 ft. Consequently, time spent holding at altitudes other than 14000 must also be included in the total post decompression time used in Table 2.

Table 1, Table 2 and Table 3 values are based on "NORMAL" regulator settings. Table 3 also shows "100%" regulator setting adjustments that can be used if the operator chooses to schedule oxygen dispatch requirements based on pure oxygen availability.

Additional adjustments for more extensive than normal crew usage can be made by adding 2.05 liters/person/minute (1.2 psi/person/minute for the single cylinder system) or 13 liters/person/minute (8 psi/person/minute) if 100% oxygen is selected during normal usage.

After determining the total volume (liters) required for the flight crew by using the larger value from Table 1 or Table 2, obtain the dispatch pressure required from the Cylinder Volume to Pressure Conversion table (Table 4). Adjust this reading for cylinder temperature as required, using the adjustments given (Table 5).

Net Level Off Weight

The Net Level Off Weight table is provided to determine terrain clearance capability in straight and level flight following an engine failure. Regulations require terrain clearance planning based on net performance, which is the gross (or actual) gradient performance degraded by 1.1%. In addition, the net level off pressure altitude must clear the terrain by 1000 ft.

To determine the maximum weight for terrain clearance, enter the table with required net level off pressure altitude and expected ISA deviation to obtain weight. Adjust weight for anti-ice operation as noted below the table.

Landing

Tables are provided for determining the maximum landing weight as limited by field length or climb requirements for Flaps 40.

Maximum landing weight is the lowest of the field length limit weight, climb limit weight or maximum certified landing weight.

Landing Field Limit Weight

Obtain wind corrected field length by entering the Wind Adjusted Field Length table (Table 1) with field length available and wind component along the runway. Next enter the Field Limit Weight table (Table 2) with wind corrected field length and pressure altitude to read field limit weight for the expected runway condition.

Landing Climb Limit Weight

Enter the Landing Climb Limit Weight table with airport OAT and pressure altitude to read landing climb limit weight. Apply the noted adjustments as required.

Go-Around Climb Gradient

The Go-Around Climb Gradient table provides one engine inoperative, gear up climb gradients for the go-around configuration. Enter the Reference Go-Around Gradient table (Table 1) with airport OAT and pressure altitude to determine the reference go-around climb gradient. Adjust the reference gradient for airplane weight and speed using Table 2 and Table 3 to determine the weight and speed adjusted go-around gradient. Apply the necessary corrections for engine bleed configuration and icing conditions as noted.

Quick Turnaround Limit Weight

Enter table with airport pressure altitude and OAT to read maximum quick turnaround weight. Apply the noted adjustments as required.

If the landing weight exceeds the maximum quick turnaround weight, wait the specified time and then check that the wheel thermal plugs have not melted before executing a subsequent takeoff.

Gear Down

This section provides flight planning data for revenue operation with gear down for limited airport pressure altitudes. The gear down tables in this section are identical in format and usage to the corresponding gear up tables previously described.

The maximum allowable takeoff weight is the least of the Field, Climb, Obstacle, Brake Energy, Tire Speed, and Fuel Jettison Climb Limit Weights as determined from the tables in this chapter. Brake Energy or Tire Speed Limit Weight tables are only provided if they are limiting for the range of conditions covered in the FCOM Section PD.

To eliminate erroneous displays, the flight crew should enter only gross weight data on the PERF INIT page of the Control Display Unit (CDU). Omission of the cost index and cruise altitude entries on the PERF INIT page will render the VNAV function unavailable during flight. As a result, the following information will not be provided: VNAV guidance and speed schedules, trip fuel and ETA predictions, optimum and maximum altitude data, step climb and top of descent predictions, and the VNAV descent guidance path.

The gross weight entry allows the FMS takeoff and approach speed schedules to be generated. In addition, the flap maneuver speed and VREF speed bugs will be available for display on the primary flight display speed tape. Except for VNAV, normal autopilot and autothrottle modes will remain available for use during the flight, as will the LNAV mode.

Intentionally Blank

Performance Inflight	Chapter PI
Table of Contents	Section TOC

737-8 LEAP-1B27 KG C M FAA CATB TO1-10% TO2-20% ALT-AB

Intentionally Blank

Performance Inflight Table of Contents

Chapter PI Section 10

737-8 LEAP-1B27 KG C M FAA CATB TO1-10% TO2-20% ALT-AB

Pkg Model Identification

General

Takeoff Speeds - Dry Runway

Takeoff Speeds - Wet Runway

Stabilizer Trim Setting

VREF

Flap Maneuver Speeds

Slush/Standing Water Takeoff

Dry Snow Takeoff

Wet Snow Takeoff

Slippery Runway Takeoff

Takeoff %N1

Assumed Temperature Reduced Thrust

TO1 Takeoff Speeds - Dry Runway

TO1 Takeoff Speeds - Wet Runway

TO1 Stabilizer Trim Setting

TO1 Slush/Standing Water Takeoff

TO1 Dry Snow Takeoff

TO1 Wet Snow Takeoff

TO1 Slippery Runway Takeoff

TO1 Takeoff %N1

TO1 Assumed Temperature Reduced Thrust

TO2 Takeoff Speeds - Dry Runway

TO2 Takeoff Speeds - Wet Runway

TO2 Stabilizer Trim Setting

TO2 Slush/Standing Water Takeoff

TO2 Dry Snow Takeoff

TO2 Wet Snow Takeoff

TO2 Slippery Runway Takeoff


```
TO2 Takeoff %N1
```

TO2 Assumed Temperature Reduced Thrust

Max Climb %N1

Go-Around %N1

Flight With Unreliable Airspeed/Turbulent Air Penetration

CLIMB (280/.76)

CRUISE (.76/280)

DESCENT (.76/280)

HOLDING (VREF40 + 70)

TERMINAL AREA (5000 FT)

Airport Altitude = -2000 FT

Airport Altitude = -1000 FT

Airport Altitude = SEA LEVEL

Airport Altitude = 1000 FT

Airport Altitude = 2000 FT

Airport Altitude = 3000 FT

Airport Altitude = 4000 FT

Airport Altitude = 5000 FT

Airport Altitude = 6000 FT

Airport Altitude = 7000 FT

Airport Altitude = 8000 FT

Airport Altitude = 9000 FT

Airport Altitude = 10000 FT

Airport Altitude = 11000 FT

Airport Altitude = 12000 FT

Airport Altitude = 13000 FT

Airport Altitude = 14000 FT

FINAL APPROACH (1500 FT)

Airport Altitude = -2000 FT

Airport Altitude = -1000 FT

Airport Altitude = SEA LEVEL

Airport Altitude = 1000 FT

Airport Altitude = 2000 FT

Airport Altitude = 3000 FT

Airport Altitude = 4000 FT

Airport Altitude = 5000 FT

Airport Altitude = 6000 FT

Airport Altitude = 7000 FT

Airport Altitude = 8000 FT

Airport Altitude = 9000 FT

Airport Altitude = 10000 FT

Airport Altitude = 11000 FT

Airport Altitude = 12000 FT

Airport Altitude = 13000 FT

Airport Altitude = 14000 FT

GO-AROUND

All Engine

Long Range Cruise Maximum Operating Altitude

Long Range Cruise Control

Long Range Cruise Enroute Fuel and Time - Low Altitudes

Long Range Cruise Enroute Fuel and Time - High Altitudes

Long Range Cruise Wind-Altitude Trade

Descent at .78/280/250 KIAS

Holding

Advisory Information

Runway Surface Condition Correlation

Normal Configuration Landing Distance

Non-Normal Configuration Landing Distance

Airspeed Unreliable (Flaps 15)

Airspeed Unreliable (Flaps 30)

Airspeed Unreliable (Flaps 40)

All Flaps Up Landing

ANTISKID INOPERATIVE (Flaps 15)

ANTISKID INOPERATIVE (Flaps 30)

ANTISKID INOPERATIVE (Flaps 40)

Jammed or Restricted Flight Controls (Flaps 15)

LEADING EDGE FLAPS TRANSIT (Flaps 15)

LOSS OF BOTH ENGINE DRIVEN GENERATORS (Flaps 15)

LOSS OF BOTH ENGINE DRIVEN GENERATORS (Flaps 30)

LOSS OF BOTH ENGINE DRIVEN GENERATORS (Flaps 40)

LOSS OF SYSTEM A (Flaps 15)

LOSS OF SYSTEM A (Flaps 30)

LOSS OF SYSTEM A (Flaps 40)

LOSS OF SYSTEM A AND SYSTEM B (Flaps 15)

LOSS OF SYSTEM B (Flaps 15)

MANUAL REVERSION (Flaps 15)

One Engine Inoperative Landing (Flaps 15)

One Engine Inoperative Landing (Flaps 30)

SPOILERS (Flaps 15)

SPOILERS (Flaps 30)

SPOILERS (Flaps 40)

Stabilizer Trim Inoperative (Flaps 15)

Trailing Edge Flap Asymmetry $(1 \le \text{Flap Lever} < 15)$

Trailing Edge Flap Asymmetry (Flap Lever 15 or 25)

Trailing Edge Flap Asymmetry (Flap Lever 30)

Trailing Edge Flap Disagree ($1 \le \text{Indicated Flaps} \le 15$)

Trailing Edge Flap Disagree ($15 \le$ Indicated Flaps ≤ 30)

Trailing Edge Flap Disagree (30 ≤ Indicated Flaps < 40)

Trailing Edge Flaps Up Landing

Recommended Brake Cooling Schedule

Engine Inoperative

Initial Max Continuous %N1

Max Continuous %N1

Driftdown Speed/Level Off Altitude

Driftdown/LRC Cruise Range Capability

Long Range Cruise Altitude Capability

Long Range Cruise Control

Long Range Cruise Diversion Fuel and Time

Holding

Gear Down Landing Rate of Climb Available

Alternate Mode EEC

Alternate Mode EEC Limit Weight

Alternate Mode EEC Max Takeoff %N1

Alternate Mode EEC Max Climb %N1

Alternate Mode EEC Go-Around %N1

Alternate Mode EEC, Engine Inoperative

Alternate Mode EEC Initial Max Continuous %N1

Alternate Mode EEC Max Continuous %N1

GearDown

Long Range Cruise Altitude Capability

Long Range Cruise Control

Long Range Cruise Enroute Fuel and Time

Descent

Holding

Gear Down, Engine Inop

Driftdown Speed/Level Off Altitude

Long Range Cruise Altitude Capability

Long Range Cruise Control

Long Range Cruise Diversion Fuel and Time

Holding

Text

Introduction

General

All Engines

Advisory Information

Engine Inoperative

Alternate Mode EEC

Alternate Mode EEC, Engine Inoperative

Gear Down

Gear Down, Engine Inoperative

Intentionally Blank

Performance Inflight Pkg Model Identification

Chapter PI Section ModID

General

The table below shows the airplanes that have been identified with the following performance package. Note, some airplanes may be identified with more than one performance package. This configuration table information reflects the Boeing delivered configuration updated for service bulletin incorporations in conformance with the policy stated in the introduction section of the FCOM. The performance data is prepared for the owner/operator named on the title page. The intent of this information is to assist flight crews and airlines in knowing which performance package is applicable to a given airplane. The performance package model identification information is based on Boeing's knowledge of the airline's fleet at a point in time approximately three months prior to the page date. Notice of Change (NOC) will not be provided to airlines to identify airplanes that are moved between performance packages within this manual or airplanes added to the airline's fleet whose performance packages are already represented in this manual. These types of changes will be updated in the next block revision. Owners/operators are responsible for ensuring the operational documentation they are using is complete and matches the current configuration of their airplanes, and the accuracy and validity of all information furnished by the owner/operator or any other party. Owners/operators receiving active revision service are responsible to ensure that any modifications to the listed airplanes are properly reflected in this manual.

Serial and tabulation number are supplied by Boeing.

Tail Number	Registry Number	Serial Number	Tabulation Number
901	C-FFEL	64942	1J107
902	C-FLEJ	64941	1J104
903	C-FLHI	61804	1J103
904	C-FFBC	61805	1J105
905	C-FLKA	64943	1J106
906	C-FLKC	61807	1J111
907	C-FLKD	61806	1J110
908	C-FLKI	64944	1J108
909	C-FLKJ	64945	1J109
910	C-FLRS	61808	1J114

Tail Number	Registry Number	Serial Number	Tabulation Number
911	C-FFFX	61809	1J112
912	C-FFLZ	64946	1J113
913	C-FLDX	61803	1C845
914	C-FLER	62874	1L076
915	C-FLKO	62870	1L075
916	C-FLKS	62881	1L077
917	C-FLKZ	62883	1L078
918	C-FLUJ	62884	1K003
919	C-FLQZ	44307	1K002
920	C-FLQO	43565	1B392
921	C-FLUT	60134	1J022
922	C-FLQF	43300	1B397
923	C-FLQG	43619	1B390
924	C-FLQP	43566	1B393
925	C-FLBG	60135	1J023
926	C-FLGD	43564	1B391
927	C-GFOF	44302	1K001

Performance Inflight General

Chapter PI Section 10

Takeoff Speeds - Dry Runway Max Takeoff Thrust Table 1 of 4: V1, VR, V2

WEIGHT	F	LAPS	1	F	LAPS	5	F	LAPS :	10	F	LAPS	15	F	LAPS 2	25
(1000 KG)	V1	VR	V2	V1	VR	V2	V1	VR	V2	V1	VR	V2	V1	VR	V2
90	168	168	175	159	161	166									
85	161	163	169	155	156	162	151	153	158	149	150	155			
80	156	158	165	150	151	158	147	148	154	145	145	151	142	142	148
75	151	152	161	144	146	154	141	143	150	139	140	147	136	137	144
70	145	146	156	139	140	149	136	137	146	133	134	143	131	131	140
65	139	140	152	133	134	145	130	131	142	128	129	139	125	126	136
60	132	134	146	126	128	140	123	125	137	121	122	134	119	119	131
55	125	127	141	120	121	135	117	118	132	115	116	129	113	113	126
50	117	119	135	113	114	129	110	111	126	108	109	124	106	106	121
45	110	111	129	105	106	123	102	104	120	101	102	118	99	99	115
40	102	103	122	97	99	117	95	96	114	93	94	112	92	92	110

Check V1(MCG).

Table 2 of 4: V1, VR, V2 Adjustments*

									TAK	EO]	FF S	SPE	EDS	SΑΙ	JU	STN	ΛEΝ	ITS (KIA	S)							
TEMP					V	l								VF	₹								V2	2			
(°C)		P	RE	SS A	λLT	(10	00 I	T)			P	RE	SS A	LT	(10	00 I	T)			I	RE	SS A	λLT	(10	00 F	T)	
	-2	0	2	4	6	8	10	12	14.5	-2	0	2	4	6	8	10	12	14.5	-2	0	2	4	6	8	10	12	14.5
60	5	6	6	7	8	9	10	11	13	4	5	5	6	6	7	9	10	10	-2	-2	-2	-3	-3	-3	-4	-4	-4
50	4	5	6	7	8	9	10	11	13	3	3	5	6	6	7	9	10	10	-1	-1	-2	-3	-3	-3	-4	-4	-4
40	1	5 6 7 8 9 10 11 2 3 5 7 8 10 11						13	1	2	3	5	6	7	9	10	10	0	-1	-1	-2	-2	-3	-4	-4	-4	
30	0	0	1	3	4	7	9	11	13	0	0	2	3	4	6	8	9	10	0	0	0	-1	-1	-2	-3	-3	-4
20	0	0	1	2	3	5	7	9	11	0	0	1	2	3	5	6	8	10	0	0	0	-1	-1	-2	-2	-3	-4
10	0	0	1	2	3	4	5	7	10	0	0	1	2	3	4	5	7	9	0	0	0	-1	-1	-1	-2	-2	-3
0	0	0	1	2	3	4	5	7	8	0	0	1	2	3	4	5	6	7	0	0	0	-1	-1	-1	-2	-2	-3
-60	2	2	2	3	4	5	6	7	9	0	0	1	2	3	4	5	6	7	0	0	0	-1	-1	-1	-2	-2	-3

^{*}V1 not to exceed VR.

Table 3 of 4: Slope and Wind V1 Adjustments*

WEIGHT				V1 S	PEED AI	DJUSTM	ENTS (F	(IAS)			
(1000 KG)		S	LOPE (%	6)				WIND	(KTS)		
(1000 KG)	-2	-1	0	1	2	-15	-10	-5	0	20	40
90	-4	-2	0	2	5	-2	-2	-1	0	1	2
80	-3	-1	0	2	4	-2	-1	-1	0	1	2
70	-2	-1	0	1	2	-2	-1	-1	0	1	2
60	-2	-1	0	1	2	-2	-1	-1	0	1	2
50	-1	-1	0	1	1	-2	-1	-1	0	1	2
40	-1	-1	0	1	1	-2	-1	-1	0	1	3

^{*}V1 not to exceed VR.

737-8/LEAP-1B27 FAA CATB

737 Flight Crew Operations Manual

Takeoff Speeds - Dry Runway Max Takeoff Thrust Table 4 of 4: V1(MCG)

TEMP				V1((MCG) (KI	AS)			
(°C)				PRESSU	RE ALTIT	UDE (FT)			
(0)	-2000	0	2000	4000	6000	8000	10000	12000	14500
60	99	96	94	91	89	86	83	79	75
55	99	96	94	91	89	86	83	79	75
50	101	99	94	91	89	86	83	79	75
45	104	102	97	92	89	86	83	79	75
40	107	104	100	95	90	86	83	79	75
35	109	107	103	98	93	87	83	79	75
30	110	109	105	101	97	90	85	80	75
25	110	109	106	102	99	92	87	82	76
20	110	110	106	103	100	94	89	84	78
15	110	110	106	103	100	96	92	86	80
10	110	110	106	103	100	97	94	89	82
5	110	110	106	103	100	97	94	90	84
0	110	110	106	103	100	97	94	90	86
-60	111	111	107	104	101	98	95	91	86

Takeoff Speeds - Wet Runway

Max Takeoff Thrust

Table 1 of 4: V1, VR, V2

WEIGHT	F	LAPS	1	F	LAPS	5	F	LAPS :	10	F.	LAPS	15	Fl	LAPS 2	25
(1000 KG)	V1	VR	V2	V1	VR	V2	V1	VR	V2	V1	VR	V2	V1	VR	V2
90	158	168	175	152	161	166									
85	153	163	169	146	156	162	143	153	158	141	150	155			
80	147	158	165	140	151	158	137	148	154	135	145	151	132	142	148
75	141	152	161	134	146	154	131	143	150	129	140	147	126	137	144
70	134	146	156	128	140	149	125	137	146	123	134	143	120	131	140
65	128	140	152	122	134	145	119	131	142	117	129	139	114	126	136
60	121	134	146	115	128	140	113	125	137	110	122	134	108	119	131
55	114	127	141	108	121	135	106	118	132	104	116	129	101	113	126
50	106	119	135	101	114	129	98	111	126	96	109	124	94	106	121
45	98	111	129	93	106	123	91	104	120	89	102	118	87	99	115
40	90	103	122	85	99	117	83	96	114	81	94	112	79	92	110

Check V1(MCG).

Table 2 of 4: V1, VR, V2 Adjustments*

									TAK	EO	FF S	SPE	EDS	SAI	JU	STN	ИEN	ITS (KIA	S)							
TEMP					VI									VF	1								V2	2			
(°C)		P	RE	SS A	LT	(10	00 F	T)			P	RE	SS A	λLΤ	(10	00 I	FT)			F	PRE	SS A	λLT	(100	00 F	T)	
	-2	0	2	4	6	8	10	12	14.5	-2	0	2	4	6	8	10	12	14.5	-2	0	2	4	6	8	10	12	14.5
60	7	8	8	10	10	12	14	15	19	4	5	5	6	6	7	9	10	10	-2	-2	-2	-3	-3	-3	-4	-4	-4
50	4	5	8	10	10	12	14	15	19	3	3	5	6	6	7	9	10	10	-1	-1	-2	-3	-3	-3	-4	-4	-4
40	1	3	5	7	10	12	14	15	19	1	2	3	5	6	7	9	10	10	0	-1	-1	-2	-2	-3	-4	-4	-4
30	0	0	1	3	6	10	12	15	19	0	0	2	3	4	6	8	9	10	0	0	0	-1	-1	-2	-3	-3	-4
20	0	0	1	3	4	7	9	12	16	0	0	1	2	3	5	6	8	10	0	0	0	-1	-1	-2	-2	-3	-4
10	0	0	1	3	4	5	6	9	13	0	0	1	2	3	4	5	7	9	0	0	0	-1	-1	-1	-2	-2	-3
0	0	0	1	3	4	5	6	8	11	0	0	1	2	3	4	5	6	7	0	0	0	-1	-1	-1	-2	-2	-3
-60	2	2	3	5	6	7	8	10	12	0	0	1	2	3	4	5	6	7	0	0	0	-1	-1	-1	-2	-2	-3

^{*}V1 not to exceed VR.

Table 3 of 4: Slope and Wind V1 Adjustments*

WEIGHT				V1 S	PEED AI	DJUSTM	ENTS (F	(IAS)			
WEIGHT (1000 KG)		S	LOPE (%	6)				WIND	(KTS)		
(1000 KG)	-2	-1	0	1	2	-15	-10	-5	0	20	40
90	-6	-3	0	3	6	-4	-2	-1	0	1	3
80	-5	-2	0	2	5	-4	-3	-1	0	2	3
70	-4	-2	0	2	4	-4	-3	-1	0	2	3
60	-3	-2	0	2	3	-4	-3	-1	0	2	3
50	-3	-1	0	1	3	-4	-3	-1	0	2	3
40	-2	-1	0	1	2	-4	-3	-1	0	2	3

^{*}V1 not to exceed VR.

737-8/LEAP-1B27 FAA CATB

Takeoff Speeds - Wet Runway Max Takeoff Thrust Table 4 of 4: V1(MCG)

	1								
TEMP				V1((MCG) (KI	AS)			
(°C)				PRESSU	RE ALTIT	UDE (FT)			
(C)	-2000	0	2000	4000	6000	8000	10000	12000	14500
60	99	96	94	91	89	86	83	79	75
55	99	96	94	91	89	86	83	79	75
50	101	99	94	91	89	86	83	79	75
45	104	102	97	92	89	86	83	79	75
40	107	104	100	95	90	86	83	79	75
35	109	107	103	98	93	87	83	79	75
30	110	109	105	101	97	90	85	80	75
25	110	109	106	102	99	92	87	82	76
20	110	110	106	103	100	94	89	84	78
15	110	110	106	103	100	96	92	86	80
10	110	110	106	103	100	97	94	89	82
5	110	110	106	103	100	97	94	90	84
0	110	110	106	103	100	97	94	90	86
-60	111	111	107	104	101	98	95	91	86

Stabilizer Trim Setting Max Takeoff Thrust

Flaps 1 and 5

WEIGHT					S	TABII	LIZER	TRIM	SETT	ING (UNITS	S)				
(1000 KG)							(C.G. (%	6MAC	()						
(1000 KG)	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36
82	8 1/2	8 1/2	8 1/4	7 3/4	7 1/2	7 1/4	6 3/4	6 1/2	6 1/4	5 3/4	5 1/2	5	4 3/4	4 1/4	4	3 1/2
80	8 1/2	8 1/2	8	7 3/4	7 1/2	7	6 3/4	6 1/2	6	5 3/4	5 1/4	5	4 1/2	4 1/4	3 3/4	3 1/2
70	8 1/4	8	7 1/2	7 1/4	7	6 3/4	6 1/4	6	5 1/2	5 1/4	4 3/4	4 1/2	4	3 3/4	3 1/2	3
60	7 1/2	7 1/4	7	6 3/4	6 1/4	6	5 3/4	5 1/2	5	4 3/4	4 1/4	4	3 3/4	3 1/4	3	3
50	6 3/4	6 1/4	6	5 3/4	5 1/2	5 1/4	5	4 1/2	4 1/4	4	3 1/2	3 1/4	3	3	3	3
40	5 1/4	5	4 3/4	4 1/2	4 1/4	4	3 3/4	3 1/2	3 1/4	3	3	3	3	3	3	3

Flaps 10, 15, and 25

WEIGHT					S	TABII	LIZER	TRIM	SETT	ING (UNIT	S)				
(1000 KG)							(C.G. (%	6MAC)						
(1000 KG)	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36
82	8 1/2	8 1/2	8	7 1/2	7	6 1/2	6	5 1/2	5 1/4	4 3/4	4 1/4	4	3 1/2	3	3	3
80	8 1/2	8 1/2	7 3/4	7 1/4	6 3/4	6 1/4	6	5 1/2	5	4 3/4	4 1/4	3 3/4	3 1/4	3	3	3
70	8 1/2	7 3/4	7 1/4	6 3/4	6 1/4	5 3/4	5 1/2	5	4 1/2	4 1/4	3 3/4	3 1/4	3	3	3	3
60	7 1/2	7	6 1/2	6	5 3/4	5 1/4	4 3/4	4 1/2	4	3 1/2	3 1/4	3	3	3	3	3
50	6	5 3/4	5 1/4	5	4 1/2	4 1/4	3 3/4	3 1/2	3 1/4	3	3	3	3	3	3	3
40	4 1/2	4 1/4	4	3 3/4	3 1/2	3 1/4	3	3	3	3	3	3	3	3	3	3

737-8/LEAP-1B27 FAA CATB

737 Flight Crew Operations Manual

VREF Based on 14500 ft reference pressure altitude

WEIGHT		VREF (KIAS)	
WEIGHT (1000 KG)		FLAPS	
(1000 KG)	40	30	15
90	169	169	179
85	163	165	173
80	156	160	168
75	149	154	162
70	144	149	156
65	140	145	152
60	134	139	145
55	128	132	139
50	121	126	132
45	115	119	125
40	108	112	118

Performance Inflight General

737 Flight Crew Operations Manual

Flap Maneuver Speeds

FLAP POSITION	MANEUVER SPEED
UP	VREF40 + 70
1	VREF40 + 50
5	VREF40 + 30
10	VREF40 + 30
15	VREF40 + 20
25	VREF40 + 10
30	VREF30
40	VREF40

ADVISORY INFORMATION

Slush/Standing Water Takeoff Maximum Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

	0	3		`								
DRY				SLU	JSH/ST	ANDIN	G WAT	ER DEP	TH			
FIELD/OBSTACLE	3 n	nm (0.12	2 INCH	ES)	6 n	nm (0.25	INCHI	ES)	13 r	nm (0.5	0 INCH	ES)
LIMIT WEIGHT	I	RESS A	ALT (FT)	F	RESS A	ALT (FT)	F	RESS A	ALT (FT	")
(1000 KG)	S.L.					5000	10000	14500	S.L.	5000	10000	14500
90	-5.9	-7.6	-9.3	-10.9	-8.2	-9.9	-11.6	-13.2	-12.4	-14.2	-15.9	-17.4
80	-5.9 -7.6 -9.3 -10.9 -5.2 -6.9 -8.7 -10.2				-6.9	-8.7	-10.4	-11.9	-10.2	-11.9	-13.6	-15.1
70	-4.2	-5.9	-7.7	-9.2	-5.4	-7.2	-8.9	-10.5	-7.7	-9.4	-11.2	-12.7
60	-3.0	-4.7	-6.4	-8.0	-3.8	-5.5	-7.2	-8.8	-5.2	-6.9	-8.6	-10.2
50	-1.5	-3.2	-4.9	-6.5	-1.9	-3.6	-5.3	-6.8	-2.5	-4.2	-5.9	-7.5
40	0.0	-1.5	-3.2	-4.7	0.0	-1.4	-3.1	-4.7	0.0	-1.5	-3.2	-4.7

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

ADJUSTED				SLU	JSH/ST	ANDIN	G WAT	ER DEP	TH			
FIELD	3 n	nm (0.12	2 INCH	ES)	6 n	nm (0.25	5 INCH	ES)	13 r	nm (0.5	0 INCH	ES)
LENGTH	F	RESS A	ALT (FT	")	F	RESS A	ALT (FT)	F	RESS A	ALT (FT	"
(FT)	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
3800	30.4				33.0				37.7			
4200	45.1				47.4				51.3	32.5		
4600	59.9	39.4			61.9	41.8			64.8	46.0		
5000	75.0	54.2	33.7		76.5	56.3	36.2		78.5	59.6	40.8	
5400	90.3	69.1	48.4	30.1	91.2	70.8	50.6	32.7	92.2	73.2	54.3	37.4
5800		84.3	63.3	44.8		85.5	65.2	47.1		86.9	67.9	50.9
6200		99.7	78.4	59.6		100.3	79.8	61.5		100.6	81.5	64.5
6600			93.7	74.6			94.6	76.1			95.3	78.1
7000				89.9				90.9				91.8
7400				105.3								

- Enter Table 1 with slush/standing water depth and dry field/obstacle limit weight to obtain slush/ standing water weight adjustment.
- 2. Adjust field length available by -100 ft/+100 ft for every 10°C above/below 0°C.
- 3. Find V1(MCG) limit weight for adjusted field length and pressure altitude (Table 2).
- 4. Max allowable slush/standing water limited weight is lesser of weights from Table 1 and Table 2.

		SLUSH/STANDING WATER DEPTH											
				SLU	JSH/ST	ANDIN	G WAT	ER DEP	TH				
WEIGHT	3 n	nm (0.12	2 INCH	ES)	6 n	nm (0.25	5 INCH	ES)	13 ı	nm (0.5	0 INCH	ES)	
(1000 KG)	F	PRESS A	ALT (FT	")	F	PRESS A	ALT (FT	")	F	PRESS A	ALT (FT	")	
	S.L.				S.L.	5000	10000	14500	S.L.	5000	10000	14500	
90	-13 -8 -3 0				-10	-5	0	0	-2	0	0	0	
80	-15 -8 -5 0 -15 0			-12	-7	-2	0	-4	0	0	0		
70	-16	-11	-6	-2	-13	-8	-3	0	-7	-2	0	0	
60	-18 -13 -8 -3				-16	-11	-6	-1	-10	-5	0	0	
50	-20 -15 -10 -5			-5	-18	-13	-8	-4	-15	-10	-5	0	
40	-23 -18 -13 -8				-22	-17	-12	-8	-20	-15	-10	-6	

- 1. Obtain V1, VR and V2 for the actual weight using the Dry Runway Takeoff Speeds table.
- If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual
 weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG).
 V1 not to exceed VR.

ADVISORY INFORMATION

Slush/Standing Water Takeoff

No Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

DRY				SLU	JSH/ST	ANDIN	G WAT	ER DEF	PΤΗ			
FIELD/OBSTACLE	3 n	nm (0.12	2 INCH	ES)	6 n	nm (0.25	5 INCHI	ES)	13 r	nm (0.5	0 INCH	ES)
LIMIT WEIGHT	F	PRESS ALT (FT)				PRESS A	ALT (FT)	F	RESS A	ALT (FT)
(1000 KG)	S.L.				S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-8.1 -9.8 -11.6 -13.2			-10.6	-12.3	-14.1	-15.6	-15.1	-16.9	-18.6	-20.2	
80	-7.3 -9.0 -10.8 -12.4			-9.2	-10.9	-12.7	-14.2	-12.6	-14.3	-16.1	-17.6	
70	-6.2	-7.9	-9.7	-11.3	-7.6	-9.3	-11.1	-12.6	-9.9	-11.6	-13.4	-15.0
60	-4.8	-6.6	-8.3	-9.9	-5.7	-7.4	-9.2	-10.8	-7.1	-8.8	-10.6	-12.1
50	-3.1 -4.9 -6.6 -8.2			-3.5	-5.3	-7.0	-8.6	-4.1	-5.9	-7.6	-9.2	
40	-1.0	*** *** ***			-1.1	-2.9	-4.6	-6.2	-1.0	-2.8	-4.5	-6.1

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

ADJUSTED				SLU	JSH/ST	ANDIN	G WAT	ER DEF	TH			
FIELD	3 n	nm (0.12	2 INCH	ES)	6 n	nm (0.25	INCH	ES)	13 r	nm (0.5	0 INCH	ES)
LENGTH	F	PRESS A	ALT (FT	")	F	PRESS A	ALT (FT	(,	F	RESS A	ALT (FT	(
(FT)	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
4600									29.9			
5000	15.5				31.2				49.5	23.9		
5400	47.2				56.8	23.2			67.7	43.7		
5800	72.9	37.8			78.1	49.6			84.5	62.4	37.8	
6200	93.7	65.8	28.2		96.6	72.1	41.9		100.4	79.6	57.0	34.4
6600		87.8	58.3	22.8		91.3	65.8	37.4		95.7	74.6	53.8
7000		107.0	81.7	53.7			85.8	62.0			91.0	71.7
7400			101.3	78.0			103.7	82.6				88.3
7800				98.1				100.7				104.0

- 1. Enter Table 1 with slush/standing water depth and dry field/obstacle limit weight to obtain slush/ standing water weight adjustment.
- Adjust field length available by -120 ft/+120 ft for every 10°C above/below 0°C.
- Find V1(MCG) limit weight for adjusted field length and pressure altitude (Table 2).
- Max allowable slush/standing water limited weight is lesser of weights from Table 1 and Table 2.

Table 3 of 3: V1 Adjustment (KIAS)

				SLU	JSH/ST	ANDIN	G WAT	ER DEP	TH			
WEIGHT	3 n	nm (0.12	2 INCH	ES)	6 n	nm (0.2	5 INCHI	ES)	13 ı	nm (0.5	0 INCH	ES)
(1000 KG)	I	PRESS A	ALT (FT	(F	RESS A	ALT (FT)	F	PRESS A	ALT (FT	")
	S.L.					5000	10000	14500	S.L.	5000	10000	14500
90	-18 -13 -8 -4				-14	-9	-4	0	-4	0	0	0
80	-20 -15 -10 -5			-16	-11	-6	-2	-6	-1	0	0	
70	-22	-17	-12	-8	-19	-14	-9	-4	-10	-5	0	0
60	-25 -20 -15 -11			-11	-22	-17	-12	-8	-15	-10	-5	-1
50	-28 -23 -18 -14			-14	-26	-21	-16	-12	-22	-17	-12	-7
40	-28 -23 -18 -14 -32 -27 -22 -18			-18	-31	-26	-21	-17	-29	-24	-19	-14

- Obtain V1, VR and V2 for the actual weight using the Dry Runway Takeoff Speeds table. If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG).

V1 not to exceed VR.

ADVISORY INFORMATION

Dry Snow Takeoff Maximum Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

	_	-										
DRY					DR	Y SNO	W DEP	TH				
FIELD/OBSTACLE	30 ı	nm (1.1	8 INCH	ES)	60 r	nm (2.3	6 INCH	ES)	100	mm (4.0	00 INCE	HES)
LIMIT WEIGHT	I	PRESS A	ALT (FT	")	F	RESS A	ALT (FT	")	F	PRESS A	ALT (FT	")
(1000 KG)	S.L.				S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-4.4 -5.8 -7.0 -8.2			-6.2	-7.5	-8.8	-10.0	-9.6	-10.8	-12.2	-13.3	
80	-4.4 -5.8 -7.0 -8.2 -4.4 -5.7 -7.0 -8.2			-5.8	-7.1	-8.3	-9.5	-8.3	-9.6	-10.9	-12.1	
70	-3.9	-5.2	-6.5	-7.7	-4.9	-6.2	-7.5	-8.7	-6.8	-8.0	-9.3	-10.5
60	-3.0	-4.3	-5.6	-6.8	-3.7	-5.0	-6.3	-7.4	-4.9	-6.2	-7.5	-8.7
50	-1.7 -2.9 -4.3 -5.4			-5.4	-2.0	-3.3	-4.6	-5.8	-2.8	-4.0	-5.4	-6.5
40	0.0 -1.2 -2.5 -3.6			-3.6	0.0	-1.2	-2.5	-3.7	-0.3	-1.6	-2.9	-4.0

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

ADJUSTED					DF	RY SNO	W DEP	TH				
FIELD	30 ı	nm (1.1	8 INCH	ES)	60 1	nm (2.3	6 INCH	ES)	100	mm (4.0	00 INCI	HES)
LENGTH	F	PRESS A	ALT (FT) (I	PRESS A	ALT (FT	(F	PRESS A	ALT (FT	"
(FT)	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
3800	33.9				37.8				42.2			
4200	48.9	28.9			51.9	33.0			55.0	37.9		
4600	64.0	43.9			66.1	47.1	28.3		68.0	50.6	33.6	
5000	79.2	58.9	38.8		80.4	61.3	42.3		81.1	63.6	46.3	31.0
5400	94.4	74.0	53.8	35.7	94.8	75.5	56.5	39.5	94.5	76.7	59.2	43.7
5800		89.2	68.9	50.7		89.9	70.7	53.6		90.0	72.2	56.6
6200		104.5	84.1	65.8		104.4	85.1	67.8		103.4	85.5	69.6
6600			99.4	81.0			99.5	82.1			98.9	82.7
7000				96.3				96.6				96.1

- Enter Table 1 with dry snow depth and dry field/obstacle limit weight to obtain dry snow weight
- Adjust field length available by -100 ft/+100 ft for every 10°C above/below 0°C.
- Find V1(MCG) limit weight for adjusted field length and pressure altitude (Table 2). Max allowable dry snow limited weight is lesser of weights from Table 1 and Table 2.

					DF	Y SNO	W DEP	TH				
WEIGHT	30 ı	nm (1.1	8 INCH	ES)	60 ı	nm (2.3	6 INCH	ES)	100	mm (4.0	00 INCI	HES)
(1000 KG)	F	RESS A	ALT (FT	")	F	PRESS A	ALT (FT	")	F	PRESS A	ALT (FT	")
	S.L.				S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-10 -5 0 0			-7	-2	0	0	-2	0	0	0	
80	-12 -7 -2 0			-9	-4	0	0	-4	0	0	0	
70	-14	-9	-4	0	-12	-7	-2	0	-7	-2	0	0
60	-17 -12 -7 -2			-14	-9	-4	0	-10	-5	0	0	
50	-19 -14 -9 -5			-17	-12	-7	-3	-13	-8	-3	0	
40	-22 -17 -12 -8			-20	-15	-10	-6	-17	-12	-7	-2	

- Obtain V1, VR and V2 for the actual weight using the Dry Runway Takeoff Speeds table.
 If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG). V1 not to exceed VR.

ADVISORY INFORMATION

Dry Snow Takeoff No Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

DRY					DR	Y SNO	W DEP	TH				
FIELD/OBSTACLE	30 r	nm (1.1	8 INCH	ES)	60 r	nm (2.3	6 INCH	ES)	100	mm (4.0	00 INCI	HES)
LIMIT WEIGHT	F	PRESS ALT (FT)				PRESS A	ALT (FT)	F	PRESS A	ALT (FT)
(1000 KG)	S.L.				S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-6.4 -7.6 -8.8 -9.8			-8.2	-9.4	-10.6	-11.7	-11.5	-12.7	-13.9	-15.0	
80	-6.4 -7.6 -8.8 -9.9 -6.4 -7.6 -8.8 -9.9			-7.8	-9.0	-10.2	-11.3	-10.3	-11.6	-12.7	-13.8	
70	-6.0	-7.2	-8.4	-9.4	-6.9	-8.1	-9.3	-10.4	-8.8	-10.0	-11.2	-12.2
60	-6.0 -7.2 -8.4 -9.4 -5.0 -6.2 -7.4 -8.5			-5.6	-6.8	-8.0	-9.1	-6.8	-8.0	-9.2	-10.3	
50	-3.4 -4.7 -5.9 -6.9			-3.8	-5.0	-6.2	-7.3	-4.4	-5.6	-6.8	-7.9	
40	-3.4			-4.9	-1.5	-2.7	-3.9	-5.0	-1.5	-2.8	-3.9	-5.0

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

ADJUSTED					DR	Y SNO	W DEP	TH				
FIELD	30 r	nm (1.1	8 INCH	ES)	60 ı	nm (2.3	6 INCH	ES)	100	mm (4.0	00 INCI	HES)
LENGTH	P	RESS A	ALT (FT	")	F	PRESS A	ALT (FT	(F	PRESS A	ALT (FT	"
(FT)	S.L.	S.L. 5000 10000 14500			S.L.	5000	10000	14500	S.L.	5000	10000	14500
4200									30.4			
4600					31.8				46.2			
5000	41.1				53.0	25.9			61.8	41.9		
5400	66.4	33.1			72.3	47.3			77.2	57.6	37.5	
5800	87.0	60.1	25.1		89.9	67.1	41.5		92.2	73.0	53.3	35.2
6200	105.0	81.7	53.3	20.8	106.5	85.2	61.9	38.3		88.1	68.8	51.0
6600		100.1	76.1	49.5		101.9	80.4	59.0		103.1	84.0	66.5
7000			95.2	73.0			97.4	77.7			99.0	81.8
7400				92.6				94.9				96.8

- Enter Table 1 with dry snow depth and dry field/obstacle limit weight to obtain dry snow weight
- Adjust field length available by -100 ft/+100 ft for every 10°C above/below 0°C.
- Find V1(MCG) limit weight for adjusted field length and pressure altitude (Table 2). Max allowable dry snow limited weight is lesser of weights from Table 1 and Table 2.

Table 3 of 3: V1 Adjustment (KIAS)

•						** ** **						
					DR	RY SNO	W DEP	ſΉ				
WEIGHT	30 1	mm (1.1	8 INCH	ES)	60 ı	nm (2.3	6 INCH	ES)	100	mm (4.0	00 INCI	HES)
(1000 KG)	I	PRESS A	ALT (FT	()	F	PRESS A	ALT (FT)	F	PRESS A	ALT (FT	")
	S.L.					5000	10000	14500	S.L.	5000	10000	14500
90	-13	-8	-3	0	-9	-4	0	0	-2	0	0	0
80	-16	-11	-6	-1	-13	-8	-3	0	-6	-1	0	0
70	-20	-15	-10	-5	-16	-11	-6	-2	-10	-5	0	0
60	-24	-19	-14	-9	-20	-15	-10	-6	-14	-9	-4	0
50	-28	-23	-18	-13	-25	-20	-15	-10	-19	-14	-9	-4
40	-32	-27	-22	-18	-29	-24	-19	-15	-24	-19	-14	-10

- Obtain V1, VR and V2 for the actual weight using the Dry Runway Takeoff Speeds table. If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG).

V1 not to exceed VR.

ADVISORY INFORMATION

Wet Snow Takeoff Maximum Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

	_	-										
DRY					WI	ET SNO	W DEP	TH				
FIELD/OBSTACLE	5 n	nm (0.20) INCH	ES)	13 r	nm (0.5	0 INCH	ES)	30 r	nm (1.1	8 INCH	ES)
LIMIT WEIGHT	I	PRESS A	ALT (FT	")	F	RESS A	ALT (FT)	F	PRESS A	ALT (FT	')
(1000 KG)	S.L.	S.L. 5000 10000 14500			S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-4.4	-5.8	-7.1	-8.3	-6.2	-7.6	-8.9	-10.2	-11.5	-12.9	-14.2	-15.5
80	-4.4 -5.8 -7.2 -8.4			-5.8	-7.2	-8.5	-9.8	-9.9	-11.2	-12.6	-13.8	
70	-4.0	-5.4	-6.7	-7.9	-5.0	-6.4	-7.7	-8.9	-7.8	-9.2	-10.6	-11.8
60	-3.0	-4.4	-5.8	-7.0	-3.6	-5.0	-6.4	-7.6	-5.5	-6.8	-8.2	-9.4
50	-1.6	-2.9	-4.3	-5.5	-1.9	-3.2	-4.6	-5.8	-2.7	-4.1	-5.4	-6.7
40	0.0	-1.0	-2.4	-3.6	0.0	-1.0	-2.3	-3.5	0.0	-1.0	-2.4	-3.6

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

`		,		0 (,						
ADJUSTED					Wl	ET SNO	W DEP	TH				
FIELD	5 n	nm (0.20) INCH	ES)	13 1	nm (0.5	0 INCH	ES)	30 r	nm (1.1	8 INCH	ES)
LENGTH	F	PRESS ALT (FT)				PRESS A	ALT (FT)	F	RESS A	ALT (FT)
(FT)	S.L.				S.L.	5000	10000	14500	S.L.	5000	10000	14500
3800	32.0				34.5				39.2			
4200	47.3	27.3			49.3	29.8			52.7	35.0		
4600	62.6	42.5			64.2	44.6			66.3	48.5	30.8	
5000	78.2	57.8	37.7		79.1	59.5	40.0		80.0	62.0	44.2	
5400	93.9	73.3	53.0	35.0	94.2	74.4	54.8	37.3	93.7	75.7	57.8	41.8
5800		89.0	68.4	50.2		89.4	69.8	52.1		89.4	71.4	55.3
6200		104.8	84.0	65.6		104.5	84.7	67.0		103.2	85.1	68.9
6600			99.8	81.2			99.8	82.0			98.9	82.6
7000				96.9				97.1				96.4

- Enter Table 1 with wet snow depth and dry field/obstacle limit weight to obtain wet snow weight adjustment.
- Adjust field length available by -100 ft/+100 ft for every 10°C above/below 0°C.
- Find V1(MCG) limit weight for adjusted field length and pressure altitude (Table 2). Max allowable wet snow limited weight is lesser of weights from Table 1 and Table 2.

			(/								
					WI	ET SNO	W DEP	TH				
WEIGHT	5 n	nm (0.20) INCH	ES)	13 1	nm (0.5	0 INCH	ES)	30 ı	nm (1.1	8 INCH	ES)
(1000 KG)	I	PRESS	ALT (FT	")	I	PRESS A	ALT (FT	")	F	PRESS	ALT (FT)
	S.L.	S.L. 5000 10000 14500				5000	10000	14500	S.L.	5000	10000	14500
90	-10 -5 0 0			-7	-2	0	0	-1	0	0	0	
80	-10 -5 0 0 -13 -8 -3 0			-10	-5	0	0	-2	0	0	0	
70	-15	-10	-5	-1	-12	-7	-2	0	-5	0	0	0
60	-17	-12	-7	-3	-15	-10	-5	-1	-9	-4	0	0
50	-17 -12 -7 -3 -20 -15 -10 -6			-19	-14	-9	-4	-14	-9	-4	0	
40	-24	-19	-14	-10	-23	-18	-13	-9	-21	-16	-11	-6

- Obtain V1, VR and V2 for the actual weight using the Dry Runway Takeoff Speeds table. If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG). V1 not to exceed VR.

ADVISORY INFORMATION

Wet Snow Takeoff No Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

DRY					WI	ET SNO	W DEP	TH				
FIELD/OBSTACLE	5 n	nm (0.20) INCHI	ES)	13 r	nm (0.5	0 INCH	ES)	30 r	nm (1.1	8 INCH	ES)
LIMIT WEIGHT	F	PRESS ALT (FT)				RESS A	ALT (FT	")	F	PRESS A	ALT (FT	")
(1000 KG)	S.L.	S.L. 5000 10000 14500				5000	10000	14500	S.L.	5000	10000	14500
90	-6.4 -7.6 -8.8 -10.0				-8.3	-9.5	-10.8	-11.9	-13.8	-15.1	-16.3	-17.4
80	-6.5 -7.8 -9.0 -10.1			-7.9	-9.2	-10.4	-11.5	-12.2	-13.4	-14.6	-15.7	
70	-6.1	-7.3	-8.6	-9.7	-7.0	-8.3	-9.5	-10.6	-10.0	-11.2	-12.4	-13.6
60	-5.1	-6.3	-7.5	-8.6	-5.6	-6.8	-8.0	-9.2	-7.4	-8.7	-9.9	-11.0
50	-3.4				-3.7	-4.9	-6.1	-7.2	-4.4	-5.6	-6.8	-8.0
40	-1.3	-2.5	-3.7	-4.8	-1.2	-2.4	-3.6	-4.8	-1.0	-2.2	-3.4	-4.5

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

ADJUSTED					WI	ET SNO	W DEP	TH				
FIELD	5 m	ım (0.20) INCH	ES)	13 r	nm (0.5	0 INCH	ES)	30 r	nm (1.1	8 INCH	ES)
LENGTH	P	PRESS ALT (FT)				RESS A	ALT (FT	(F	RESS A	ALT (FT	(
(FT)	S.L.				S.L.	5000	10000	14500	S.L.	5000	10000	14500
4600					14.4				36.7			
5000	31.7				43.1				56.3	31.9		
5400	62.4	23.5			67.6	36.3			74.1	51.8	27.1	
5800	85.0	56.1	15.4		87.5	62.3	29.5		90.4	70.0	47.2	24.8
6200	104.0	80.1	49.1	11.5	105.0	83.0	56.7	26.2		86.6	65.8	45.0
6600		99.5	74.9	45.6		100.9	78.4	53.9		102.2	82.8	63.8
7000			95.1	72.3			96.8	76.2			98.5	80.9
7400				93.0				94.8				96.8

- 1. Enter Table 1 with wet snow depth and dry field/obstacle limit weight to obtain wet snow weight adjustment.
- Adjust field length available by -110 ft/+110 ft for every 10°C above/below 0°C.
- Find V1(MCG) limit weight for adjusted field length and pressure altitude (Table 2).
- Max allowable wet snow limited weight is lesser of weights from Table 1 and Table 2.

Table 3 of 3: V1 Adjustment (KIAS)

	-		•									
					WI	ET SNO	W DEP	TH				
WEIGHT	5 n	nm (0.20) INCH	ES)	13 ı	nm (0.5	0 INCH	ES)	30 ı	nm (1.1	8 INCH	ES)
(1000 KG)	F	PRESS	ALT (FT	")	F	RESS A	ALT (FT)	F	RESS A	ALT (FT)
	S.L.	S.L. 5000 10000 14500				5000	10000	14500	S.L.	5000	10000	14500
90	-13	-8	-3	0	-9	-4	0	0	-2	0	0	0
80	-17	-12	-7	-2	-13	-8	-3	0	-3	0	0	0
70	-21	-16	-11	-6	-17	-12	-7	-2	-7	-2	0	0
60	-24	-19	-14	-10	-21	-16	-11	-7	-13	-8	-3	0
50	-24 -19 -14 -10 -29 -24 -19 -15			-27	-22	-17	-13	-21	-16	-11	-6	
40	-35	-30	-25	-21	-34	-29	-24	-19	-31	-26	-21	-16

- Obtain V1, VR and V2 for the actual weight using the Dry Runway Takeoff Speeds table. If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG).

V1 not to exceed VR.

ADVISORY INFORMATION

Slippery Runway Takeoff Maximum Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

	,											
DRY				R	EPORT	ED BR.	AKING	ACTIO	N			
FIELD/OBSTACLE		GO	OD			MED	IUM			PO	OR	
LIMIT WEIGHT	I	PRESS A	ALT (FT	")	F	RESS A	ALT (FT	")	F	RESS A	ALT (FT	")
(1000 KG)	S.L.	S.L. 5000 10000 14500			S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-1.1	-1.8	-2.6	-3.3	-3.1	-3.8	-4.6	-5.3	-10.3	-11.1	-11.8	-12.5
80	-1.1	-1.9	-2.6	-3.3	-3.3	-4.1	-4.8	-5.5	-9.7	-10.5	-11.2	-11.9
70	-0.8	-1.5	-2.3	-3.0	-3.1	-3.9	-4.6	-5.3	-8.6	-9.3	-10.1	-10.8
60	-0.2	-0.9	-1.7	-2.4	-2.4	-3.2	-3.9	-4.6	-6.9	-7.7	-8.4	-9.1
50	0.0	-0.8	-1.5	-2.2	-1.3	-2.1	-2.8	-3.5	-4.8	-5.5	-6.3	-6.9
40	0.0	-0.7	-1.5	-2.2	0.0	-0.7	-1.4	-2.1	-2.0	-2.8	-3.5	-4.2

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

14510 2 01 01 11		,		• •								
ADJUSTED				R	EPORT	ED BR	AKING	ACTIO	N			
FIELD		GC	OD			MED	IUM			PO	OR	
LENGTH	F	PRESS	ALT (FT	")	I	PRESS A	ALT (FT)	I	PRESS	ALT (FT	(,
(FT)	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
3800	60.7	37.2			30.4							
4200	80.2	58.9	35.2		45.9							
4600	98.2	78.5	57.0	35.7	61.6	40.9						
5000		96.6	76.9	57.5	77.5	56.5	35.9					
5400			95.1	77.3	93.7	72.3	51.4	32.9				
5800				95.5		88.4	67.1	48.4				
6200						104.7	83.1	64.1	38.2			
6600							99.4	80.0	45.0			
7000								96.2	52.1			
7400									59.5	40.5		
7800									67.4	47.4		
8200									75.8	54.6	36.0	
8600									84.7	62.2	42.8	
9000									94.5	70.2	49.8	
9400										78.7	57.1	40.1
9800										87.9	64.8	46.9
10200										97.9	73.0	54.1
10600											81.8	61.7
11000											91.2	69.7
11400												78.2
11800												87.4
12200												97.3

- 1. Enter Table 1 with reported braking action and dry field/obstacle limit weight to obtain slippery
- Either Table 1 with reported in and dry held/obstacle limit weight to obtain supperly runway weight adjustment.
 Adjust "Good" field length available by -80 ft/+80 ft for every 10°C above/below 0°C. Adjust "Medium" field length available by -100 ft/+100 ft for every 10°C above/below 0°C. Adjust "Poor" field length available by -190 ft/+190 ft for every 10°C above/below 0°C.
 Find V1(MCG) limit weight for adjusted field length and pressure altitude (Table 2).
 Max allowable slippery runway limited weight is lesser of weights from Table 1 and Table 2.

ADVISORY INFORMATION

Slippery Runway Takeoff Maximum Reverse Thrust Table 3 of 3: V1 Adjustment (KIAS)

				R	EPORT	ED BR.	AKING	ACTIO:	N			
WEIGHT		GC	OD			MED	IUM			PO	OR	
(1000 KG)	I	PRESS A	ALT (FT	")	I	PRESS A	ALT (FT	(F	RESS A	ALT (FT	")
	S.L.	S.L. 5000 10000 14500				5000	10000	14500	S.L.	5000	10000	14500
90	-8	-6	-3	-1	-12	-10	-7	-5	-32	-30	-27	-25
80	-10	-7	-5	-2	-14	-12	-9	-7	-36	-34	-31	-29
70	-11	-8	-6	-3	-17	-14	-12	-9	-40	-37	-35	-32
60	-12	-9	-7	-4	-19	-17	-14	-12	-43	-40	-38	-35
50	-12	-10	-7	-5	-22	-19	-17	-14	-45	-43	-40	-38
40	-13	-11	-8	-6	-24	-22	-19	-17	-47	-44	-42	-40

- Obtain V1, VR and V2 for the actual weight using the Dry Runway Takeoff Speeds table.
 If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG). V1 not to exceed VR.

737-8/LEAP-1B27 FAA CATB

ADVISORY INFORMATION

Slippery Runway Takeoff No Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

DRY				R	EPORT	ED BR	AKING	ACTIO	N			
FIELD/OBSTACLE		GO	OD			MED	IUM			PO	OR	
LIMIT WEIGHT	F	PRESS ALT (FT)				RESS A	ALT (FT)	P	RESS A	ALT (FT	(
(1000 KG)	S.L.	S.L. 5000 10000 14500				5000	10000	14500	S.L.	5000	10000	14500
90	-2.5	-3.1	-3.7	-4.3	-4.9	-5.5	-6.2	-6.7	-14.2	-14.8	-15.4	-16.0
80	-2.5	-3.1	-3.7	-4.3	-5.3	-5.9	-6.5	-7.1	-13.4	-14.0	-14.6	-15.2
70	-2.1	-2.8	-3.4	-3.9	-5.1	-5.8	-6.4	-6.9	-11.9	-12.6	-13.2	-13.7
60	-1.4	-2.0	-2.6	-3.1	-4.4	-5.0	-5.6	-6.2	-9.8	-10.5	-11.1	-11.6
50	-0.2	-0.9	-1.5	-2.0	-3.1	-3.7	-4.4	-4.9	-7.1	-7.7	-8.3	-8.8
40	0.0	-0.6	-1.2	-1.8	-1.3	-1.9	-2.5	-3.1	-3.7	-4.3	-4.9	-5.4

ADVISORY INFORMATION

Slippery Runway Takeoff No Reverse Thrust

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

ADJUSTED				R	EPORT	ED BR.	AKING	ACTIO	N			
FIELD		GC	OD			MED	IUM				OR	
LENGTH	I	PRESS A	ALT (FT	")	I	PRESS A	ALT (FT	")	F	PRESS A	ALT (FT	")
(FT)	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
3800	19.2											
4000	43.7											
4200	61.8											
4400	75.2	40.6										
4600	86.3	59.9										
4800	96.0	73.7	37.6									
5000		85.0	57.9									
5200		94.8	72.1	39.7	41.2							
5400			83.7	59.3	58.0							
5600			93.7	73.2	71.5	31.0						
5800				84.6	83.1	49.8						
6000				94.5	93.5	64.7						
6200						77.2	40.3					
6400						88.2	57.3					
6600						98.1	70.9	35.0				
6800							82.6	53.1				
7000							93.0	67.4				
7200								79.5				
7400								90.2				
12000									63.9			
12200									78.1			
12400									88.0			
12600									96.1			
13200										69.3		
13400										81.6		
13600										90.8		
14200											54.9	
14400											73.8	
14600											84.8	
14800											93.4	
15200												51.1
15400												72.4
15600												83.8
15800												92.6

- 1. Enter Table 1 with reported braking action and dry field/obstacle limit weight to obtain slippery
- Enter Table 1 with reported braking action and dry neid/obstacle limit weight to obtain suppery runway weight adjustment.
 Adjust "Good" field length available by -90 ft/+90 ft for every 10°C above/below 0°C. Adjust "Medium" field length available by -110 ft/+110 ft for every 10°C above/below 0°C. Adjust "Poor" field length available by -280 ft/+280 ft for every 10°C above/below 0°C.
 Find V1(MCG) limit weight for adjusted field length and pressure altitude (Table 2).
 Max allowable slippery runway limited weight is lesser of weights from Table 1 and Table 2.

737-8/LEAP-1B27 FAA CATB

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Slippery Runway Takeoff No Reverse Thrust

				R	EPORT	ED BR	AKING	ACTIO	N			
WEIGHT		GO	OD			MED	IUM			PO	OR	
(1000 KG)	I	PRESS A	ALT (FT	")	F	PRESS A	ALT (FT	()	F	RESS A	ALT (FT	()
	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-11	-6	-1	0	-16	-11	-6	-1	-50	-45	-40	-35
80	-13	-8	-3	0	-19	-14	-9	-5	-57	-52	-47	-42
70	-14	-9	-4	0	-23	-18	-13	-8	-63	-58	-53	-49
60	-15	-10	-5	-1	-27	-22	-17	-12	-69	-64	-59	-55
50	-17	-12	-7	-2	-31	-26	-21	-16	-75	-70	-65	-60
40	-18	-13	-8	-3	-35	-30	-25	-21	-80	-75	-70	-66

- Obtain V1, VR and V2 for the actual weight using the Dry Runway Takeoff Speeds table.
 If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG). V1 not to exceed VR.

Takeoff %N1 Max Takeoff Thrust

Based on engine bleed for packs on and anti-ice off

AIRPORT					1	AIRP	ORT F	RES	SURE	ALTI	TUD	E (100	00 FT)				
OAT	_		0	,	2	2	4	-	_	7	8	Ò	10	11	10	13	1.4	14.5
(°C)	-2	-1	0	1	2	3	4	5	6	/	8	9	10	11	12	13	14	14.5
60	85.6	86.1	86.6	86.7	86.2	85.7	85.2	84.8	84.3	83.9	83.5	83.0	82.5	81.6	80.6	79.5	78.6	78.2
55	86.9	87.3	87.7	87.8	87.4	86.9	86.4	85.9	85.5	85.1	84.6	84.2	83.7	82.7	81.8	80.7	79.8	79.4
50	88.0	88.6	89.2	88.8	88.4	88.0	87.5	87.1	86.6	86.2	85.8	85.3	84.8	83.9	83.0	81.9	81.0	80.6
45	88.9	89.5	90.0	89.9	89.5	88.9	88.6	88.2	87.7	87.3	86.9	86.4	86.0	85.0	84.1	83.0	82.2	81.7
40	89.9	90.4	91.0	90.9	90.9	90.6	89.9	89.1	88.7	88.3	88.0	87.5	87.0	86.1	85.2	84.1	83.3	82.8
35	90.7	91.3	91.9	91.9	91.8	91.7	91.6	91.3	90.7	89.7	88.9	88.5	88.1	87.2	86.3	85.3	84.4	84.0
30	90.2	91.5	92.8	92.6	92.6	92.6	92.5	92.4	92.4	92.2	89.8	89.5	89.1	88.2	87.4	86.4	85.6	85.2
25	89.4	90.7	92.0	92.3	92.7	92.8	92.9	93.2	93.0	93.0	90.8	90.4	90.0	89.2	88.4	87.6	86.7	86.3
20	88.6	89.9	91.2	91.5	91.8	92.1	92.5	92.8	93.0	93.1	91.7	91.3	91.0	90.2	89.5	88.7	87.9	87.5
15	87.8	89.1	90.4	90.7	91.0	91.3	91.6	91.9	92.3	92.6	92.7	92.4	92.0	91.2	90.5	89.8	89.0	88.7
10	87.0	88.3	89.6	89.9	90.2	90.5	90.8	91.1	91.5	91.8	92.2	92.6	93.0	92.2	91.6	90.9	90.2	89.9
5	86.2	87.5	88.8	89.1	89.4	89.7	90.0	90.3	90.7	91.0	91.4	91.8	92.2	92.2	92.2	92.0	91.4	91.1
0	85.4	86.7	87.9	88.3	88.6	88.9	89.2	89.5	89.8	90.2	90.6	91.0	91.4	91.4	91.5	91.5	91.5	91.6
-5	84.6	85.8	87.1	87.4	87.8	88.0	88.3	88.7	89.0	89.4	89.8	90.2	90.5	90.6	90.7	90.7	90.7	90.8
-10	83.8	85.0	86.3	86.6	86.9	87.2	87.5	87.8	88.1	88.5	88.9	89.3	89.7	89.8	89.8	89.9	89.9	89.9
-15	83.0	84.2	85.5	85.8	86.1	86.3	86.6	86.9	87.3	87.7	88.1	88.5	88.9	89.0	89.0	89.1	89.1	89.1
-20	82.2	83.4	84.6	84.9	85.2	85.5	85.7	86.1	86.4	86.8	87.3	87.7	88.1	88.1	88.2	88.2	88.3	88.3
-25	81.4	82.6	83.8	84.1	84.4	84.7	84.9	85.2	85.6	86.0	86.4	86.8	87.2	87.3	87.4	87.4	87.4	87.5
-30	80.5	81.8	83.0	83.3	83.6	83.8	84.1	84.4	84.7	85.1	85.5	86.0	86.4	86.5	86.5	86.6	86.6	86.6
-35	79.7	80.9	82.1	82.4	82.7	83.0	83.2	83.5	83.9	84.3	84.7	85.1	85.5	85.6	85.6	85.7	85.8	85.8
-40	78.9	80.1	81.2	81.6	81.8	82.1	82.4	82.7	83.0	83.4	83.8	84.2	84.6	84.7	84.7	84.8	84.9	84.9
-45	78.0	79.2	80.4	80.7	81.0	81.2	81.5	81.8	82.1	82.5	82.9	83.3	83.7	83.8	83.8	83.9	84.0	84.0
-50	77.2	78.3	79.5	79.8	80.1	80.3	80.6	80.9	81.3	81.6	82.0	82.4	82.7	82.8	82.9	83.0	83.1	83.2

%N1 Adjustment for Engine Bleeds

BLEED					AII	RPOF	RT PF	RESS	URE	ALT	ITUI	DE (1	000	FT)				
CONFIGURATION	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	14.5
PACKS OFF	0.5	0.5	0.6	0.6	0.7	0.8	0.8	0.9	0.9	1.0	1.0	1.0	1.1	1.2	1.4	1.6	1.7	1.8
ENGINE ANTI-ICE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.2	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6

737-8/LEAP-1B27 FAA CATB

737 Flight Crew Operations Manual

Assumed Temperature Reduced Thrust Maximum Assumed Temperature (Table 1 of 3)

Based on 25% Takeoff Thrust Reduction

OAT (°C)					A	AIRPO	ORT F	PRES	SURE	ALT	ITUD	E (10	00 FT	()				
OAI (C)	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	14.5
60	87	87	87	87	87	87	87	86	84	83	82				74	71	68	67
55	81	82	82	82	82	82	82	82	82	82	82				74	71	68	67
50	77	77	77	78	77	77	77	77	77	77	77	77	77		74	71	68	67
45	73	73	72	73	73	73	73	72	72	72	72	72	72	72	72	71	68	67
40	68	68	68	68	67	67	67	68	68	68	68	67	67	67	67	67	67	67
35	64	64	63	64	63	62	61	60	61	62	63	63	63	62	62	62	62	62
30	63	61	59	60	58	57	56	55	54	53	58	58	58	58	58	58	57	57
25	63	61	59	58	56	54	53	51	50	49	54	53	53	53	53	53	53	53
20	63	62	59	58	56	54	52	49	48	46	49	49	49	48	48	48	48	48
15	63	62	59	59	57	54	52	50	48	46	44	44	44	43	43	43	43	42
10	64	62	59	59	57	54	52	50	48	46	43	41	39	38	38	37	37	37
5	64	62	59	59	57	54	52	50	48	46	43	41	39	37	34	32	32	32
0	64	62	59	59	57	54	52	50	48	46	43	41	39	37	34	32	29	28
-5 & BELOW	64	62	59	59	57	54	52	50	48	46	43	41	39	37	34	32	29	28

Takeoff %N1 (Table 2 of 3)

Based on engine bleed for packs on and engine anti-ice off

Daseu on ei	-5···	CDIC	cu i	υp														
ASSUMED					Α	IRPO	ORT P	RESS	SURE	ALT:	TUD	E (10	00 FT	")				
TEMP (°C)	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	14.5
75	81.9	82.4	83.0	83.1	82.6	82.1	81.6	81.1	80.7	80.2	79.8	79.3	78.8	77.8	77.0	76.6	76.5	76.4
70	83.2	83.7	84.2	84.3	83.8	83.3	82.8	82.4	81.9	81.5	81.0	80.6	80.1	79.1	78.2	77.0	76.1	75.8
65	84.4	84.9	85.4	85.5	85.0	84.5	84.1	83.6	83.2	82.7	82.3	81.8	81.3	80.3	79.4	78.3	77.4	77.0
60	85.6	86.1	86.6	86.7	86.2	85.7	85.2	84.8	84.3	83.9	83.5	83.0	82.5	81.6	80.6	79.5	78.6	78.2
55	86.9	87.3	87.7	87.8	87.4	86.9	86.4	85.9	85.5	85.1	84.6	84.2	83.7	82.7	81.8	80.7	79.8	79.4
50	88.0	88.6	89.2	88.8	88.4	88.0	87.5	87.1	86.6	86.2	85.8	85.3	84.8	83.9	83.0	81.9	81.0	80.6
45	88.9	89.5	90.0	89.9	89.5	88.9	88.6	88.2	87.7	87.3	86.9	86.4	86.0	85.0	84.1	83.0	82.2	81.7
40	89.9	90.4	91.0	90.9	90.9	90.6	89.9	89.1	88.7	88.3	88.0	87.5	87.0	86.1	85.2	84.1	83.3	82.8
35	90.7	91.3	91.9	91.9	91.8	91.7	91.6	91.3	90.7	89.7	88.9	88.5	88.1	87.2	86.3	85.3	84.4	84.0
30	90.2	91.5	92.8	92.6	92.6	92.6	92.5	92.4	92.4	92.2	89.8	89.5	89.1	88.2	87.4	86.4	85.6	85.2
25	89.4	90.7	92.0	92.3	92.7	92.8	92.9	93.2	93.0	93.0	90.8	90.4	90.0	89.2	88.4	87.6	86.7	86.3
20	88.6	89.9	91.2	91.5	91.8	92.1	92.5	92.8	93.0	93.1	91.7	91.3	91.0	90.2	89.5	88.7	87.9	87.5
15	87.8	89.1	90.4	90.7	91.0	91.3	91.6	91.9	92.3	92.6	92.7	92.4	92.0	91.2	90.5	89.8	89.0	88.7
10	87.0	88.3	89.6	89.9	90.2	90.5	90.8	91.1	91.5	91.8	92.2	92.6	93.0	92.2	91.6	90.9	90.2	89.9
5	86.2	87.5	88.8	89.1	89.4	89.7	90.0	90.3	90.7	91.0	91.4	91.8	92.2	92.2	92.2	92.0	91.4	91.1
0	85.4	86.7	87.9	88.3	88.6	88.9	89.2	89.5	89.8	90.2	90.6	91.0	91.4	91.4	91.5	91.5	91.5	91.6
-5	84.6	85.8	87.1	87.4	87.8	88.0	88.3	88.7	89.0	89.4	89.8	90.2	90.5	90.6	90.7	90.7	90.7	90.8
-20	82.2	83.4	84.6	84.9	85.2	85.5	85.7	86.1	86.4	86.8	87.3	87.7	88.1	88.1	88.2	88.2	88.3	88.3
-40	78.9	80.1	81.2	81.6	81.8	82.1	82.4	82.7	83.0	83.4	83.8	84.2	84.6	84.7	84.7	84.8	84.9	84.9
MINIMUM ASSUMED TEMP (°C)	34	32	30	28	26	24	22	20	18	16	14	12	10	8	6	4	2	1

Assumed Temperature Reduced Thrust

%N1 Adjustment for Temperature Difference (Table 3 of 3)

ASSUMED					OUT	SIDE A	AIR TE	MPER.	ATURE	(°C)				
TEMPMINUS	-40	-20	0	5	10	15	20	25	30	35	40	45	50	55
OAT (°C)		-20	U	3	10	13	20	23	30	33	40	43	30	33
115	8.5													
110	8.5													1
105	8.5													
100	7.4													1
95	5.6	8.9												1
90	4.2	8.9												
85	2.8	8.9												1
80	1.4	7.6												1
75	0.1	5.9	9.2											1
70	0.0	4.4	9.2	9.2										
65	0.0	2.9	8.6	8.6	8.5									1
60	0.0	1.4	8.0	8.0	8.0	7.9								1
55	0.0	0.0	6.1	7.4	7.4	7.3	7.2							
50	0.0	0.0	4.5	6.2	6.8	6.8	6.6	6.4						1
45	0.0	0.0	3.0	4.6	6.2	6.1	6.0	5.8	5.7					1
40	0.0	0.0	1.5	3.1	4.7	5.5	5.4	5.2	5.1	4.9				
35		0.0	0.0	1.6	3.1	4.8	4.8	4.6	4.5	4.4	4.2			1
30		0.0	0.0	0.1	1.6	3.2	4.1	4.0	3.9	3.8	3.7	3.6		1
25		0.0	0.0	0.0	0.1	1.6	3.3	3.4	3.3	3.2	3.1	3.0	2.9	
20		0.0	0.0	0.0	0.0	0.1	1.7	2.7	2.7	2.6	2.5	2.4	2.4	2.3
15			0.0	0.0	0.0	0.0	0.2	1.8	2.0	2.0	1.9	1.8	1.8	1.7
10			0.0	0.0	0.0	0.0	0.0	0.2	1.4	1.3	1.3	1.2	1.2	1.2
5			0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.7	0.6	0.6	0.6	0.6
0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

- 1. Determine Maximum Assumed Temperature allowed from Table 1.
- Find Maximum %N1 from Table 2 using the desired assumed temperature (no greater than temperature from Table 1).
- 3. Use the difference between assumed temperature and OAT to determine the %N1 adjustment from Table 3.
- 4. Subtract %N1 adjustment from Maximum %N1 in Table 2.

TO1 Takeoff Speeds - Dry Runway

10% Thrust Reduction

Table 1 of 4: V1, VR, V2

WEIGHT	F	LAPS	1	F	LAPS	5	Fl	LAPS	10	F	LAPS	15	Fl	LAPS 2	25
(1000 KG)	V1	VR	V2	V1	VR	V2									
80	159	160	165	153	153	158									
75	154	154	160	148	148	153	144	144	150	141	141	147			
70	148	148	156	142	142	149	138	139	146	136	136	143	133	133	139
65	142	142	151	136	136	144	132	133	141	130	130	138	127	127	135
60	135	135	146	129	130	139	126	127	136	124	124	133	121	121	130
55	128	128	140	122	123	134	119	120	131	117	117	128	115	115	125
50	120	121	134	115	116	128	112	113	125	110	110	123	108	108	120
45	113	113	128	107	108	122	105	105	120	103	103	117	101	101	115
40	104	105	121	100	100	116	97	98	113	95	96	111	93	93	109

Check V1(MCG).

Table 2 of 4: V1, VR, V2 Adjustments*

									TAK	EO	FF S	PE	EDS	ĀΙ	JŪ	STN	ΛEΝ	ITS (ΚĪΑ	S)							
TEMP					V	l								VF	₹								V2	2			
(°C)		P	RE	SS A	۱LT	(10	00 I	FT)			P	RE	SS A	LT	(10	00 I	FT)			F	PRE	SS A	λLT	(100	00 F	T)	
	-2	0	2	4	6	8	10	12	14.5	-2	0	2	4	6	8	10	12	14.5	-2	0	2	4	6	8	10	12	14.5
60	4	5	6	7	8	9	10	11	13	4	5	5	6	6	7	9	10	10	-1	-2	-2	-3	-3	-3	-4	-4	-4
50	3	3	5	7	8	9	10	11	13	3	3	4	6	6	7	9	10	10	-1	-1	-2	-2	-3	-3	-4	-4	-4
40	1	2	3	5	7	8	10	11	13	1	2	3	4	6	7	9	10	10	0	-1	-1	-2	-2	-3	-3	-4	-4
30	0	0	1	3	4	7	8	11	13	0	0	2	3	4	6	8	9	10	0	0	0	-1	-1	-2	-3	-3	-3
20	0	0	1	2	3	5	7	9	10	0	0	1	2	3	5	6	8	10	0	0	0	-1	-1	-2	-2	-3	-3
10	0	0	1	2	3	4	5	7	9	0	0	1	2	3	4	5	6	9	0	0	0	-1	-1	-1	-2	-2	-3
0	0	0	1	2	3	4	5	6	8	0	0	1	2	3	4	5	6	7	0	0	0	-1	-1	-1	-2	-2	-2
-60	1	0	1	3	3	4	5	6	8	0	0	1	2	3	4	5	6	7	0	0	0	-1	-1	-1	-2	-2	-2

^{*}V1 not to exceed VR.

Table 3 of 4: Slope and Wind V1 Adjustments*

WEIGHT				V1 S	PEED AI	DJUSTM	ENTS (F	(IAS)			
(1000 KG)		S	LOPE (%	6)				WIND	(KTS)		
(1000 KG)	-2	-1	0	1	2	-15	-10	-5	0	20	40
80	-3	-2	0	2	2	-1	-1	-1	0	1	1
70	-2	-1	0	1	1	-2	-1	-1	0	1	1
60	-2	-1	0	1	1	-2	-1	-1	0	1	1
50	-1	-1	0	1	1	-2	-1	-1	0	1	1
40	-1	-1	0	1	1	-2	-1	-1	0	1	1

^{*}V1 not to exceed VR.

TO1 Takeoff Speeds - Dry Runway

10% Thrust Reduction Table 4 of 4: V1(MCG)

TEMP				V1(MCG) (KI	AS)			
(°C)				PRESSU	RE ALTIT	UDE (FT)			
(0)	-2000	0	2000	4000	6000	8000	10000	12000	14500
60	94	92	90	87	84	82	79	75	71
55	94	92	90	87	84	82	79	75	71
50	96	94	90	87	84	82	79	75	71
45	99	96	92	88	84	82	79	75	71
40	101	99	95	90	85	82	79	75	71
35	103	101	97	93	88	83	79	75	71
30	104	104	99	95	92	85	81	76	71
25	104	104	101	97	94	87	83	78	72
20	104	104	101	98	95	89	85	80	74
15	104	104	101	98	95	92	87	82	76
10	104	104	101	98	95	92	89	84	78
5	104	104	101	98	95	92	89	86	80
0	104	104	101	98	95	92	89	86	82
-60	105	105	102	99	96	93	90	86	82

TO1 Takeoff Speeds - Wet Runway

10% Thrust Reduction

Table 1 of 4: V1, VR, V2

WEIGHT	F	LAPS	1	F	LAPS	5	F	LAPS	10	F	LAPS	15	F	LAPS 2	25
(1000 KG)	V1	VR	V2	V1	VR	V2									
80	151	160	165	145	153	158									
75	145	154	160	138	148	153	135	144	150	133	141	147			
70	138	148	156	132	142	149	129	139	146	127	136	143	124	133	139
65	131	142	151	126	136	144	123	133	141	121	130	138	118	127	135
60	124	135	146	119	130	139	116	127	136	114	124	133	111	121	130
55	117	128	140	112	123	134	109	120	131	107	117	128	104	115	125
50	109	121	134	104	116	128	102	113	125	100	110	123	97	108	120
45	101	113	128	96	108	122	94	105	120	92	103	117	90	101	115
40	93	105	121	88	100	116	86	98	113	84	96	111	82	93	109

Check V1(MCG).

Table 2 of 4: V1, VR, V2 Adjustments*

									TAK	EOI	FF S	SPE	EDS	SΑΓ	JU	STN	ÆΝ	ITS (KIA	S)							
TEMP					VI									VF	1								V2	:			
(°C)		P	RE	SS A	LT	(10	00 I	FT)			P	RE	SS A	LT	(10	00 I	T)			F	PRE	SS A	λLT	(10	00 F	T)	
	-2	0	2	4	6	8	10	12	14.5	-2	0	2	4	6	8	10	12	14.5	-2	0	2	4	6	8	10	12	14.5
60	7	8	8	10	10	12	14	15	16	4	5	5	6	6	7	9	10	10	-1	-2	-2	-3	-3	-3	-4	-4	-4
50	4	5	7	10	10	12	14	15	16	3	3	4	6	6	7	9	10	10	-1	-1	-2	-2	-3	-3	-4	-4	-4
40	1	2	4	7	9	12	14	15	16	1	2	3	4	6	7	9	10	10	0	-1	-1	-2	-2	-3	-3	-4	-4
30	0	0	1	3	5	9	11	15	16	0	0	2	3	4	6	8	9	10	0	0	0	-1	-1	-2	-3	-3	-3
20	0	0	1	3	4	6	9	12	16	0	0	1	2	3	5	6	8	10	0	0	0	-1	-1	-2	-2	-3	-3
10	0	0	1	3	4	5	7	9	13	0	0	1	2	3	4	5	6	9	0	0	0	-1	-1	-1	-2	-2	-3
0	0	0	1	3	4	5	7	8	11	0	0	1	2	3	4	5	6	7	0	0	0	-1	-1	-1	-2	-2	-2
-60	3	2	3	4	6	7	8	10	12	0	0	1	2	3	4	5	6	7	0	0	0	-1	-1	-1	-2	-2	-2

^{*}V1 not to exceed VR.

Table 3 of 4: Slope and Wind V1 Adjustments*

WEIGHT				V1 S	PEED AI	DJUSTM	ENTS (F	(IAS)			
(1000 KG)		S	LOPE (%	6)				WIND	(KTS)		
(1000 KG)	-2	-1	0	1	2	-15	-10	-5	0	20	40
80	-5	-3	0	3	5	-3	-2	-1	0	1	3
70	-4	-2	0	2	4	-4	-2	-1	0	1	3
60	-3	-2	0	2	4	-4	-3	-1	0	2	3
50	-3	-1	0	1	3	-4	-3	-1	0	2	3
40	-2	-1	0	1	2	-4	-3	-1	0	2	3

^{*}V1 not to exceed VR.

TO1 Takeoff Speeds - Wet Runway

10% Thrust Reduction

Table 4 of 4: V1(MCG)

TEMP				V1(MCG) (KI	AS)			
(°C)				PRESSU	RE ALTIT	UDE (FT)			
(C)	-2000	0	2000	4000	6000	8000	10000	12000	14500
60	94	92	90	87	84	82	79	75	71
55	94	92	90	87	84	82	79	75	71
50	96	94	90	87	84	82	79	75	71
45	99	96	92	88	84	82	79	75	71
40	101	99	95	90	85	82	79	75	71
35	103	101	97	93	88	83	79	75	71
30	104	104	99	95	92	85	81	76	71
25	104	104	101	97	94	87	83	78	72
20	104	104	101	98	95	89	85	80	74
15	104	104	101	98	95	92	87	82	76
10	104	104	101	98	95	92	89	84	78
5	104	104	101	98	95	92	89	86	80
0	104	104	101	98	95	92	89	86	82
-60	105	105	102	99	96	93	90	86	82

737-8/LEAP-1B27 FAA CATB

737 Flight Crew Operations Manual

TO1 Stabilizer Trim Setting 10% Thrust Reduction

Flaps 1 and 5

WEIGHT					S	TABII	LIZER	TRIM	SETT	ING (UNITS	S)				
(1000 KG)							(C.G. (%	6MAC	()						
(1000 KG)	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36
82	8 1/2	8 1/2	8 1/2	8 1/4	7 3/4	7 1/2	7 1/4	6 3/4	6 1/2	6	5 3/4	5 1/2	5	4 3/4	4 1/4	4
80	8 1/2	8 1/2	8 1/2	8 1/4	7 3/4	7 1/2	7	6 3/4	6 1/2	6	5 3/4	5 1/4	5	4 1/2	4 1/4	3 3/4
70	8 1/2	8 1/2	8 1/4	7 3/4	7 1/2	7 1/4	6 3/4	6 1/2	6	5 3/4	5 1/4	5	4 1/2	4 1/4	3 3/4	3 1/2
60	8 1/4	8	7 3/4	7 1/4	7	6 3/4	6 1/4	6	5 3/4	5 1/4	5	4 1/2	4 1/4	3 3/4	3 1/2	3 1/4
50	7 1/2	7 1/4	7	6 3/4	6 1/4	6	5 3/4	5 1/4	5	4 3/4	4 1/4	4	3 1/2	3 1/4	3	3
40	6 1/2	6 1/4	5 3/4	5 1/2	5 1/4	5	4 3/4	4 1/4	4	3 3/4	3 1/2	3 1/4	3	3	3	3

Flaps 10, 15, and 25

WEIGHT					S	TABII	LIZER	TRIM	SETT	ING (UNIT	S)				
(1000 KG)							(C.G. (%	6MAC	()						
(1000 KG)	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36
82	8 1/2	/2 8 1/2 8 1/4 7 3/4 7 1/4 6 3/4 6 1/2 6 5 1/2 5 1/4 4 3/4 4 1/4 3 3/4 3 1/2 3 3 3														
80	8 1/2	72 8 1/2 8 1/4 7 3/4 7 1/4 6 3/4 6 1/4 6 5 1/2 5 4 3/4 4 1/4 3 3/4 3 1/4 3 3														
70	8 1/2	8 1/4	7 3/4	7 1/4	6 3/4	6 1/4	6	5 1/2	5 1/4	4 3/4	4 1/4	3 3/4	3 1/2	3	3	3
60	8 1/4	7 3/4	7 1/4	6 3/4	6 1/4	5 3/4	5 1/2	5	4 3/4	4 1/4	3 3/4	3 1/2	3	3	3	3
50	7	6 3/4	6 1/4	5 3/4	5 1/2	5	4 3/4	4 1/4	4	3 1/2	3 1/4	3	3	3	3	3
40	5 1/2	5 1/4	5	4 1/2	4 1/4	4	3 1/2	3 1/4	3 1/4	3	3	3	3	3	3	3

ADVISORY INFORMATION

TO1 Slush/Standing Water Takeoff

10% Thrust Reduction

Maximum Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

		-		•								
TO1 DRY				SLU	JSH/ST	ANDIN	G WAT	ER DEF	TH			
FIELD/OBSTACLE	3 n	nm (0.12	2 INCHI	ES)	6 n	nm (0.25	INCHI	ES)	13 r	nm (0.5	0 INCH	ES)
LIMIT WEIGHT	I	PRESS A	ALT (FT)	F	RESS A	ALT (FT)	F	PRESS A	ALT (FT)
(1000 KG)	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-6.4	-8.2	-9.9	-11.4	-8.8	-10.5	-12.2	-13.7	-13.2	-14.9	-16.6	-18.2
80	-5.6	-7.3	-9.1	-10.6	-7.4	-9.2	-10.9	-12.4	-10.8	-12.5	-14.2	-15.8
70	-4.6	-6.3	-8.0	-9.6	-5.9	-7.6	-9.3	-10.9	-8.3	-10.0	-11.7	-13.3
60	-3.2	-4.9	-6.7	-8.2	-4.1	-5.8	-7.5	-9.1	-5.6	-7.3	-9.1	-10.6
50	-1.6	-3.3	-5.0	-6.6	-2.0	-3.8	-5.5	-7.0	-2.8	-4.5	-6.3	-7.8
40	0.0	-1.5	-3.2	-4.7	0.0	-1.5	-3.2	-4.8	0.0	-1.6	-3.3	-4.9

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

ADJUSTED				SLU	JSH/ST	ANDIN	G WAT	ER DEF	TH			
FIELD	3 m	nm (0.12	2 INCH	ES)	6 m	nm (0.25	INCH	ES)	13 r	nm (0.5	0 INCH	ES)
LENGTH	P	RESS A	ALT (FT	")	P	RESS A	ALT (FT	")	F	RESS A	ALT (FT	")
(FT)	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
3800	39.8				42.2				46.4			
4200	55.3	33.8			57.4	36.4			60.6	40.9		
4600	71.1	49.3	27.9		72.7	51.5	30.5		75.0	55.1	35.4	
5000	87.1	65.0	43.3		88.2	66.8	45.6		89.3	69.4	49.6	31.9
5400	103.3	80.9	58.9	39.4	103.7	82.2	60.8	41.9	103.8	83.8	63.9	46.1
5800		97.0	74.7	55.0		97.7	76.2	57.0		98.2	78.2	60.3
6200			90.7	70.7			91.7	72.4			92.6	74.6
6600				86.7				87.8				89.0
7000				102.9				103.4				103.4

- Enter Table 1 with slush/standing water depth and TO1 dry field/obstacle limit weight to obtain slush/standing water weight adjustment.
- Adjust field length available by -100 ft/+100 ft for every 10°C above/below 0°C. Find VI(MCG) limit weight for adjusted field length and pressure altitude (Table 2).
- Max allowable slush/standing water limited weight is lesser of weights from Table 1 and Table 2.

Table 3 of 3: V1 Adjustment (KIAS)

	•											
				SLU	JSH/ST	ANDIN	G WAT	ER DEF	TH			
WEIGHT	3 n	nm (0.12	2 INCH	ES)	6 n	nm (0.25	5 INCH	ES)	13 r	nm (0.5	0 INCH	ES)
(1000 KG)	PRESS ALT (FT) S.L. 5000 10000 1450				F	RESS A	ALT (FT	")	F	RESS A	ALT (FT	")
	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-11	-6	-1	0	-7	-2	0	0	0	0	0	0
80	-13	-8	-3	0	-10	-5	0	0	-1	0	0	0
70	-14	-9	-4	0	-12	-7	-2	0	-4	0	0	0
60	-16	-11	-6	-2	-14	-9	-4	0	-8	-3	0	0
50	-18	-13	-8	-4	-17	-12	-7	-2	-13	-8	-3	0
40	-22	-17	-12	-7	-21	-16	-11	-6	-19	-14	-9	-4

- Obtain V1, VR and V2 for the actual weight using the TO1 Dry Runway Takeoff Speeds table.
- 2. If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG). V1 not to exceed VR.

ADVISORY INFORMATION

TO1 Slush/Standing Water Takeoff

10% Thrust Reduction

No Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

TO1 DRY				SLU	JSH/ST	ANDIN	G WAT	ER DEF	TH			
FIELD/OBSTACLE	3 n	nm (0.12	2 INCHI	ES)	6 n	nm (0.25	INCH	ES)	13 r	nm (0.5	0 INCH	ES)
LIMIT WEIGHT	I	PRESS A	ALT (FT	")	F	RESS A	ALT (FT)	F	RESS A	ALT (FT	")
(1000 KG)	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-8.3	-10.0	-11.7	-13.3	-10.8	-12.6	-14.3	-15.9	-15.7	-17.4	-19.2	-20.7
80	-7.5	-9.3	-11.0	-12.6	-9.5	-11.2	-13.0	-14.6	-13.1	-14.8	-16.6	-18.1
70	-6.4	-8.2	-9.9	-11.5	-7.8	-9.6	-11.3	-12.9	-10.4	-12.1	-13.9	-15.4
60	-5.0	-6.8	-8.5	-10.1	-5.9	-7.7	-9.4	-11.0	-7.5	-9.3	-11.0	-12.6
50	-3.3	-5.0	-6.8	-8.3	-3.8	-5.5	-7.3	-8.8	-4.4	-6.2	-7.9	-9.5
40	-1.2	-2.9	-4.7	-6.2	-1.3	-3.0	-4.8	-6.4	-1.3	-3.0	-4.8	-6.4

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

ADJUSTED				SLI	ISH/ST	A NDIN	G WAT	FR DEP	тн			
FIELD	3 n	nm (0.12	2 INCH				5 INCH			nm (0.5	0 INCH	ES)
LENGTH	F	RESS A	ALT (FT	")	P	RESS A	ALT (FT)	F	RESS A	ALT (FT	"
(FT)	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
4200									26.4			
4600	12.9				29.1				48.0			
5000	47.6				57.2	20.3			68.0	41.6		
5400	75.4	37.4			80.3	49.3			86.3	62.2	35.1	
5800	97.6	67.8	26.9		100.2	73.8	40.8		103.6	81.0	56.2	31.4
6200		91.3	59.7	20.9		94.5	66.9	35.8		98.4	75.5	52.7
6600			84.7	54.7			88.5	62.9			93.3	72.3
7000			105.9	80.9			107.9	85.1				90.4
7400				102.4				104.7				

- Enter Table 1 with slush/standing water depth and TO1 dry field/obstacle limit weight to obtain slush/standing water weight adjustment.
- 2. Adjust field length available by -120 ft/+120 ft for every 10°C above/below 0°C.
- 3. Find V1(MCG) limit weight for adjusted field length and pressure altitude (Table 2).
- 4. Max allowable slush/standing water limited weight is lesser of weights from Table 1 and Table 2.

				SLU	JSH/ST	ANDIN	G WAT	ER DEP	TH			
WEIGHT	3 n	nm (0.12	2 INCH	ES)	6 n	nm (0.25	5 INCH	ES)	13 ı	nm (0.5	0 INCH	ES)
(1000 KG)	PRESS ALT (FT) S.L. 5000 10000 14500				I	PRESS A	ALT (FT	")	F	PRESS A	ALT (FT	")
	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-15	-10	-5	0	-10	-5	0	0	0	0	0	0
80	-17	-12	-7	-3	-13	-8	-3	0	-2	0	0	0
70	-20	-15	-10	-5	-16	-11	-6	-1	-6	-1	0	0
60	-23	-18	-13	-8	-20	-15	-10	-5	-12	-7	-2	0
50	-26	-21	-16	-12	-24	-19	-14	-10	-19	-14	-9	-4
40	-30	-25	-20	-16	-29	-24	-19	-15	-27	-22	-17	-12

- 1. Obtain V1, VR and V2 for the actual weight using the TO1 Dry Runway Takeoff Speeds table.
- If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual
 weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG).
 V1 not to exceed VR.

ADVISORY INFORMATION

TO1 Dry Snow Takeoff 10% Thrust Reduction

Maximum Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

TO1 DRY					DR	Y SNO	W DEP	TH				
FIELD/OBSTACLE	30 ı	nm (1.1	8 INCH	ES)	60 r	mm (2.3	6 INCH	ES)	100	mm (4.0	00 INCI	IES)
LIMIT WEIGHT	I	PRESS A	ALT (FT	"	F	PRESS A	ALT (FT	")	F	PRESS A	ALT (FT)
(1000 KG)	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-4.1	-5.4	-6.7	-7.9	-6.0	-7.3	-8.6	-9.7	-9.6	-10.9	-12.2	-13.3
80	-4.3	-5.6	-6.9	-8.1	-5.8	-7.0	-8.3	-9.5	-8.4	-9.8	-11.0	-12.2
70	-4.0	-5.3	-6.6	-7.8	-5.1	-6.4	-7.7	-8.8	-7.0	-8.3	-9.6	-10.8
60	-3.2	-4.5	-5.8	-7.0	-3.9	-5.3	-6.5	-7.7	-5.3	-6.5	-7.8	-9.0
50	-2.0	-3.3	-4.6	-5.8	-2.4	-3.7	-5.0	-6.2	-3.2	-4.5	-5.8	-6.9
40	-0.3	-1.6	-2.9	-4.0	-0.4	-1.7	-3.0	-4.1	-0.8	-2.1	-3.4	-4.5

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

ADJUSTED	DRY SNOW DEPTH												
FIELD	30 r	nm (1.1	8 INCH	ES)	60 mm (2.36 INCHES)				100 mm (4.00 INCHES)				
LENGTH	PRESS ALT (FT)				F	PRESS A	ALT (FT	")	PRESS ALT (FT)				
(FT)	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500	
3800	42.3				45.6				49.3	31.9			
4200	57.6	37.1			60.1	40.7			62.5	44.9			
4600	73.1	52.4	31.9		74.6	55.2	35.9		75.9	58.0	40.5		
5000	88.6	67.9	47.2	28.8	89.4	69.7	50.3	33.0	89.4	71.3	53.6	37.9	
5400	104.2	83.4	62.6	44.1	104.2	84.4	64.8	47.3	103.2	84.8	66.8	50.9	
5800		99.0	78.1	59.5		99.2	79.4	61.8		98.5	80.2	64.1	
6200			93.7	75.0			94.2	76.4			93.9	77.5	
6600				90.5				91.1				91.1	

- Enter Table 1 with dry snow depth and TO1 dry field/obstacle limit weight to obtain dry snow weight adjustment.
- Adjust field length available by -100 ft/+100 ft for every 10°C above/below 0°C.
- Find V1(MCG) limit weight for adjusted field length and pressure altitude (Table 2).
- Max allowable dry snow limited weight is lesser of weights from Table 1 and Table 2.

	DRY SNOW DEPTH											
WEIGHT	30 mm (1.18 INCHES)				nm (2.3	6 INCH	ES)	100 mm (4.00 INCHES)				
(1000 KG)	PRESS ALT (FT)			P	RESS A	ALT (FT)	PRESS ALT (FT)				
	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-8	-3	0	0	-5	0	0	0	0	0	0	0
80	-10	-5	0	0	-7	-2	0	0	-2	0	0	0
70	-13	-8	-3	0	-10	-5	0	0	-5	0	0	0
60	-15	-10	-5	-1	-13	-8	-3	0	-8	-3	0	0
50	-18	-13	-8	-4	-16	-11	-6	-1	-12	-7	-2	0
40	-21	-16	-11	-6	-19	-14	-9	-4	-15	-10	-5	-1

- Obtain V1, VR and V2 for the actual weight using the TO1 Dry Runway Takeoff Speeds table.
 If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG). V1 not to exceed VR.

ADVISORY INFORMATION

TO1 Dry Snow Takeoff 10% Thrust Reduction

No Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

	-	.	'		- /								
TO1 DRY	DRY SNOW DEPTH												
FIELD/OBSTACLE	30 mm (1.18 INCHES)				60 r	nm (2.3	6 INCH	ES)	100 mm (4.00 INCHES)				
LIMIT WEIGHT	PRESS ALT (FT)				F	RESS A	ALT (FT	")	PRESS ALT (FT)				
(1000 KG)	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500	
90	-5.9	-7.0	-8.3	-9.3	-7.8	-9.0	-10.2	-11.2	-11.2	-12.5	-13.7	-14.7	
80	-6.2	-7.3	-8.6	-9.7	-7.6	-8.8	-10.0	-11.1	-10.3	-11.5	-12.7	-13.8	
70	-5.9	-7.1	-8.3	-9.4	-7.0	-8.2	-9.4	-10.5	-8.9	-10.2	-11.3	-12.4	
60	-5.1	-6.3	-7.5	-8.6	-5.8	-7.0	-8.2	-9.3	-7.1	-8.3	-9.5	-10.6	
50	-3.8	-4.9	-6.2	-7.2	-4.1	-5.3	-6.5	-7.6	-4.8	-6.0	-7.2	-8.3	
40	-1.8	-3.0	-4.2	-5.3	-1.9	-3.1	-4.3	-5.4	-2.0	-3.3	-4.4	-5.5	

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

	•												
ADJUSTED		DRY SNOW DEPTH											
FIELD	30 mm (1.18 INCHES) PRESS ALT (FT)				60 mm (2.36 INCHES)				100 mm (4.00 INCHES)				
LENGTH					F	RESS A	ALT (FT	")	PRESS ALT (FT)				
(FT)	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500	
4200					25.9				41.9				
4600	34.3				48.2	19.8			58.2	37.4			
5000	62.0	26.0			68.7	42.2			74.2	53.8	32.9		
5400	84.0	55.1	17.7		87.2	63.3	36.0		89.9	69.8	49.3	30.5	
5800	103.0	78.3	47.7	13.2	104.6	82.3	57.7	32.7	105.4	85.6	65.4	46.9	
6200		97.9	72.4	43.4		99.8	77.2	54.6		101.2	81.3	63.1	
6600			92.7	69.1			95.1	74.5			96.9	79.0	
7000				89.9				92.5				94.6	
7400				108.6									

- Enter Table 1 with dry snow depth and TO1 dry field/obstacle limit weight to obtain dry snow weight adjustment.
- 2. Adjust field length available by -100 ft/+100 ft for every 10°C above/below 0°C.
- 3. Find V1(MCG) limit weight for adjusted field length and pressure altitude (Table 2).
- 4. Max allowable dry snow limited weight is lesser of weights from Table 1 and Table 2.

	DRY SNOW DEPTH												
WEIGHT	30 ı	nm (1.1	8 INCH	ES)	60 ı	nm (2.3	6 INCH	ES)	100 mm (4.00 INCHES)				
(1000 KG)	F	RESS A	ALT (FT	")	F	RESS A	ALT (FT	")	PRESS ALT (FT)				
	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500	
90	-10	-5	0	0	-6	-1	0	0	0	0	0	0	
80	-13	-8	-3	0	-10	-5	0	0	-3	0	0	0	
70	-17	-12	-7	-2	-13	-8	-3	0	-7	-2	0	0	
60	-21	-16	-11	-7	-18	-13	-8	-3	-11	-6	-1	0	
50	-25	-20	-15	-11	-22	-17	-12	-8	-16	-11	-6	-2	
40	-30	-25	-20	-16	-27	-22	-17	-12	-22	-17	-12	-7	

- 1. Obtain V1, VR and V2 for the actual weight using the TO1 Dry Runway Takeoff Speeds table.
- 2. If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG). V1 not to exceed VR.

ADVISORY INFORMATION

TO1 Wet Snow Takeoff 10% Thrust Reduction

Maximum Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

TO1 DRY					WI	ET SNO	W DEP	TH				
FIELD/OBSTACLE	5 n	nm (0.20) INCHI	ES)	13 r	nm (0.5	0 INCH	ES)	30 r	nm (1.1	8 INCH	ES)
LIMIT WEIGHT	F	PRESS ALT (FT)				RESS A	ALT (FT)	F	PRESS A	ALT (FT	()
(1000 KG)	S.L.	S.L. 5000 10000 14500				5000	10000	14500	S.L.	5000	10000	14500
90	-5.0	-6.4	-7.8	-9.0	-6.8	-8.2	-9.6	-10.8	-12.3	-13.7	-15.1	-16.3
80	-4.9 -6.3 -7.7 -8.9				-6.4	-7.8	-9.1	-10.3	-10.6	-11.9	-13.3	-14.5
70	-4.4	-5.8	-7.1	-8.3	-5.4	-6.8	-8.1	-9.3	-8.4	-9.8	-11.2	-12.4
60	-3.3	-4.6	-6.0	-7.2	-3.9	-5.3	-6.7	-7.9	-5.9	-7.3	-8.6	-9.8
50	-1.7	-3.0	-4.4	-5.6	-2.0	-3.4	-4.7	-5.9	-3.0	-4.4	-5.7	-6.9
40	0.0	-0.9	-2.3	-3.5	0.0	-0.9	-2.3	-3.5	0.0	-1.1	-2.4	-3.7

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

ADJUSTED					WI	ET SNO	W DEP	TH				
FIELD	5 m	nm (0.20) INCH	ES)	13 ı	nm (0.5	0 INCH	ES)	30 r	nm (1.1	8 INCH	ES)
LENGTH	P	PRESS ALT (FT)				RESS A	ALT (FT	")	P	RESS A	ALT (FT	")
(FT)	S.L.	S.L. 5000 10000 14500				5000	10000	14500	S.L.	5000	10000	14500
3800	40.6				42.7				46.7	28.5		
4200	56.3	35.7			58.0	38.0			60.7	42.4		
4600	72.2	51.4	30.8		73.3	53.2	33.2		74.7	56.3	38.1	
5000	88.3	67.2	46.4	27.9	88.8	68.5	48.5	30.5	88.8	70.3	52.0	35.6
5400	104.5	83.2	62.2	43.6	104.3	83.9	63.7	45.7	103.0	84.4	65.9	49.4
5800		99.4	78.2	59.3		99.4	79.1	61.0		98.6	80.0	63.4
6200			94.3	75.3			94.6	76.3			94.1	77.4
6600				91.4				91.8				91.6

- Enter Table 1 with wet snow depth and TO1 dry field/obstacle limit weight to obtain wet snow weight adjustment.
- Adjust field length available by -100 ft/+100 ft for every 10°C above/below 0°C.
- Find V1(MCG) limit weight for adjusted field length and pressure altitude (Table 2).
- Max allowable wet snow limited weight is lesser of weights from Table 1 and Table 2.

					WI	ET SNO	W DEP	TH				
WEIGHT	5 n	nm (0.20) INCH	ES)	13 ı	nm (0.5	0 INCH	ES)	30 r	nm (1.1	8 INCH	ES)
(1000 KG)	F	PRESS A	ALT (FT	")	F	PRESS A	ALT (FT	")	P	PRESS A	ALT (FT	")
	S.L.					5000	10000	14500	S.L.	5000	10000	14500
90	-8	-3	0	0	-5	0	0	0	0	0	0	0
80	-11				-8	-3	0	0	0	0	0	0
70	-13	-8	-3	0	-10	-5	0	0	-3	0	0	0
60	-16	-11	-6	-1	-13	-8	-3	0	-7	-2	0	0
50	-19	-14	-9	-4	-17	-12	-7	-3	-12	-7	-2	0
40	-23	-18	-13	-9	-22	-17	-12	-8	-20	-15	-10	-5

- Obtain V1, VR and V2 for the actual weight using the TO1 Dry Runway Takeoff Speeds table. If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG). V1 not to exceed VR.

ADVISORY INFORMATION

TO1 Wet Snow Takeoff 10% Thrust Reduction

No Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

TO1 DRY					WI	ET SNO	W DEP	TH				
FIELD/OBSTACLE	5 n	nm (0.20) INCHI	ES)	13 r	nm (0.5	0 INCH	ES)	30 r	nm (1.1	8 INCH	ES)
LIMIT WEIGHT	F	PRESS ALT (FT)				PRESS A	ALT (FT	")	F	PRESS A	ALT (FT)
(1000 KG)	S.L.	S.L. 5000 10000 14500				5000	10000	14500	S.L.	5000	10000	14500
90	-6.4	-7.6	-8.8	-9.9	-8.4	-9.6	-10.8	-11.9	-14.2	-15.4	-16.6	-17.7
80	-6.6	-7.8	-9.0	-10.2	-8.1	-9.3	-10.5	-11.6	-12.5	-13.7	-15.0	-16.1
70	-6.2	-7.4	-8.7	-9.8	-7.2	-8.4	-9.7	-10.8	-10.4	-11.6	-12.8	-14.0
60	-5.3	-6.5	-7.7	-8.8	-5.9	-7.1	-8.3	-9.4	-7.8	-9.1	-10.3	-11.4
50	-3.6	-4.9	-6.1	-7.2	-3.9	-5.1	-6.4	-7.4	-4.8	-6.0	-7.3	-8.4
40	-1.4	-2.6	-3.9	-5.0	-1.4	-2.6	-3.9	-4.9	-1.4	-2.6	-3.8	-4.9

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

ADJUSTED					WI	ET SNO	W DEP	TH				
FIELD	5 n	nm (0.20) INCH	ES)	13 ı	nm (0.5	0 INCH	ES)	30 r	nm (1.1	8 INCH	ES)
LENGTH	F	RESS A	ALT (FT	()	F	PRESS A	ALT (FT	")	F	PRESS A	ALT (FT	()
(FT)	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
4200									31.2			
4600	23.8				36.5				52.0	26.2		
5000	57.4	15.3			63.4	29.4			70.8	47.2	21.2	
5400	82.0	50.3	6.8		84.8	57.7	22.3		88.1	66.5	42.3	
5800	102.0	76.7	42.5		103.2	80.0	51.6	18.9	104.2	84.1	62.1	39.9
6200		97.4	71.1	38.4		98.9	75.1	48.5		100.4	80.1	59.9
6600			92.8	68.3			94.6	72.7			96.6	78.1
7000				90.6				92.5				94.8

Enter Table 1 with wet snow depth and TO1 dry field/obstacle limit weight to obtain wet snow weight adjustment.

- Adjust field length available by -110 ft/+110 ft for every 10°C above/below 0°C.
- Find V1(MCG) limit weight for adjusted field length and pressure altitude (Table 2). Max allowable wet snow limited weight is lesser of weights from Table 1 and Table 2.

			,	,								
					WI	ET SNO	W DEP	TH				
WEIGHT	5 n	nm (0.20) INCH	ES)	13 ı	nm (0.5	0 INCH	ES)	30 ı	nm (1.1	8 INCH	ES)
(1000 KG)	F	RESS A	ALT (FT	")	F	RESS A	ALT (FT	")	F	PRESS	ALT (FT)
	S.L.					5000	10000	14500	S.L.	5000	10000	14500
90	-10	-5	0	0	-6	-1	0	0	0	0	0	0
80	-14 -9 -4 0			-10	-5	0	0	0	0	0	0	
70	-18	-13	-8	-3	-14	-9	-4	0	-4	0	0	0
60	-22	-17	-12	-7	-19	-14	-9	-4	-10	-5	0	0
50	-27	-22	-17	-12	-25	-20	-15	-10	-18	-13	-8	-4
40	-33	-28	-23	-19	-32	-27	-22	-17	-28	-23	-18	-14

Obtain V1, VR and V2 for the actual weight using the TO1 Dry Runway Takeoff Speeds table. If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual table actual table actual table 3 with the actual table 3 with table 3 with table 3 with the actual table 3 with table 3 weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG). V1 not to exceed VR.

ADVISORY INFORMATION

TO1 Slippery Runway Takeoff

10% Thrust Reduction

Maximum Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

TO1 DRY				R	EPORT	ED BR	AKING	ACTIO	N			
FIELD/OBSTACLE		GO	OD			MED	IUM			PO	OR	
LIMIT WEIGHT	F	RESS A	ALT (FT	")	F	RESS A	ALT (FT	")	F	PRESS A	ALT (FT	")
(1000 KG)	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-0.8	-1.5	-2.3	-2.9	-2.5	-3.2	-4.0	-4.7	-9.6	-10.3	-11.1	-11.8
80	-1.0	-1.8	-2.5	-3.2	-3.0	-3.7	-4.5	-5.2	-9.3	-10.1	-10.8	-11.5
70	-0.9	-1.6	-2.4	-3.1	-3.0	-3.8	-4.5	-5.2	-8.4	-9.2	-9.9	-10.6
60	-0.4	-1.1	-1.9	-2.6	-2.5	-3.3	-4.0	-4.7	-7.0	-7.8	-8.5	-9.2
50	0.0	-0.8	-1.5	-2.2	-1.5	-2.3	-3.0	-3.7	-5.0	-5.8	-6.5	-7.2
40	0.0	-0.8	-1.5	-2.2	-0.1	-0.9	-1.6	-2.3	-2.4	-3.2	-3.9	-4.6

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

ADJUSTED				R	EPORT	ED BR.	AKING	ACTIO	N			
FIELD		GO	OD			MED	IUM			PO	OR	
LENGTH	F	PRESS A	ALT (FT	")	F	PRESS A	ALT (FT	()	I	PRESS A	ALT (FT	()
(FT)	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
3800	72.5	49.2	23.6		39.7							
4200	92.0	70.7	47.2	24.1	56.1	34.4						
4600		90.3	68.9	47.6	72.7	50.7	29.1					
5000			88.7	69.3	89.6	67.3	45.4	26.0				
5400			107.2	89.1	106.7	84.1	61.8	42.2				
5800				107.6		101.2	78.6	58.7	37.2			
6200							95.6	75.3	44.3			
6600								92.3	51.8			
7000									59.6	39.6		
7400									67.9	46.8		
7800									76.8	54.4	34.9	
8200									86.3	62.4	42.0	
8600									96.7	70.8	49.3	
9000										79.9	57.0	39.2
9400										89.7	65.2	46.4
9800										100.3	73.8	53.9
10200											83.1	61.9
10600											93.2	70.3
11000												79.3
11400												89.1
11800												99.7

- 1. Enter Table 1 with reported braking action and TO1 dry field/obstacle limit weight to obtain
- Slippery runway weight adjustment.

 Adjust "Good" field length available by -80 ft/+80 ft for every 10°C above/below 0°C.

 Adjust "Medium" field length available by -100 ft/+100 ft for every 10°C above/below 0°C. Adjust "Poor" field length available by -190 ft/+190 ft for every 10°C above/below 0°C.

 Find V1(MCG) limit weight for adjusted field length and pressure altitude (Table 2).
- 4. Max allowable slippery runway limited weight is lesser of weights from Table 1 and Table 2.

737 Flight Crew Operations Manual

ADVISORY INFORMATION

TO1 Slippery Runway Takeoff 10% Thrust Reduction Maximum Reverse Thrust

				R	EPORT	ED BR	AKING	ACTIO	N			
WEIGHT		GO	OD			MED	IUM			PO	OR	
(1000 KG)	F	PRESS A	ALT (FT	")	F	PRESS A	ALT (FT	(F	RESS A	ALT (FT	"
	S.L.					5000	10000	14500	S.L.	5000	10000	14500
90	-8	-5	-3	0	-11	-9	-6	-4	-29	-27	-24	-22
80	-9	-6	-4	-1	-13	-11	-8	-6	-33	-30	-28	-26
70	-10	-7	-5	-2	-15	-13	-10	-8	-36	-34	-31	-29
60	-11	-8	-6	-3	-17	-15	-12	-10	-39	-36	-34	-32
50	-11	-9	-6	-4	-20	-17	-15	-12	-41	-39	-36	-34
40	-12	-9	-7	-5	-22	-19	-17	-15	-43	-40	-38	-36

^{1.} Obtain V1, VR and V2 for the actual weight using the TO1 Dry Runway Takeoff Speeds table. 2. If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG). V1 not to exceed VR.

ADVISORY INFORMATION

TO1 Slippery Runway Takeoff

10% Thrust Reduction

No Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

TO1 DRY				R	EPORT	ED BR	AKING	ACTIO	N			
FIELD/OBSTACLE		GO	OD			MED	IUM			PO	OR	
LIMIT WEIGHT	F	PRESS ALT (FT)				RESS A	ALT (FT)	F	PRESS A	ALT (FT)
(1000 KG)	S.L.	S.L. 5000 10000 14500				5000	10000	14500	S.L.	5000	10000	14500
90	-2.3	-2.9	-3.5	-4.1	-4.3	-4.9	-5.5	-6.0	-13.4	-14.0	-14.6	-15.1
80	-2.4					-5.5	-6.1	-6.7	-12.9	-13.5	-14.1	-14.7
70	-2.2	-2.9	-3.4	-4.0	-4.9	-5.5	-6.2	-6.7	-11.7	-12.3	-13.0	-13.5
60	-1.6	-2.2	-2.8	-3.4	-4.4	-5.0	-5.6	-6.2	-9.8	-10.5	-11.1	-11.6
50	-0.5	-1.1	-1.8	-2.3	-3.3	-3.9	-4.5	-5.0	-7.3	-7.9	-8.5	-9.0
40	0.0	-0.6	-1.2	-1.8	-1.5	-2.1	-2.7	-3.3	-3.9	-4.6	-5.2	-5.8

737 Flight Crew Operations Manual

ADVISORY INFORMATION

TO1 Slippery Runway Takeoff

10% Thrust Reduction

No Reverse Thrust

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

ADJUSTED				R	EPORT	ED BR	AKING	ACTIO	N			
FIELD		GC	OD			MED	IUM			PO	OR	
LENGTH	F	PRESS A	ALT (FT	")	I	PRESS A	ALT (FT	")	F	RESS A	ALT (FT)
(FT)	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
3800	53.1											
4000	69.3	26.0										
4200	81.9	50.6										
4400	92.7	67.5	22.7									
4600		80.5	48.0									
4800		91.4	65.7	25.0	36.7							
5000			79.0	49.9	55.4							
5200			90.1	66.9	70.1	25.9						
5400				80.0	82.5	46.3						
5600				91.0	93.5	62.7						
5800						76.2	35.7					
6000						87.9	54.6					
6200						98.4	69.4	30.1				
6400							82.0	50.0				
6600							93.0	65.7				
6800								78.7				
7000								90.1				
11200									55.9			
11400									75.0			
11600									86.2			
11800									95.0			
12400										64.3		
12600										79.0		
12800										89.2		
13000										97.7		
13600											69.9	
13800											82.6	
14000											92.1	
14600												68.3
14800												81.5
15000												91.2

- Enter Table 1 with reported braking action and TO1 dry field/obstacle limit weight to obtain
- slippery runway weight adjustment. Adjust "Good" field length available by -90 ft/+90 ft for every 10°C above/below 0°C. Adjust "Medium" field length available by -110 ft/+110 ft for every 10°C above/below 0°C.

 Adjust "Poor" field length available by -280 ft/+280 ft for every 10°C above/below 0°C.

 Find V1(MCG) limit weight for adjusted field length and pressure altitude (Table 2).
- 4. Max allowable slippery runway limited weight is lesser of weights from Table 1 and Table 2.

ADVISORY INFORMATION

TO1 Slippery Runway Takeoff 10% Thrust Reduction No Reverse Thrust

Table 3 of 3: V1 Adjustment (KIAS)

				R	EPORT	ED BR.	AKING	ACTIO:	N			
WEIGHT		GO	OD			MED	IUM			PO	OR	
(1000 KG)	F	PRESS A	ALT (FT	()	F	RESS A	ALT (FT)	I	PRESS A	ALT (FT	(
	S.L.					5000	10000	14500	S.L.	5000	10000	14500
90	-10	-5	0	0	-14	-9	-4	0	-45	-40	-35	-31
80	-11 -6 -1 0				-17	-12	-7	-3	-51	-46	-41	-37
70	-13	-8	-3	0	-21	-16	-11	-6	-57	-52	-47	-43
60	-14	-9	-4	0	-24	-19	-14	-10	-63	-58	-53	-48
50	-15	-10	-5	0	-28	-23	-18	-13	-68	-63	-58	-54
40	-16	-11	-6	-1	-32	-27	-22	-17	-73	-68	-63	-58

V1 not to exceed VR.

Obtain V1, VR and V2 for the actual weight using the TO1 Dry Runway Takeoff Speeds table.
 If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG).

737 Flight Crew Operations Manual

TO1 Takeoff %N1 10% Thrust Reduction

Based on engine bleed for packs on and anti-ice off

AIRPORT						AIRP	ORT I	PRESS	SURE	ALTI	TUD	E (100	00 FT)				
OAT	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	145
(°C)	-2	-1	U	1	2	3	4	3	0	/	8	9	10	11	12	13	14	14.5
60	81.9	82.4	82.9	83.0	82.5	82.0	81.6	81.1	80.7	80.3	79.8	79.4	78.9	78.0	77.1	76.0	75.5	75.5
55	83.3	83.6	84.1	84.1	83.7	83.2	82.7	82.3	81.9	81.4	81.0	80.6	80.1	79.1	78.2	77.2	76.3	75.9
50	84.3	84.9	85.5	85.1	84.8	84.3	83.8	83.4	83.0	82.5	82.1	81.7	81.2	80.3	79.4	78.3	77.5	77.0
45	85.2	85.8	86.3	86.1	85.7	85.2	84.9	84.5	84.1	83.6	83.2	82.8	82.3	81.4	80.5	79.4	78.6	78.2
40	86.1	86.7	87.2	87.2	87.1	86.8	86.2	85.4	85.1	84.7	84.3	83.9	83.4	82.5	81.6	80.5	79.7	79.3
35	86.9	87.6	88.1	88.1	88.0	87.9	87.8	87.5	86.9	86.0	85.2	84.8	84.4	83.5	82.7	81.7	80.8	80.4
30	86.5	87.7	89.0	88.8	88.8	88.8	88.7	88.6	88.5	88.3	86.1	85.8	85.4	84.6	83.7	82.8	82.0	81.6
25	85.7	87.0	88.2	88.5	88.9	89.0	89.0	89.3	89.2	89.2	87.0	86.6	86.3	85.5	84.7	83.9	83.1	82.7
20	84.9	86.2	87.4	87.7	88.0	88.3	88.6	88.9	89.1	89.2	87.9	87.6	87.2	86.5	85.7	85.0	84.2	83.8
15	84.2	85.4	86.6	86.9	87.2	87.5	87.8	88.1	88.5	88.8	88.9	88.5	88.2	87.4	86.7	86.0	85.3	85.0
10	83.4	84.7	85.9	86.1	86.4	86.7	87.1	87.4	87.7	88.0	88.4	88.8	89.1	88.4	87.8	87.2	86.5	86.1
5	82.7	83.9	85.1	85.4	85.7	86.0	86.3	86.6	86.9	87.2	87.6	88.0	88.3	88.3	88.4	88.2	87.6	87.3
0	81.9	83.1	84.3	84.6	84.9	85.2	85.5	85.8	86.1	86.5	86.8	87.2	87.6	87.6	87.7	87.7	87.7	87.8
-5	81.1	82.3	83.5	83.8	84.1	84.4	84.7	85.0	85.3	85.6	86.0	86.4	86.8	86.8	86.9	86.9	87.0	87.0
-10	80.3	81.5	82.7	83.0	83.3	83.6	83.8	84.2	84.5	84.8	85.2	85.6	86.0	86.1	86.1	86.2	86.2	86.2
-15	79.6	80.7	81.9	82.2	82.5	82.8	83.0	83.3	83.7	84.0	84.4	84.9	85.2	85.3	85.3	85.4	85.4	85.4
-20	78.8	80.0	81.1	81.4	81.7	82.0	82.2	82.5	82.8	83.2	83.6	84.1	84.4	84.5	84.5	84.6	84.6	84.6
-25	78.0	79.2	80.3	80.6	80.9	81.2	81.4	81.7	82.0	82.4	82.8	83.2	83.6	83.7	83.7	83.8	83.8	83.8
-30	77.2	78.4	79.5	79.8	80.1	80.4	80.6	80.9	81.2	81.6	82.0	82.4	82.8	82.9	82.9	83.0	83.0	83.0
-35	76.4	77.6	78.7	79.0	79.3	79.5	79.8	80.1	80.4	80.8	81.2	81.6	81.9	82.0	82.1	82.2	82.2	82.2
-40	75.6	76.8	77.9	78.2	78.5	78.7	79.0	79.3	79.6	79.9	80.3	80.7	81.1	81.2	81.2	81.3	81.4	81.4
-45	74.8	75.9	77.1	77.3	77.6	77.9	78.1	78.4	78.7	79.1	79.5	79.9	80.2	80.3	80.4	80.5	80.5	80.6
-50	74.0	75.1	76.2	76.5	76.8	77.0	77.3	77.6	77.9	78.2	78.6	79.0	79.3	79.4	79.5	79.6	79.7	79.7

%N1 Adjustments for Engine Bleeds

	<u> </u>			-															
1	BLEED					AII	RPOF	RT PF	RESS	URE	ALT	'ITU	DE (1	1000	FT)				
	CONFIGURATION	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	14.5
Ì	PACKS OFF	0.5	0.5	0.6	0.6	0.7	0.8	0.8	0.9	0.9	1.0	1.0	1.0	1.1	1.2	1.4	1.6	1.7	1.8
1	ENGINE ANTI-ICE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.2	-0.6	-0.6	-0.6	-0.5	0.0	0.0

TO1 Assumed Temperature Reduced Thrust Maximum Assumed Temperature (Table 1 of 3)

Based on 25% Takeoff Thrust Reduction

OAT (°C)					A	AIRPO	ORT F	RESS	SURE	ALTI	TUD	E (10	00 FT)				
OAI (C)	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	14.5
60	78	80	81	81	80	79	77	76	75	73	72	71	69	67	64	61	60	59
55	78	80	81	81	80	79	77	76	75	73	72	71	69	67	64	61	59	57
50	77	77	77	78	77	77	77	76	75	73	72	71	69	67	64	61	59	57
45	72	72	72	73	73	73	73	72	72	72	72	71	69	67	64	61	59	57
40	68	68	68	68	67	67	67	68	68	68	67	67	67	67	64	61	59	57
35	64	64	64	64	63	62	61	60	61	62	63	63	63	62	62	62	59	58
30	63	61	59	60	59	57	56	55	54	53	58	58	58	58	58	57	57	57
25	63	62	59	59	56	54	53	51	50	49	54	54	54	53	53	53	53	53
20	64	62	59	59	57	54	52	50	48	46	49	49	49	49	48	48	48	48
15	64	62	59	59	57	54	52	50	48	46	44	44	44	43	43	43	43	43
10	64	62	60	59	57	54	52	50	48	46	43	41	39	38	38	38	37	37
5	64	62	60	59	57	54	52	50	48	46	43	41	39	37	34	32	32	32
0	64	62	60	59	57	54	52	50	48	46	43	41	39	37	34	32	29	28
-5 & BELOW	64	62	60	59	57	54	52	50	48	46	43	41	39	37	34	32	29	28

Takeoff %N1 (Table 2 of 3)

Based on engine bleed for packs on and engine anti-ice off

Dasca on C	·-s	C DIC	ocu i	or b				U										
ASSUMED					1	AIRP	ORT F	PRES	SURE	ALT	ITUD	E (10	00 FT	Γ)				
TEMP (°C)	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	14.5
75	78.3	78.8	79.3	79.4	78.9	78.4	78.0	77.5	77.1	77.1	77.1	77.1	77.1	77.1	77.0	76.6	76.5	76.4
70	79.5	80.0	80.6	80.6	80.2	79.7	79.2	78.7	78.3	77.8	77.4	77.0	76.6	76.6	76.6	76.6	76.1	75.8
65	80.7	81.2	81.8	81.8	81.4	80.9	80.4	79.9	79.5	79.1	78.7	78.2	77.7	76.8	76.0	76.0	76.0	76.0
60	81.9	82.4	82.9	83.0	82.5	82.0	81.6	81.1	80.7	80.3	79.8	79.4	78.9	78.0	77.1	76.0	75.5	75.5
55	83.3	83.6	84.1	84.1	83.7	83.2	82.7	82.3	81.9	81.4	81.0	80.6	80.1	79.1	78.2	77.2	76.3	75.9
50	84.3	84.9	85.5	85.1	84.8	84.3	83.8	83.4	83.0	82.5	82.1	81.7	81.2	80.3	79.4	78.3	77.5	77.0
45	85.2	85.8	86.3	86.1	85.7	85.2	84.9	84.5	84.1	83.6	83.2	82.8	82.3	81.4	80.5	79.4	78.6	78.2
40	86.1	86.7	87.2	87.2	87.1	86.8	86.2	85.4	85.1	84.7	84.3	83.9	83.4	82.5	81.6	80.5	79.7	79.3
35	86.9	87.6	88.1	88.1	88.0	87.9	87.8	87.5	86.9	86.0	85.2	84.8	84.4	83.5	82.7	81.7	80.8	80.4
30											86.1							
25	85.7	87.0	88.2	88.5	88.9	89.0	89.0	89.3	89.2	89.2	87.0	86.6	86.3	85.5	84.7	83.9	83.1	82.7
20	84.9	86.2	87.4	87.7	88.0	88.3	88.6	88.9	89.1	89.2	87.9	87.6	87.2	86.5	85.7	85.0	84.2	83.8
15	84.2	85.4	86.6	86.9	87.2	87.5	87.8	88.1	88.5	88.8	88.9	88.5	88.2	87.4	86.7	86.0	85.3	85.0
10	83.4	84.7	85.9	86.1	86.4	86.7	87.1	87.4	87.7	88.0	88.4	88.8	89.1	88.4	87.8	87.2	86.5	86.1
5	82.7	83.9	85.1	85.4	85.7	86.0	86.3	86.6	86.9	87.2	87.6	88.0	88.3	88.3	88.4	88.2	87.6	87.3
0	81.9	83.1	84.3	84.6	84.9	85.2	85.5	85.8	86.1	86.5	86.8	87.2	87.6	87.6	87.7	87.7	87.7	87.8
-5	81.1	82.3	83.5	83.8	84.1	84.4	84.7	85.0	85.3	85.6	86.0	86.4	86.8	86.8	86.9	86.9	87.0	87.0
-20	78.8	80.0	81.1	81.4	81.7	82.0	82.2	82.5	82.8	83.2	83.6	84.1	84.4	84.5	84.5	84.6	84.6	84.6
-40	75.6	76.8	77.9	78.2	78.5	78.7	79.0	79.3	79.6	79.9	80.3	80.7	81.1	81.2	81.2	81.3	81.4	81.4
MINIMUM ASSUMED TEMP (°C)	34	32	30	28	26	24	22	20	18	16	14	12	10	8	6	4	2	1

737 Flight Crew Operations Manual

TO1 Assumed Temperature Reduced Thrust %N1 Adjustment for Temperature Difference (Table 3 of 3)

,			. I.							,				
ASSUMED					OUT	SIDE A	AIR TE	MPERA	ATURE	(°C)				
TEMPMINUS	-40	-20	0	5	10	15	20	25	30	35	40	45	50	55
OAT (°C)	-40	-20	U	3	10	13	20	23	30	33	40	43	30	33
115	8.3													
110	8.3													
105	8.3													
100	7.2													
95	5.5	8.6												
90	4.1	8.6												1
85	2.7	8.6												
80	1.4	7.4												
75	0.1	5.7	9.0											
70	0.0	4.2	8.8	8.8										
65	0.0	2.8	8.3	8.2	8.2									
60	0.0	1.4	7.7	7.7	7.6	7.6								1
55	0.0	0.0	5.9	7.1	7.1	7.0	6.9							
50	0.0	0.0	4.4	6.0	6.5	6.5	6.3	6.1						
45	0.0	0.0	2.9	4.5	5.9	5.9	5.7	5.6	5.4					
40	0.0	0.0	1.4	3.0	4.5	5.3	5.2	5.0	4.9	4.7				
35		0.0	0.0	1.5	3.0	4.6	4.6	4.4	4.3	4.2	4.1			
30		0.0	0.0	0.1	1.5	3.1	4.0	3.8	3.7	3.6	3.5	3.4		
25		0.0	0.0	0.0	0.1	1.6	3.1	3.2	3.1	3.1	3.0	2.9	1.9	
20		0.0	0.0	0.0	0.0	0.1	1.6	2.6	2.5	2.5	2.4	2.3	1.9	0.2
15			0.0	0.0	0.0	0.0	0.2	1.7	1.9	1.9	1.8	1.8	1.7	0.2
10			0.0	0.0	0.0	0.0	0.0	0.2	1.3	1.3	1.2	1.2	1.2	0.2
5			0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.6	0.6	0.6	0.6	0.2
0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

- 1. Determine Maximum Assumed Temperature allowed from Table 1.
- 2. Find Maximum %N1 from Table 2 using the desired assumed temperature (no greater than temperature from Table 1).
- 3. Use the difference between assumed temperature and OAT to determine the %N1 adjustment from Table 3.
- 4. Subtract %N1 adjustment from Maximum %N1 in Table 2.

TO2 Takeoff Speeds - Dry Runway

20% Thrust Reduction

Table 1 of 4: V1, VR, V2

WEIGHT	F	LAPS	1	F	LAPS	5	F	LAPS	10	F	LAPS	15	Fl	LAPS 2	25
(1000 KG)	V1	VR	V2	V1	VR	V2									
70	150	150	155	144	144	148	140	140	144	138	138	142			
65	144	144	150	138	138	143	134	134	140	132	132	137	129	129	135
60	137	137	145	131	131	138	128	128	135	126	126	132	123	123	130
55	130	130	139	124	124	133	121	121	130	119	119	127	117	117	125
50	123	123	133	117	117	127	114	114	124	112	112	122	110	110	119
45	115	115	127	110	110	121	107	107	119	105	105	116	103	103	114
40	106	106	120	102	102	115	99	99	112	97	97	110	95	95	108

Check V1(MCG).

Table 2 of 4: V1, VR, V2 Adjustments*

									TAK	EOI	FF S	SPE	EDS	SΑΓ	JU	STN	ИEN	ITS (KIA	S)							
TEMP					V	l								VF									V2	:			
(°C)		P	RE	SS A	\LT	(10	00 I	T)			P	RE	SS A	ALT	(10	00 I	FT)			F	PRE	SS A	ALT	(100	00 F	T)	
	-2	0	2	4	6	8	10	12	14.5	-2	0	2	4	6	8	10	12	14.5	-2	0	2	4	6	8	10	12	14.5
60	4	5	6	6	6	7	9	10	10	4	5	5	6	6	7	9	10	10	-2	-2	-2	-3	-3	-3	-4	-4	-4
50	2	3	4	5	6	7	9	10	10	3	3	4	5	6	7	9	10	10	-1	-1	-1	-2	-3	-3	-4	-4	-4
40	1	2	3	4	6	7	9	10	10	1	2	3	4	6	7	9	10	10	0	0	-1	-1	-2	-2	-3	-4	-4
30	0	0	2	3	4	6	7	10	10	0	0	2	3	4	6	7	9	10	0	0	0	-1	-1	-2	-2	-2	-4
20	0	0	1	2	3	5	7	8	10	0	0	1	2	3	5	6	8	10	0	0	0	-1	-1	-1	-2	-2	-4
10	0	0	1	2	3	4	5	6	9	0	0	1	2	3	4	5	6	9	0	0	0	-1	-1	-1	-1	-2	-2
0	0	0	1	2	3	4	5	6	7	0	0	1	2	3	4	5	6	7	0	0	0	-1	-1	-1	-1	-1	-2
-60	0	0	1	2	3	4	5	6	7	0	0	1	2	3	4	5	6	7	0	0	0	-1	-1	-1	-1	-1	-2

^{*}V1 not to exceed VR.

Table 3 of 4: Slope and Wind V1 Adjustments*

WEIGHT				V1 S	PEED AI	DJUSTM	ENTS (F	(IAS)			
(1000 KG)		S	LOPE (%	6)				WIND	(KTS)		
(1000 KG)	-2	-1	0	1	2	-15	-10	-5	0	20	40
70	-3	-2	0	0	0	-1	0	0	0	0	0
60	-2	-1	0	0	0	-2	-1	-1	0	0	0
50	-1	-1	0	0	0	-2	-1	-1	0	0	0
40	-1	-1	0	0	0	-2	-1	-1	0	0	0

^{*}V1 not to exceed VR.

737-8/LEAP-1B27 FAA **CATB** 737 Flight Crew Operations Manual

TO2 Takeoff Speeds - Dry Runway 20% Thrust Reduction Table 4 of 4: V1(MCG)

TEMP		•		V1(MCG) (KI	AS)			•
TEMP (°C)				PRESSU	RE ALTIT	UDE (FT)			
(C)	-2000	0	2000	4000	6000	8000	10000	12000	14500
60	89	87	85	82	80	77	75	71	68
55	89	87	85	82	80	77	75	71	68
50	91	89	85	82	80	77	75	71	68
45	93	91	87	83	80	77	75	71	68
40	96	94	90	85	81	77	75	71	68
35	98	96	92	88	84	79	75	71	68
30	98	98	94	90	87	81	77	72	68
25	98	98	95	92	88	82	78	74	68
20	98	98	95	92	89	84	80	76	70
15	98	98	95	92	89	86	82	77	72
10	98	98	95	92	89	87	84	80	74
5	98	98	95	92	90	87	84	81	76
0	98	98	95	92	90	87	84	81	77
-60	99	99	96	93	90	87	85	82	77

BOEING

737 Flight Crew Operations Manual

TO2 Takeoff Speeds - Wet Runway

20% Thrust Reduction

Table 1 of 4: V1, VR, V2

WEIGHT	F	LAPS	1	F	LAPS	5	F	LAPS 1	10	F.	LAPS	15	F	LAPS 2	25
(1000 KG)	V1	VR	V2	V1	VR	V2	V1	VR	V2	V1	VR	V2	V1	VR	V2
70	142	150	155	136	144	148	133	140	144	132	138	142			
65	135	144	150	130	138	143	127	134	140	125	132	137	122	129	135
60	128	137	145	123	131	138	120	128	135	118	126	132	115	123	130
55	121	130	139	116	124	133	113	121	130	111	119	127	108	117	125
50	113	123	133	108	117	127	106	114	124	103	112	122	101	110	119
45	105	115	127	100	110	121	98	107	119	96	105	116	94	103	114
40	97	106	120	92	102	115	90	99	112	88	97	110	86	95	108

Check V1(MCG).

Table 2 of 4: V1, VR, V2 Adjustments*

									TAK	EOI	FF S	SPE	EDS	SΑΓ	JU	STN	ΛEΝ	ITS (KIA	S)							
TEMP					VI									VF	1								V2	:			
(°C)		P	RE	SS A	λLT	(10	00 F	(T			P	RE	SS A	λLT	(10	00 I	T)			F	RE	SS A	λLT	(100	00 F	T)	
	-2	0	2	4	6	8	10	12	14.5	-2	0	2	4	6	8	10	12	14.5	-2	0	2	4	6	8	10	12	14.5
60	6	7	7	9	10	11	13	13	13	4	5	5	6	6	7	9	10	10	-2	-2	-2	-3	-3	-3	-4	-4	-4
50	3	4	7	9	10	11	13	13	13	3	3	4	5	6	7	9	10	10	-1	-1	-1	-2	-3	-3	-4	-4	-4
40	1	2	4	6	9	11	13	13	13	1	2	3	4	6	7	9	10	10	0	0	-1	-1	-2	-2	-3	-4	-4
30	0	0	1	3	5	9	11	11	11	0	0	2	3	4	6	7	9	10	0	0	0	-1	-1	-2	-2	-2	-4
20	0	0	1	2	4	6	8	11	11	0	0	1	2	3	5	6	8	10	0	0	0	-1	-1	-1	-2	-2	-4
10	0	0	1	2	4	5	6	9	11	0	0	1	2	3	4	5	6	9	0	0	0	-1	-1	-1	-1	-2	-2
0	0	0	1	2	4	5	6	8	10	0	0	1	2	3	4	5	6	7	0	0	0	-1	-1	-1	-1	-1	-2
-60	2	2	3	4	5	6	7	9	11	0	0	1	2	3	4	5	6	7	0	0	0	-1	-1	-1	-1	-1	-2

^{*}V1 not to exceed VR.

Table 3 of 4: Slope and Wind V1 Adjustments*

WEIGHT				V1 S	PEED Al	DJUSTM	ENTS (F	(IAS)			
(1000 KG)		S	LOPE (%	6)				WIND	(KTS)		
(1000 KG)	-2	-1	0	1	2	-15	-10	-5	0	20	40
70	-5	-2	0	2	5	-3	-2	-1	0	1	3
60	-3	-2	0	2	4	-4	-2	-1	0	1	3
50	-3	-1	0	1	3	-4	-3	-1	0	2	3
40	-2	-1	0	1	2	-4	-3	-1	0	2	3

^{*}V1 not to exceed VR.

Table 4 of 4: V1(MCG)

TEMP				V1(MCG) (KI	AS)			
(°C)				PRESSU	RE ALTITU	UDE (FT)			
(C)	-2000	0	2000	4000	6000	8000	10000	12000	14500
60	89	87	85	82	80	77	75	71	68
55	89	87	85	82	80	77	75	71	68
50	91	89	85	82	80	77	75	71	68
45	93	91	87	83	80	77	75	71	68
40	96	94	90	85	81	77	75	71	68
35	98	96	92	88	84	79	75	71	68
30	98	98	94	90	87	81	77	72	68
25	98	98	95	92	88	82	78	74	68
20	98	98	95	92	89	84	80	76	70
15	98	98	95	92	89	86	82	77	72
10	98	98	95	92	89	87	84	80	74
5	98	98	95	92	90	87	84	81	76
0	98	98	95	92	90	87	84	81	77
-60	99	99	96	93	90	87	85	82	77

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

737-8/LEAP-1B27 FAA CATB

TO2 Stabilizer Trim Setting 20% Thrust Reduction

Flaps 1 and 5

WEIGHT					S	TABII	LIZER	TRIM	SETT	ING (UNITS	S)				
(1000 KG)							(C.G. (%	6MAC	()						
(1000 KG)	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36
82	8 1/2	8 1/2	8 1/2	8 1/2	8 1/4	8	7 1/2	7 1/4	6 3/4	6 1/2	6	5 3/4	5 1/2	5	4 3/4	4 1/4
80	8 1/2	8 1/2	8 1/2	8 1/2	8 1/4	7 3/4	7 1/2	7 1/4	6 3/4	6 1/2	6	5 3/4	5 1/4	5	4 1/2	4 1/4
70	8 1/2	8 1/2	8 1/2	8 1/4	8	7 3/4	7 1/4	7	6 1/2	6 1/4	5 3/4	5 1/2	5	4 3/4	4 1/4	4
60	8 1/2	8 1/2	8 1/4	8	7 3/4	7 1/4	7	6 3/4	6 1/4	6	5 1/2	5 1/4	4 3/4	4 1/2	4	3 3/4
50	8 1/2	8 1/4	7 3/4	7 1/2	7 1/4	6 3/4	6 1/2	6 1/4	5 3/4	5 1/2	5	4 3/4	4 1/4	4	3 1/2	3 1/4
40	7 1/2	7 1/4	7	6 1/2	6 1/4	6	5 1/2	5 1/4	5	4 1/2	4 1/4	4	3 1/2	3 1/4	3	3

Flaps 10, 15, and 25

WEIGHT					S	TABII	IZER	TRIM	SETT	ING (UNIT	S)				
(1000 KG)							(C.G. (%	6MAC	()						
(1000 KG)	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36
82	8 1/2	8 1/2	8 1/2	8 1/4	7 3/4	7 1/4	6 3/4	6 1/2	6	5 1/2	5 1/4	4 3/4	4 1/4	3 3/4	3 1/2	3
80	8 1/2	8 1/2 8 1/2 8 1/4 7 3/4 7 6 3/4 6 1/4 6 5 1/2 5 4 3/4 4 1/4 3 3/4 3 1/2 3														
70	8 1/2	8 1/2	8 1/2	8	7 1/2	7	6 1/2	6	5 3/4	5 1/4	4 3/4	4 1/4	4	3 1/2	3	3
60	8 1/2	8 1/2	8	7 1/2	7	6 1/2	6 1/4	5 3/4	5 1/4	4 3/4	4 1/2	4	3 1/2	3	3	3
50	8	7 1/2	7 1/4	6 3/4	6 1/4	6	5 1/2	5	4 3/4	4 1/4	3 3/4	3 1/2	3	3	3	3
40	6 3/4	6 1/2	6	5 3/4	5 1/4	5	4 1/2	4 1/4	3 3/4	3 1/4	3	3	3	3	3	3

ADVISORY INFORMATION

TO2 Slush/Standing Water Takeoff

20% Thrust Reduction

Maximum Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

		-										
TO2 DRY				SLU	JSH/ST	ANDIN	G WAT	ER DEF	PΤΗ			
FIELD/OBSTACLE	3 n	nm (0.1	2 INCH	ES)	6 n	nm (0.2	5 INCHI	ES)	13 r	nm (0.5	0 INCH	ES)
LIMIT WEIGHT	I	PRESS A	ALT (FT	")	F	RESS A	ALT (FT)	F	PRESS A	ALT (FT)
(1000 KG)	S.L. 5000 10000 1450				S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-6.0	-7.8	-9.5	-11.0	-8.5	-10.2	-11.9	-13.5	-13.3	-15.0	-16.7	-18.3
80	-5.4 -7.1 -8.8 -10.4				-7.3	-9.0	-10.8	-12.3	-11.0	-12.7	-14.4	-16.0
70	-4.5	-6.2	-7.9	-9.5	-5.9	-7.7	-9.4	-10.9	-8.6	-10.3	-12.0	-13.6
60	-3.4	-5.1	-6.8	-8.3	-4.3	-6.0	-7.7	-9.3	-6.0	-7.7	-9.4	-11.0
50	-1.9	-3.6	-5.3	-6.8	-2.4	-4.1	-5.8	-7.3	-3.3	-5.0	-6.7	-8.3
40	-0.1	-1.8	-3.5	-5.1	-0.2	-1.9	-3.6	-5.2	-0.4	-2.1	-3.9	-5.4

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

ADJUSTED				SLU	JSH/ST	ANDIN	G WAT	ER DEP	PΤΗ			
FIELD	3 m	nm (0.12	2 INCH	ES)	6 n	nm (0.2	5 INCH	ES)	13 r	nm (0.5	0 INCH	ES)
LENGTH	P	RESS A	ALT (FT	")	F	RESS A	ALT (FT	")	F	RESS A	ALT (FT	"
(FT)	S.L.					5000	10000	14500	S.L.	5000	10000	14500
3800	50.4	28.1			52.6	30.7			56.1	35.6		
4200	66.7	44.2			68.5	46.5			71.0	50.4	29.9	
4600	83.3	60.4	37.9		84.5	62.3	40.4		86.0	65.2	44.7	
5000	100.2	76.9	54.1	33.9	100.7	78.3	56.2	36.5	101.0	80.2	59.5	41.0
5400		93.6	70.5	50.0		94.4	72.1	52.2		95.1	74.4	55.8
5800			87.1	66.4			88.2	68.1			89.3	70.7
6200			104.0	82.9			104.4	84.2			104.3	85.6
6600				99.8				100.3				100.6

- 1. Enter Table 1 with slush/standing water depth and TO2 dry field/obstacle limit weight to obtain slush/standing water weight adjustment.

 Adjust field length available by -100 ft/+100 ft for every 10°C above/below 0°C.
- 3. Find V1(MCG) limit weight for adjusted field length and pressure altitude (Table 2).
- 4. Max allowable slush/standing water limited weight is lesser of weights from Table 1 and Table 2.

				SLU	JSH/ST	ANDIN	G WAT	ER DEF	TH			
WEIGHT	3 n	nm (0.12	2 INCH	ES)	6 n	nm (0.25	5 INCH	ES)	13 r	nm (0.5	0 INCH	ES)
(1000 KG)	F	PRESS ALT (FT) S.L. 5000 10000 1450				PRESS A	ALT (FT	")	F	RESS A	ALT (FT	")
	S.L. 5000 10000 14500				S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-8	-3	0	0	-4	0	0	0	0	0	0	0
80	-8 -3 0 0 -10 -5 0 0				-6	-1	0	0	0	0	0	0
70	-10 -5 0 0 -11 -6 -1 0				-8	-3	0	0	0	0	0	0
60	-13	-8	-3	0	-11	-6	-1	0	-5	0	0	0
50	-16 -11 -6 -1				-14	-9	-4	0	-10	-5	0	0
40	-20	-15	-10	-5	-19	-14	-9	-4	-16	-11	-6	-2

- Obtain V1, VR and V2 for the actual weight using the TO2 Dry Runway Takeoff Speeds table.
 If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG). V1 not to exceed VR.

ADVISORY INFORMATION

TO2 Slush/Standing Water Takeoff

20% Thrust Reduction No Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

TO2 DRY				SLU	JSH/ST	ANDIN	G WAT	ER DEF	TH			
FIELD/OBSTACLE	3 n	nm (0.12	2 INCH	ES)	6 n	nm (0.2	5 INCH	ES)	13 r	nm (0.5	0 INCH	ES)
LIMIT WEIGHT	I	PRESS ALT (FT)				RESS A	ALT (FT	")	P	RESS A	ALT (FT)
(1000 KG)	S.L. 5000 10000 1450				S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-7.6	-9.3	-11.1	-12.7	-10.4	-12.1	-13.9	-15.5	-15.6	-17.4	-19.1	-20.7
80	-7.6 -9.3 -11.1 -12.7 -7.0 -8.8 -10.5 -12.1				-9.2	-10.9	-12.7	-14.2	-13.2	-14.9	-16.6	-18.2
70	-6.2	-8.0	-9.7	-11.3	-7.8	-9.5	-11.3	-12.8	-10.6	-12.3	-14.1	-15.6
60	-5.0	-6.8	-8.5	-10.1	-6.1	-7.8	-9.6	-11.1	-7.8	-9.6	-11.3	-12.9
50	-3.4	-5.2	-6.9	-8.5	-4.0	-5.8	-7.5	-9.1	-4.9	-6.7	-8.4	-10.0
40	-1.5	-3.3	-5.0	-6.6	-1.7	-3.4	-5.2	-6.8	-1.8	-3.6	-5.3	-6.9

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

ADJUSTED				SLU	JSH/ST	ANDIN	G WAT	ER DEP	PTH			
FIELD	3 n	nm (0.12	2 INCH	ES)	6 n	nm (0.25	5 INCH	ES)	13 r	nm (0.5	0 INCH	ES)
LENGTH	F	RESS A	ALT (FT	")	F	RESS A	ALT (FT)	F	RESS A	ALT (FT	")
(FT)	S.L. 5000 10000 14500				S.L.	5000	10000	14500	S.L.	5000	10000	14500
4200	12.3				28.6				47.6			
4600	48.8				58.1	19.4			68.7	40.9		
5000	77.6	38.2			82.3	49.9			88.0	62.6	34.0	
5400	100.7	69.8	27.1		103.1	75.5	41.0		106.1	82.4	56.3	30.1
5800		94.1	61.4	20.8		97.0	68.3	35.7		100.7	76.6	52.7
6200			87.3	56.2			90.8	64.1			95.3	73.3
6600			109.5	83.3				87.3				92.2
7000				105.8				107.8				

Enter Table 1 with slush/standing water depth and TO2 dry field/obstacle limit weight to obtain slush/standing water weight adjustment.

Adjust field length available by -120 ft/+120 ft for every 10°C above/below 0°C.

Find V1(MCG) limit weight for adjusted field length and pressure altitude (Table 2).

Max allowable slush/standing water limited weight is lesser of weights from Table 1 and Table 2.

			. (,								
				SLU	JSH/ST	ANDIN	G WAT	ER DEF	ΉTΉ			
WEIGHT	3 n	nm (0.12	2 INCH	ES)	6 n	nm (0.2	5 INCHI	ES)	13 1	nm (0.5	0 INCH	ES)
(1000 KG)	I	PRESS A	ALT (FT	")	F	RESS A	ALT (FT	")	I	PRESS A	ALT (FT	`)
	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-10	-5	0	0	-5	0	0	0	0	0	0	0
80	-13					-3	0	0	0	0	0	0
70	-13 -8 -3 0 -15 -10 -5 -1				-11	-6	-1	0	0	0	0	0
60	-19	-14	-9	-4	-15	-10	-5	-1	-7	-2	0	0
50	-19				-21	-16	-11	-6	-15	-10	-5	0
40	-27	-22	-17	-13	-26	-21	-16	-12	-23	-18	-13	-9

Obtain V1, VR and V2 for the actual weight using the TO2 Dry Runway Takeoff Speeds table. If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual value of the State of V1 and V1 actual values valu weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG). V1 not to exceed VR.

ADVISORY INFORMATION

TO2 Dry Snow Takeoff 20% Thrust Reduction

Maximum Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

TO2 DRY					DR	Y SNO	W DEP	TH				
FIELD/OBSTACLE	30 r	nm (1.1	8 INCH	ES)	60 r	nm (2.3	6 INCH	ES)	100	mm (4.0	00 INCI	IES)
LIMIT WEIGHT	F	PRESS ALT (FT)				RESS A	ALT (FT	(F	PRESS A	ALT (FT	()
(1000 KG)	S.L. 5000 10000 14500				S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-3.6	-4.9	-6.2	-7.3	-5.5	-6.8	-8.1	-9.2	-9.3	-10.7	-11.9	-13.1
80	-3.6 -4.9 -6.2 -7.3 -3.9 -5.2 -6.5 -7.6				-5.4	-6.7	-8.0	-9.2	-8.3	-9.6	-10.9	-12.1
70	-3.8	-5.1	-6.4	-7.6	-4.9	-6.3	-7.5	-8.7	-7.1	-8.3	-9.7	-10.8
60	-3.3	-4.5	-5.9	-7.0	-4.0	-5.3	-6.6	-7.8	-5.4	-6.7	-8.0	-9.2
50	-2.2	-3.4	-4.8	-5.9	-2.6	-3.9	-5.2	-6.4	-3.4	-4.8	-6.0	-7.2
40	-0.5	-1.9	-3.1	-4.3	-0.7	-2.0	-3.3	-4.4	-1.1	-2.4	-3.7	-4.9

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

ADJUSTED					DR	Y SNO	W DEP	TH				
FIELD	30 ı	nm (1.1	8 INCH	ES)	60 ı	nm (2.3	6 INCH	ES)	100	mm (4.0	00 INCI	HES)
LENGTH	F	RESS A	ALT (FT	")	F	RESS A	ALT (FT	")	F	PRESS A	ALT (FT	")
(FT)	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
3800	51.0	30.0			53.8	34.1			56.8	38.9		
4200	66.8	45.7			68.7	48.8	29.1		70.4	52.2	34.4	
4600	82.7	61.5	40.4		83.7	63.7	43.8		84.2	65.8	47.7	31.7
5000	98.7	77.3	56.1	37.2	98.9	78.7	58.7	40.8	98.3	79.5	61.2	45.0
5400		93.3	72.0	52.9		93.8	73.6	55.6		93.5	74.9	58.4
5800			87.9	68.7			88.6	70.5			88.8	72.1
6200			103.9	84.6			103.8	85.6			102.9	85.9
6600				100.6				100.7				100.0

- Enter Table 1 with dry snow depth and TO2 dry field/obstacle limit weight to obtain dry snow weight adjustment.
- Adjust field length available by -100 ft/+100 ft for every 10°C above/below 0°C.
- Find V1(MCG) limit weight for adjusted field length and pressure altitude (Table 2).
- Max allowable dry snow limited weight is lesser of weights from Table 1 and Table 2.

					DF	Y SNO	W DEP	TH				
WEIGHT	30 ı	nm (1.1	8 INCH	ES)	60 ı	nm (2.3	6 INCH	ES)	100	mm (4.0	00 INCI	HES)
(1000 KG)	F	PRESS ALT (FT) S.L. 5000 10000 1450				PRESS A	ALT (FT	")	F	PRESS A	ALT (FT	")
	S.L. 5000 10000 14500				S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-5	0	0	0	-2	0	0	0	0	0	0	0
80	-5 0 0 0 -7 -2 0 0				-5	0	0	0	0	0	0	0
70	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	-7	-2	0	0	-2	0	0	0
60	-13	-8	-3	0	-10	-5	0	0	-5	0	0	0
50	-13 -8 -3 0 -16 -11 -6 -1			-1	-13	-8	-3	0	-9	-4	0	0
40	-19	-14	-9	-4	-16	-11	-6	-2	-13	-8	-3	0

- Obtain V1, VR and V2 for the actual weight using the TO2 Dry Runway Takeoff Speeds table. If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG). V1 not to exceed VR.

ADVISORY INFORMATION

TO2 Dry Snow Takeoff 20% Thrust Reduction

No Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

TO2 DRY					DR	Y SNO	W DEP	TH				
FIELD/OBSTACLE	30 ı	nm (1.1	8 INCH	ES)	60 r	nm (2.3	6 INCH	ES)	100	mm (4.0	00 INCF	HES)
LIMIT WEIGHT	I	PRESS A	ALT (FT	(F	RESS A	ALT (FT)	F	PRESS A	ALT (FT	")
(1000 KG)	S.L.					5000	10000	14500	S.L.	5000	10000	14500
90	-4.9	-6.1	-7.3	-8.4	-6.9	-8.2	-9.3	-10.4	-10.7	-11.8	-13.1	-14.2
80	-5.4				-7.0	-8.2	-9.4	-10.5	-9.9	-11.1	-12.3	-13.4
70	-5.5	-6.8	-7.9	-9.0	-6.7	-7.9	-9.1	-10.2	-8.8	-10.0	-11.2	-12.3
60	-5.0	-6.2	-7.4	-8.5	-5.8	-7.0	-8.2	-9.3	-7.2	-8.4	-9.6	-10.7
50	-3.9	-5.1	-6.3	-7.3	-4.3	-5.5	-6.7	-7.8	-5.1	-6.3	-7.5	-8.6
40	-2.1	-3.3	-4.5	-5.6	-2.2	-3.4	-4.6	-5.7	-2.4	-3.7	-4.9	-5.9

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

ADJUSTED					DR	Y SNO	W DEP	TH				
FIELD	30 r	nm (1.1	8 INCH	ES)	60 ı	nm (2.3	6 INCH	ES)	100	mm (4.0	00 INCI	HES)
LENGTH	P	PRESS A	ALT (FT	")	F	PRESS A	ALT (FT	")	P	RESS A	ALT (FT	()
(FT)	S.L.	S.L. 5000 10000 14500			S.L.	5000	10000	14500	S.L.	5000	10000	14500
4200	27.4				43.2				54.5	33.0		
4600	57.2	18.8			64.9	36.9			71.1	49.9	28.3	
5000	80.7	49.6			84.4	59.1	30.5		87.4	66.6	45.3	25.8
5400	100.6	74.7	41.5		102.4	79.2	53.3	27.1	103.5	83.0	62.0	42.8
5800		95.3	68.4	36.9		97.5	73.9	50.0		99.1	78.5	59.6
6200			90.0	64.8			92.6	70.9			94.6	76.1
6600			109.2	87.0				89.9				92.3
7000				106.4				107.8				

- Enter Table 1 with dry snow depth and TO2 dry field/obstacle limit weight to obtain dry snow weight adjustment.
- Adjust field length available by -100 ft/+100 ft for every 10°C above/below 0°C.
- Find V1(MCG) limit weight for adjusted field length and pressure altitude (Table 2).
- Max allowable dry snow limited weight is lesser of weights from Table 1 and Table 2.

Table 3 of 3: V1 Adjustment (KIAS)

				,								
					DR	Y SNO	W DEP	TH				
WEIGHT	30 1	mm (1.1	8 INCH	IES)	60 ı	nm (2.3	6 INCH	ES)	100	mm (4.0	00 INCI	HES)
(1000 KG)	I	PRESS A	ALT (FT	.)	F	PRESS A	ALT (FT	")	F	PRESS A	ALT (FT)
	S.L.				S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-6	-1	0	0	-2	0	0	0	0	0	0	0
80	-9				-6	-1	0	0	0	0	0	0
70	-13	-8	-3	0	-9	-4	0	0	-3	0	0	0
60	-17	-12	-7	-3	-14	-9	-4	0	-7	-2	0	0
50	-22	17 12 7 3		-18	-13	-8	-4	-12	-7	-2	0	
40	-27	-22	-17	-12	-23	-18	-13	-9	-18	-13	-8	-3

Obtain V1, VR and V2 for the actual weight using the TO2 Dry Runway Takeoff Speeds table. If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual value of the State of V1 and V1 actual values valu weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG). V1 not to exceed VR.

ADVISORY INFORMATION

TO2 Wet Snow Takeoff 20% Thrust Reduction

Maximum Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

TO2 DRY					WI	ET SNO	W DEP	TH				
FIELD/OBSTACLE	5 n	nm (0.20) INCHI	ES)	13 r	nm (0.5	0 INCH	ES)	30 r	nm (1.1	8 INCH	ES)
LIMIT WEIGHT	F	PRESS ALT (FT)				RESS A	ALT (FT)	F	PRESS A	ALT (FT	(
(1000 KG)	S.L.	S.L. 5000 10000 14500				5000	10000	14500	S.L.	5000	10000	14500
90	-4.4	-5.7	-7.1	-8.3	-6.3	-7.6	-9.0	-10.2	-12.1	-13.5	-14.8	-16.1
80	-4.4 -5.7 -7.1 -8.3 -4.5 -5.9 -7.2 -8.4				-6.0	-7.3	-8.7	-9.9	-10.5	-11.8	-13.2	-14.4
70	-4.2					-6.7	-8.1	-9.3	-8.6	-10.0	-11.3	-12.6
60	-3.4	-4.8	-6.1	-7.3	-4.1	-5.5	-6.8	-8.1	-6.3	-7.6	-9.0	-10.2
50	-2.0	-3.4	-4.7	-5.9	-2.4	-3.7	-5.1	-6.3	-3.5	-4.9	-6.3	-7.5
40	0.0	-1.4	-2.8	-4.0	0.0	-1.4	-2.8	-4.0	-0.4	-1.7	-3.1	-4.3

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

ADJUSTED					WI	ET SNO	W DEP	TH				
FIELD	5 n	nm (0.20) INCH	ES)	13 ı	nm (0.5	0 INCH	ES)	30 r	nm (1.1	8 INCH	ES)
LENGTH	F	RESS A	ALT (FT	")	F	RESS A	ALT (FT	")	F	PRESS A	ALT (FT	")
(FT)	S.L.	S.L. 5000 10000 14500			S.L.	5000	10000	14500	S.L.	5000	10000	14500
3800	49.8	28.7			51.7	31.2			54.9	36.3		
4200	66.0	44.7			67.3	46.8			69.2	50.5	31.8	
4600	82.3	60.9	39.7		83.1	62.4	41.9		83.6	64.7	46.0	29.3
5000	98.9	77.2	55.8	36.8	98.9	78.2	57.5	39.1	98.1	79.1	60.3	43.4
5400		93.7	72.1	52.9		94.0	73.2	54.7		93.6	74.6	57.7
5800			88.5	69.1			89.0	70.4			89.0	72.0
6200			105.1	85.5			104.9	86.2			103.6	86.4
6600				102.1				102.0				100.9

- Enter Table 1 with wet snow depth and TO2 dry field/obstacle limit weight to obtain wet snow weight adjustment.
- Adjust field length available by -100 ft/+100 ft for every 10°C above/below 0°C.
- Find V1(MCG) limit weight for adjusted field length and pressure altitude (Table 2).
- Max allowable wet snow limited weight is lesser of weights from Table 1 and Table 2.

					WI	ET SNO	W DEP	TH				
WEIGHT	5 n	nm (0.20) INCH	ES)	13 ı	nm (0.5	0 INCH	ES)	30 ı	nm (1.1	8 INCH	ES)
(1000 KG)	F	PRESS A	ALT (FT	")	F	PRESS A	ALT (FT	")	F	PRESS A	ALT (FT	")
	S.L.	S.L. 5000 10000 14500				5000	10000	14500	S.L.	5000	10000	14500
90	-4	0	0	0	-1	0	0	0	0	0	0	0
80	-8	. 0 0 0			-4	0	0	0	0	0	0	0
70	-10	-5	0	0	-7	-2	0	0	0	0	0	0
60	-13	-8	-3	0	-10	-5	0	0	-3	0	0	0
50	-16			-15	-10	-5	0	-9	-4	0	0	
40	-21	-16	-11	-7	-20	-15	-10	-5	-17	-12	-7	-3

- Obtain V1, VR and V2 for the actual weight using the TO2 Dry Runway Takeoff Speeds table. If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG). V1 not to exceed VR.

ADVISORY INFORMATION

TO2 Wet Snow Takeoff 20% Thrust Reduction

No Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

TO2 DRY					WI	ET SNO	W DEP	TH				
FIELD/OBSTACLE	5 n	nm (0.20) INCH	ES)	13 r	nm (0.5	0 INCH	ES)	30 r	nm (1.1	8 INCH	ES)
LIMIT WEIGHT	I	PRESS ALT (FT)				RESS A	ALT (FT)	F	RESS A	ALT (FT)
(1000 KG)	S.L.	S.L. 5000 10000 14500				5000	10000	14500	S.L.	5000	10000	14500
90	-5.2	-6.4	-7.6	-8.7	-7.4	-8.6	-9.8	-10.9	-13.6	-14.8	-16.0	-17.1
80	-5.7				-7.4	-8.6	-9.8	-10.9	-12.2	-13.4	-14.6	-15.7
70	-5.8	-7.0	-8.3	-9.3	-6.9	-8.2	-9.4	-10.5	-10.4	-11.6	-12.8	-14.0
60	-5.2	-6.4	-7.6	-8.8	-5.9	-7.1	-8.3	-9.4	-8.1	-9.3	-10.6	-11.7
50	-3.9				-4.2	-5.4	-6.6	-7.8	-5.4	-6.6	-7.8	-8.9
40	-1.9	-3.1	-4.4	-5.4	-1.9	-3.1	-4.4	-5.4	-2.0	-3.3	-4.5	-5.6

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

. P. W. COMP.P.	ı				11/1	T CNO	W DEP	TH				
ADJUSTED												
FIELD	5 n	ım (0.20) INCH	ES)	13 ı	nm (0.5	0 INCH	ES)	30 r	nm (1.1	8 INCH	ES)
LENGTH	F	PRESS A	ALT (FT	")	F	PRESS A	ALT (FT	"	F	PRESS A	ALT (FT	")
(FT)	S.L.	S.L. 5000 10000 14500			S.L.	5000	10000	14500	S.L.	5000	10000	14500
4200	16.9				30.7				48.1	21.7		
4600	52.3	8.3			59.2	23.5			67.7	43.1		
5000	78.6	44.5			81.7	53.1	16.3		85.5	63.2	38.1	
5400	99.4	73.0	36.0		100.7	76.7	46.6	12.8	102.0	81.4	58.6	35.6
5800		94.7	67.1	31.9		96.3	71.6	43.3		98.1	77.2	56.4
6200			89.9	64.1			91.9	69.0			94.2	75.2
6600			109.7	87.6				89.8				92.4
7000				107.4				108.2				

Enter Table 1 with wet snow depth and TO2 dry field/obstacle limit weight to obtain wet snow weight adjustment.

- Adjust field length available by -110 ft/+110 ft for every 10°C above/below 0°C.
- Find V1(MCG) limit weight for adjusted field length and pressure altitude (Table 2).
- Max allowable wet snow limited weight is lesser of weights from Table 1 and Table 2.

				,								
					WI	ET SNO	W DEP	TH				
WEIGHT	5 n	nm (0.20) INCH	ES)	13 1	nm (0.5	0 INCH	ES)	30 ı	nm (1.1	8 INCH	ES)
(1000 KG)	F	PRESS	ALT (FT	")	F	RESS A	ALT (FT)	F	PRESS	ALT (FT)
	S.L.	.L. 5000 10000 14500				5000	10000	14500	S.L.	5000	10000	14500
90	-5	0	0	0	-1	0	0	0	0	0	0	0
80	-9				-5	0	0	0	0	0	0	0
70	-14	-9	-4	0	-9	-4	0	0	0	0	0	0
60	-18	-13	-8	-3	-15	-10	-5	0	-5	0	0	0
50	-23				-21	-16	-11	-6	-14	-9	-4	0
40	-30	-25	-20	-15	-28	-23	-18	-14	-25	-20	-15	-10

Obtain V1, VR and V2 for the actual weight using the TO2 Dry Runway Takeoff Speeds table. If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual table actual table actual table 3 with the actual table 3 with table weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG). V1 not to exceed VR.

ADVISORY INFORMATION

TO2 Slippery Runway Takeoff

20% Thrust Reduction

Maximum Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

		-										
TO2 DRY				R	EPORT	ED BR.	AKING	ACTIO	N			
FIELD/OBSTACLE		GO	OD			MED	IUM			PO	OR	
LIMIT WEIGHT	I	PRESS A	ALT (FT	")	F	RESS A	ALT (FT	")	F	RESS A	ALT (FT)
(1000 KG)	S.L.	S.L. 5000 10000 14500 3				5000	10000	14500	S.L.	5000	10000	14500
90	0.0	-0.7	-1.4	-2.1	-1.2	-2.0	-2.7	-3.4	-8.3	-9.0	-9.8	-10.5
80	-0.4	-1.1	-1.9	-2.6	-2.0	-2.8	-3.5	-4.2	-8.3	-9.1	-9.8	-10.5
70	-0.6	-1.4	-2.1	-2.8	-2.5	-3.2	-4.0	-4.6	-7.9	-8.7	-9.4	-10.1
60	-0.4	-1.1	-1.9	-2.5	-2.4	-3.1	-3.9	-4.5	-6.8	-7.6	-8.3	-9.0
50	0.0	-0.7	-1.5	-2.1	-1.7	-2.4	-3.2	-3.9	-5.1	-5.9	-6.6	-7.3
40	-0.1	-0.8	-1.6	-2.2	-0.5	-1.2	-2.0	-2.6	-2.8	-3.5	-4.3	-4.9

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

ADJUSTED				R	EPORT	ED BR.	AKING	ACTIO	N			
FIELD		GO	OD			MED	OIUM			PO	OR	
LENGTH	P	RESS A	ALT (FT	")	F	RESS A	ALT (FT	")	I	PRESS	ALT (FT	.`)
(FT)	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
3800	84.6	61.2	35.0		49.6	26.8						
4200	104.4	82.8	59.2	35.5	67.2	44.0						
4600		102.6	81.0	59.7	85.0	61.4	38.4					
5000			100.9	81.4	103.1	79.2	55.7	35.1				
5400				101.3		97.2	73.4	52.4	36.1			
5800							91.3	70.0	43.7			
6200								87.8	51.5			
6600								106.0	59.8	38.6		
7000									68.6	46.3		
7400									78.1	54.3		
7800									88.3	62.7	41.2	
8200									99.4	71.7	48.9	
8600										81.4	57.1	38.2
9000										92.0	65.7	45.8
9400											74.9	53.8
9800											84.9	62.2
10200											95.8	71.2
10600												80.8
11000												91.3

- 1. Enter Table 1 with reported braking action and TO2 dry field/obstacle limit weight to obtain
- slippery runway weight adjustment. Adjust "Good" field length available by -80 ft/+80 ft for every 10°C above/below 0°C. Adjust "Medium" field length available by -100 ft/+100 ft for every 10°C above/below 0°C.

 Adjust "Poor" field length available by -190 ft/+190 ft for every 10°C above/below 0°C.

 Find VI(MCG) limit weight for adjusted field length and pressure altitude (Table 2).
- 4. Max allowable slippery runway limited weight is lesser of weights from Table 1 and Table 2.

737 Flight Crew Operations Manual

ADVISORY INFORMATION

TO2 Slippery Runway Takeoff 20% Thrust Reduction

Maximum Reverse Thrust

				R	EPORT	ED BR	AKING	ACTIO	N			
WEIGHT		GO	OD			MED	IUM			PO	OR	
(1000 KG)	F	PRESS A	ALT (FT	")	F	RESS A	ALT (FT)	F	RESS A	ALT (FT	")
	S.L.	S.L. 5000 10000 14500				5000	10000	14500	S.L.	5000	10000	14500
90	-6	-3	-1	0	-9	-7	-4	-2	-26	-23	-21	-18
80	-6 -3 -1 0			-11	-9	-6	-4	-29	-26	-24	-22	
70	-8	-5	-3	-1	-13	-10	-8	-6	-32	-29	-27	-25
60	-9	-6	-4	-2	-15	-12	-10	-8	-34	-32	-29	-27
50	-9				-17	-14	-12	-10	-36	-34	-31	-29
40	-10	-7	-5	-3	-19	-17	-14	-12	-38	-35	-33	-31

^{1.} Obtain V1, VR and V2 for the actual weight using the TO2 Dry Runway Takeoff Speeds table. 2. If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG). V1 not to exceed VR.

ADVISORY INFORMATION

TO2 Slippery Runway Takeoff

20% Thrust Reduction

No Reverse Thrust

Table 1 of 3: Weight Adjustment (1000 KG)

		-										
TO2 DRY				R	EPORT	ED BR	AKING	ACTIO	N			
FIELD/OBSTACLE		GO	OD			MED	IUM			PO	OR	
LIMIT WEIGHT	I	PRESS A	ALT (FT)	F	RESS A	ALT (FT	")	P	RESS A	ALT (FT)
(1000 KG)	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-1.6	-2.2	-2.8	-3.4	-3.0	-3.6	-4.3	-4.8	-12.0	-12.6	-13.2	-13.8
80	-2.0	-2.6	-3.2	-3.8	-3.9	-4.5	-5.2	-5.7	-11.9	-12.5	-13.1	-13.7
70	-2.0	-2.6	-3.3	-3.8	-4.4	-5.0	-5.6	-6.2	-11.2	-11.7	-12.4	-12.9
60	-1.6	-2.2	-2.9	-3.4	-4.2	-4.8	-5.4	-5.9	-9.7	-10.3	-10.9	-11.4
50	-0.8	-1.4	-2.0	-2.5	-3.3	-3.9	-4.5	-5.0	-7.3	-7.9	-8.6	-9.1
40	0.0	-0.6	-1.2	-1.8	-1.7	-2.4	-2.9	-3.5	-4.3	-4.9	-5.5	-6.0

Table 2 of 3: V1(MCG) Limit Weight (1000 KG)

ADJUSTED	Ì			R	EPORT	ED BR.	AKING	ACTIO	N			
FIELD		GC	OD			MED	IUM			PO	OR	
LENGTH	I	PRESS	ALT (FT)	F	RESS A	ALT (FT)	I	PRESS A	ALT (FT	')
(FT)	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
3800	75.7	35.0										
4000	88.1	58.3										
4200	98.8	74.0	31.5									
4400		86.6	56.0		30.3							
4600		97.5	72.3	34.0	51.3							
4800			85.2	57.6	67.6							
5000			96.2	73.5	81.2	40.7						
5200				86.2	93.0	59.5						
5400				97.1		74.4	29.2					
5600						87.0	50.3					
5800						98.3	66.9	23.2				
6000							80.6	45.0				
6200							92.5	62.7				
6400								77.1				
6600								89.4				
6800								100.5				
10600									71.3			
10800									84.3			
11000									94.0			
11600										56.7		
11800										76.1		
12000										87.7		
12200										96.8		
12800											65.1	
13000											80.2	
13200											90.8	
13800												62.7
14000	1											78.9
14200												89.8
14400												98.7

1. Enter Table 1 with reported braking action and TO2 dry field/obstacle limit weight to obtain

Enter Table 1 with reported braking action and 102 dry field/obstacie limit weight to obtain slippery runway weight adjustment.

Adjust "Good" field length available by -90 ft/+90 ft for every 10°C above/below 0°C.

Adjust "Medium" field length available by -110 ft/+110 ft for every 10°C above/below 0°C.

Adjust "Poor" field length available by -280 ft/+280 ft for every 10°C above/below 0°C.

Find V1(MCG) limit weight for adjusted field length and pressure altitude (Table 2).

Max allowable slippery runway limited weight is lesser of weights from Table 1 and Table 2.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

ADVISORY INFORMATION

TO2 Slippery Runway Takeoff

20% Thrust Reduction No Reverse Thrust

				R	EPORT	ED BR	AKING	ACTIO:	N			
WEIGHT		GO	OD			MED	IUM			PO	OR	
(1000 KG)	I	PRESS A	ALT (FT	(,	F	PRESS A	ALT (FT)	F	RESS A	ALT (FT	()
	S.L.	5000	10000	14500	S.L.	5000	10000	14500	S.L.	5000	10000	14500
90	-8	-3	0	0	-12	-7	-2	0	-39	-34	-29	-25
80	-9	-4	0	0	-15	-10	-5	0	-45	-40	-35	-31
70	-11	-6	-1	0	-18	-13	-8	-3	-50	-45	-40	-36
60	-12	-7	-2	0	-21	-16	-11	-6	-55	-50	-45	-41
50	-13	-8	-3	0	-24	-19	-14	-10	-60	-55	-50	-45
40	-13	-8	-3	0	-28	-23	-18	-13	-64	-59	-54	-50

Obtain V1, VR and V2 for the actual weight using the TO2 Dry Runway Takeoff Speeds table. If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter Table 3 with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG). V1 not to exceed VR.

TO2 Takeoff %N1 20% Thrust Reduction

Based on bleed packs on and anti-ice off

AIRPORT						AIRP	ORT I	PRES	SURE	ALT:	TUD:	E (100	00 FT)				
OAT	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	14.5
(°C)		•	v		_	_		-		,			- 0					
60	77.8	78.3	78.8	78.9		78.0					75.9			75.4				75.5
55	79.2		80.0								76.9							
50	80.3	80.8	81.4	81.1	80.7	80.3	79.8	79.4	78.9	78.5	78.1	77.7	77.2	76.3	75.4	74.4	74.3	74.3
45	81.2	81.8	82.3	82.1	81.7	81.2	80.9	80.5	80.1	79.6	79.2	78.8	78.3	77.4	76.5	75.4	74.6	74.2
40	82.1	82.7	83.2	83.1	83.1	82.8	82.2	81.4	81.1	80.7	80.3	79.9	79.4	78.5	77.6	76.6	75.7	75.3
35	82.9	83.5	84.1	84.1	84.0	83.9	83.8	83.5	82.9	82.0	81.3	80.9	80.5	79.6	78.7	77.7	76.9	76.5
30	82.5	83.7	84.9	84.7	84.7	84.7	84.6	84.6	84.5	84.3	82.1	81.8	81.4	80.6	79.8	78.9	78.1	77.7
25	81.8	83.0	84.2	84.5	84.8	84.9	85.0	85.2	85.1	85.1	83.0	82.7	82.3	81.6	80.8	80.0	79.2	78.8
20	81.0	82.2	83.4	83.7	84.0	84.3	84.6	84.9	85.0	85.2	83.9	83.6	83.2	82.5	81.8	81.1	80.3	79.9
15	80.3	81.5	82.7	83.0	83.3	83.5	83.8	84.1	84.4	84.7	84.8	84.5	84.2	83.4	82.7	82.1	81.4	81.1
10	79.6	80.8	82.0	82.2	82.5	82.8	83.1	83.4	83.7	84.0	84.3	84.7	85.0	84.4	83.8	83.2	82.5	82.2
5	78.9	80.0	81.2	81.5	81.8	82.0	82.4	82.6	82.9	83.3	83.6	84.0	84.3	84.3	84.4	84.2	83.6	83.3
0	78.1	79.3	80.5	80.8	81.1	81.3	81.6	81.9	82.2	82.5	82.9	83.2	83.6	83.6	83.7	83.7	83.7	83.8
-5	77.4	78.5	79.7	80.0	80.3	80.5	80.8	81.1	81.4	81.7	82.1	82.5	82.8	82.9	82.9	83.0	83.0	83.0
-10	76.6	77.8	79.0	79.2	79.5	79.8	80.0	80.3	80.6	81.0	81.4	81.7	82.1	82.2	82.2	82.2	82.3	82.3
-15	75.9	77.1	78.2	78.5	78.8	79.0	79.2	79.5	79.9	80.2	80.6	81.0	81.3	81.4	81.5	81.5	81.5	81.5
-20	75.2	76.3	77.5	77.7	78.0	78.2	78.5	78.8	79.1	79.4	79.8	80.2	80.6	80.6	80.7	80.7	80.8	80.8
-25	74.4	75.6	76.7	77.0	77.2	77.5	77.7	78.0	78.3	78.7	79.1	79.5	79.8	79.9	79.9	80.0	80.0	80.0
-30	73.7	74.8	75.9	76.2	76.5	76.7	76.9	77.2	77.5	77.9	78.3	78.7	79.0	79.1	79.2	79.2	79.2	79.3
-35	72.9	74.0	75.1	75.4	75.7	75.9	76.2	76.4	76.7	77.1	77.5	77.9	78.2	78.3	78.4	78.4	78.5	78.5
-40	72.1	73.2	74.3	74.6	74.9	75.1	75.4	75.7	76.0	76.3	76.7	77.1	77.4	77.5	77.5	77.6	77.7	77.7
-45	71.4	72.5	73.6	73.8	74.1	74.3	74.6	74.9	75.2	75.5	75.9	76.2	76.6	76.6	76.7	76.8	76.9	76.9
-50	70.6	71.7	72.7	73.0	73.3	73.5	73.8	74.0	74.4	74.7	75.0	75.4	75.7	75.8	75.9	76.0	76.1	76.1

%N1 Adjustments for Engine Bleeds

•			_															
BLEED					AII	RPOF	RT PF	RESS	URE	ALT	ITUI	DE (1	000	FT)				
CONFIGURATION	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	14.5
PACKS OFF	0.5	0.5	0.6	0.6	0.7	0.8	0.8	0.9	0.9	1.0	1.0	1.0	1.1	1.2	1.3	1.6	1.7	1.7
ENGINE ANTI-ICE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0

737 Flight Crew Operations Manual

TO2 Assumed Temperature Reduced Thrust Maximum Assumed Temperature (Table 1 of 3) Based on 25% Takeoff Thrust Reduction

					,	ID D	DT E	DEC	SI ID E	ALT	ITIID	E (10	00 ET	7				
OAT (°C)	_	1	0	-			r —		-	ALI				_	10	12	1.4	14.5
	-2	-1	0	1	2	3	4	5	6	/	8	9	10	11	12	13	14	14.5
60	67	69	70	70	69	68	66	65	64	62	61	60	59	59	57	59	58	57
55	67	69	70	70	69	68	66	65	64	62	61	60	58	56	54	55	53	52
50	67	69	70	70	69	68	66	65	64	62	61	60	58	56	53	50	49	49
45	67	69	70	70	69	68	66	65	64	62	61	60	58	56	53	50	47	46
40	67	68	68	68	67	67	66	65	64	62	61	60	58	56	53	50	47	46
35	64	63	63	63	63	61	60	59	60	61	61	60	58	56	53	50	48	47
30	63	61	59	59	58	57	56	54	53	52	55	57	57	56	53	51	48	47
25	63	61	59	58	56	54	53	51	49	48	50	52	52	52	51	51	48	47
20	63	61	59	58	56	54	52	49	47	46	46	48	48	47	47	46	46	46
15	63	61	59	58	56	54	52	49	47	45	43	43	43	42	42	41	41	41
10	63	61	59	58	56	54	52	49	47	45	43	41	38	37	37	36	36	36
5	63	61	59	58	56	54	52	49	47	45	43	41	38	36	33	32	31	31
0	63	61	59	59	57	54	52	49	47	45	43	41	39	36	33	31	28	27
5 & BELOW	63	61	59	59	57	54	52	49	47	45	43	41	39	36	34	31	28	27

Takeoff %N1 (Table 2 of 3)

Based on engine bleed for packs on and engine anti-ice off

Daseu on ei	9	C DIC	cu i	or b	acks	, 011	ana	Cingi	iic a	11111	ice o	11						
ASSUMED					Α	AIRPO	ORT P	RESS	URE	ALTI	TUD	E (10	00 FT)				
TEMP (°C)	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	14.5
75	77.0	77.1	77.1	77.1	77.1	77.1	77.1	77.1	77.1	77.1	77.1	77.1	77.1	77.1	77.0	76.6	76.5	76.4
70	76.5	76.5	76.6	76.7	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.6	76.6	76.6	76.6	76.1	75.8
65	76.8	77.2	77.7	77.8	77.3	76.9	76.4	76.0	76.0	76.0	76.0	76.0	76.0	76.0	76.0	76.0	76.0	76.0
60	77.8	78.3	78.8	78.9	78.4	78.0	77.5	77.1	76.7	76.3	75.9	75.5	75.4	75.4	75.4	75.4	75.5	75.5
55	79.2	79.6	80.0	80.1	79.6	79.1	78.7	78.2	77.8	77.3	76.9	76.5	76.1	75.2	74.9	74.9	74.9	74.9
50	80.3	80.8	81.4	81.1	80.7	80.3	79.8	79.4	78.9	78.5	78.1	77.7	77.2	76.3	75.4	74.4	74.3	74.3
45	81.2	81.8	82.3	82.1	81.7	81.2	80.9	80.5	80.1	79.6	79.2	78.8	78.3	77.4	76.5	75.4	74.6	74.2
40	82.1	82.7	83.2	83.1	83.1	82.8	82.2	81.4	81.1	80.7	80.3	79.9	79.4	78.5	77.6	76.6	75.7	75.3
35	82.9	83.5	84.1	84.1	84.0	83.9	83.8	83.5	82.9	82.0	81.3	80.9	80.5	79.6	78.7	77.7	76.9	76.5
30	82.5	83.7	84.9	84.7	84.7	84.7	84.6	84.6	84.5	84.3	82.1	81.8	81.4	80.6	79.8	78.9	78.1	77.7
25	81.8	83.0	84.2	84.5	84.8	84.9	85.0	85.2	85.1	85.1	83.0	82.7	82.3	81.6	80.8	80.0	79.2	78.8
20	81.0	82.2	83.4	83.7	84.0	84.3	84.6	84.9	85.0	85.2	83.9	83.6	83.2	82.5	81.8	81.1	80.3	79.9
15	80.3	81.5	82.7	83.0	83.3	83.5	83.8	84.1	84.4	84.7	84.8	84.5	84.2	83.4	82.7	82.1	81.4	81.1
10	79.6	80.8	82.0	82.2	82.5	82.8	83.1	83.4	83.7	84.0	84.3	84.7	85.0	84.4	83.8	83.2	82.5	82.2
5	78.9	80.0	81.2	81.5	81.8	82.0	82.4	82.6	82.9	83.3	83.6	84.0	84.3	84.3	84.4	84.2	83.6	83.3
0	78.1	79.3	80.5	80.8	81.1	81.3	81.6	81.9	82.2	82.5	82.9	83.2	83.6	83.6	83.7	83.7	83.7	83.8
-5	77.4	78.5	79.7	80.0	80.3	80.5	80.8	81.1	81.4	81.7	82.1	82.5	82.8	82.9	82.9	83.0	83.0	83.0
-20	75.2	76.3	77.5	77.7	78.0	78.2	78.5	78.8	79.1	79.4	79.8	80.2	80.6	80.6	80.7	80.7	80.8	80.8
-40	72.1	73.2	74.3	74.6	74.9	75.1	75.4	75.7	76.0	76.3	76.7	77.1	77.4	77.5	77.5	77.6	77.7	77.7
MINIMUM ASSUMED TEMP (°C)	34	32	30	28	26	24	22	20	18	16	14	12	10	8	6	4	2	1

TO2 Assumed Temperature Reduced Thrust %N1 Adjustment for Temperature Difference (Table 3 of 3)

ASSUMED					OUT	SIDE A	AIR TE	MPERA	ATURE	(°C)				
TEMPMINUS OAT (°C)	-40	-20	0	5	10	15	20	25	30	35	40	45	50	55
115	7.9													
110	7.9													1
105	7.9													
100	7.1													
95	5.4	8.2												
90	4.0	8.2												
85	2.6	8.2												
80	1.3	7.4												
75	0.1	5.6	8.5											1
70	0.0	4.2	8.4	8.4										
65	0.0	2.7	7.9	7.9	7.8									
60	0.0	1.4	7.4	7.3	7.3	7.2								1
55	0.0	0.0	5.9	6.8	6.8	6.7	6.5							
50	0.0	0.0	4.3	5.9	6.2	6.2	6.0	5.8						
45	0.0	0.0	2.9	4.4	5.7	5.6	5.5	5.3	5.0					1
40	0.0	0.0	1.4	2.9	4.5	5.1	4.9	4.8	4.6	3.3				
35		0.0	0.0	1.5	3.0	4.5	4.4	4.2	4.1	3.3	1.4			
30		0.0	0.0	0.1	1.5	3.0	3.8	3.7	3.6	3.3	1.4	0.0		
25		0.0	0.0	0.0	0.1	1.5	3.1	3.1	3.0	2.9	1.4	0.0	0.0	
20		0.0	0.0	0.0	0.0	0.1	1.6	2.5	2.4	2.4	1.4	0.0	0.0	0.0
15			0.0	0.0	0.0	0.0	0.2	1.6	1.8	1.8	1.4	0.0	0.0	0.0
10			0.0	0.0	0.0	0.0	0.0	0.2	1.2	1.2	1.2	0.0	0.0	0.0
5			0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.6	0.6	0.0	0.0	0.0
0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

- 1. Determine Maximum Assumed Temperature allowed from Table 1.
- 2. Find Maximum %N1 from Table 2 using the desired assumed temperature (no greater than temperature from Table 1).
- 3. Use the difference between assumed temperature and OAT to determine the %N1 adjustment from Table 3.
- 4. Subtract %N1 adjustment from Maximum %N1 in Table 2.

737 Flight Crew Operations Manual

Max Climb %N1

Based on engine bleed for packs on and anti-ice off

TAT			PRESS	SURE AI	TITUDI	E (1000 I	T) / SPE	ED (KI	AS OR M	IACH)		
TAT (°C)	0	5	10	15	20	25	30	33	35	37	39	41
(C)	280	280	280	280	280	280	280	0.78	0.78	0.78	0.78	0.78
60	80.8	81.3	84.0	86.0	88.3	90.3	93.1	94.6	95.7	96.0	95.4	94.7
55	81.6	81.6	83.3	85.3	87.7	89.6	92.4	93.9	94.9	95.2	94.6	94.0
50	82.6	82.5	82.8	84.7	87.0	88.9	91.7	93.1	94.2	94.5	93.9	93.3
45	83.6	83.4	83.6	84.0	86.3	88.2	90.9	92.4	93.5	93.8	93.2	92.6
40	84.5	84.5	84.5	84.3	85.6	87.5	90.2	91.7	92.7	93.0	92.4	91.8
35	85.2	85.5	85.5	85.2	85.2	86.8	89.5	91.0	92.0	92.3	91.7	91.1
30	84.5	86.5	86.5	86.2	85.7	86.1	88.8	90.2	91.2	91.5	91.0	90.4
25	83.8	86.6	87.5	87.1	86.6	87.7	88.0	89.5	90.5	90.8	90.2	89.6
20	83.1	85.8	88.4	88.0	87.5	88.7	89.2	89.1	89.7	90.0	89.4	88.9
15	82.3	85.1	87.8	89.0	88.5	89.8	90.2	90.5	89.6	89.2	88.7	88.1
10	81.6	84.3	87.1	89.4	89.5	90.9	91.1	91.3	91.0	90.0	89.5	88.9
5	80.8	83.6	86.3	88.7	90.6	91.9	91.9	92.0	91.8	91.1	90.7	90.1
0	80.1	82.8	85.5	87.9	89.9	92.9	92.6	92.6	92.3	91.8	91.3	90.6
-5	79.4	82.0	84.7	87.1	89.2	92.7	93.4	93.4	93.1	92.4	91.9	91.2
-10	78.6	81.2	84.0	86.4	88.3	91.9	93.6	94.3	94.0	93.2	92.6	91.8
-15	77.9	80.5	83.2	85.6	87.5	91.1	92.8	94.1	94.8	94.1	93.5	92.7
-20	77.1	79.7	82.4	84.8	86.7	90.2	91.9	93.2	94.4	94.4	93.9	93.1
-25	76.3	78.9	81.5	84.0	85.8	89.4	91.0	92.3	93.4	93.5	93.0	92.2
-30	75.6	78.1	80.7	83.2	85.0	88.5	90.1	91.4	92.5	92.6	92.1	91.3
-35	74.8	77.3	79.9	82.4	84.1	87.6	89.3	90.5	91.6	91.7	91.2	90.4
-40	74.0	76.5	79.0	81.5	83.3	86.7	88.4	89.6	90.7	90.7	90.2	89.5

%N1 Adjustments for Engine Bleeds

BLEED				PR	ESSUR	E ALT	TUDE	(1000 F	T)			
CONFIGURATION	0	5	10	15	20	25	30	33	35	37	39	41
ENGINE ANTI-ICE	0.0	0.0	-0.6	-0.7	-0.8	-0.9	-1.2	-1.5	-1.8	-2.0	-2.1	-2.1
ENGINE & WING ANTI-ICE	0.0	0.0	-1.5	-1.7	-2.0	-2.1	-2.6	-3.2	-4.0	-4.2	-4.2	-4.2

Go-Around %N1

Based on engine bleed for packs on and anti-ice off

REPORTED	TAT					A.	IRPO	RT P	RESS	URE	ALT	ITUE	DE (10	000 F	T)				
OAT	(°C)	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	14.5
(°C)	(C)	-2	-1	U	1	2	3	+	5	U	/	0	9	10	11	12	13	14	14.5
59	60	85.8	86.3	86.8	86.9	86.4	86.0	85.5	85.0	84.6	84.2	83.8	83.3	82.9	81.9	81.0	79.9	79.0	78.6
54	55	87.2	87.6	88.0	88.0	87.6	87.1	86.7	86.2	85.8	85.3	84.9	84.5	84.0	83.1	82.2	81.1	80.2	79.8
49	50	88.1	88.7	89.3	89.0	88.6	88.2	87.8	87.3	86.9	86.5	86.1	85.6	85.1	84.2	83.3	82.3	81.4	81.0
44	45	89.1	89.7	90.2	90.1	89.8	89.1	88.8	88.4	88.0	87.5	87.1	86.7	86.2	85.3	84.4	83.4	82.5	82.1
39	40	90.0	90.6	91.2	91.1	91.0	90.9	90.4	89.6	89.0	88.6	88.2	87.8	87.3	86.4	85.5	84.5	83.6	83.2
34	35	90.8	91.5	92.1	92.1	92.0	91.9	91.8	91.6	91.2	90.3	89.1	88.8	88.3	87.5	86.6	85.6	84.8	84.4
29	30	90.1	91.4	92.7	92.7	92.7	92.7	92.7	92.6	92.6	92.5	90.0	89.7	89.3	88.5	87.7	86.8	85.9	85.5
24	25	89.3	90.6	91.9	92.2	92.5	92.8	92.9	93.1	93.2	93.1	91.0	90.6	90.2	89.5	88.7	87.9	87.1	86.7
19	20	88.5	89.8	91.0	91.4	91.7	92.0	92.3	92.6	92.8	93.0	91.9	91.6	91.2	90.5	89.7	89.0	88.2	87.8
14	15	87.7	89.0	90.2	90.5	90.8	91.2	91.5	91.8	92.1	92.4	92.8	92.6	92.3	91.5	90.8	90.1	89.4	89.0
9	10	86.9	88.2	89.4	89.7	90.0	90.3	90.7	91.0	91.3	91.6	92.0	92.4	92.8	92.5	91.9	91.3	90.6	90.2
4	5	86.1	87.4	88.6	88.9	89.2	89.5	89.9	90.2	90.5	90.8	91.2	91.6	92.0	92.0	92.0	92.1	91.7	91.3
-1	0	85.3	86.5	87.8	88.1	88.5	88.7	89.0	89.3	89.7	90.0	90.4	90.8	91.2	91.2	91.3	91.3	91.3	91.3
-6	-5	84.5	85.7	87.0	87.3	87.6	87.9	88.2	88.5	88.8	89.2	89.6	90.0	90.4	90.4	90.5	90.5	90.5	90.5
-11	-10	83.7	84.9	86.2	86.5	86.8	87.0	87.3	87.6	88.0	88.3	88.8	89.2	89.6	89.6	89.7	89.7	89.7	89.7
-16	-15	82.9	84.1	85.3	85.6	85.9	86.2	86.4	86.8	87.1	87.5	87.9	88.3	88.7	88.8	88.8	88.9	88.9	88.9
-21	-20	82.1	83.3	84.5	84.8	85.1	85.4	85.6	85.9	86.3	86.7	87.1	87.5	87.9	88.0	88.0	88.0	88.1	88.1
-26	-25	81.3	82.5	83.7	84.0	84.3	84.5	84.8	85.1	85.4	85.8	86.2	86.7	87.0	87.1	87.2	87.2	87.2	87.3
-31	-30	80.4	81.6	82.8	83.1	83.4	83.7	83.9	84.2	84.6	85.0	85.4	85.8	86.2	86.3	86.3	86.4	86.4	86.4
-36	-35	79.6	80.8	82.0	82.3	82.6	82.8	83.1	83.4	83.7	84.1	84.5	84.9	85.3	85.4	85.4	85.5	85.6	85.6
-41	-40	78.8	80.0	81.1	81.4	81.7	82.0	82.2	82.5	82.9	83.2	83.6	84.0	84.4	84.5	84.6	84.6	84.7	84.7
-46	-45	77.9	79.1	80.3	80.6	80.9	81.1	81.4	81.7	82.0	82.4	82.7	83.1	83.5	83.6	83.6	83.7	83.8	83.8
-51	-50	77.1	78.2	79.4	79.7	80.0	80.2	80.5	80.8	81.1	81.5	81.8	82.2	82.6	82.7	82.7	82.8	82.9	82.9

%N1 Adjustment for Engine Bleeds

BLEED					AII	RPOF	RT PF	RESS	URE	ALT	ITUI	DE (1	000	FT)				
CONFIGURATION	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	14.5
PACKS OFF	0.5	0.5	0.6	0.6	0.7	0.8	0.8	0.9	0.9	1.0	1.0	1.0	1.1	1.2	1.4	1.6	1.7	1.8
A/C HIGH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ENGINE & WING ANTI-ICE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.5	-1.4	-1.5	-1.4	-1.4	-1.5	-1.5
ENGINE & WING ANTI-ICE*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.8	-2.2	-2.3	-2.3	-2.3	-2.4	-2.5

^{*}Single Bleed Source

Flight With Unreliable Airspeed/Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

CLIMB (280/.76)

Flaps Up, Set Max Climb Thrust

	PRESSURE		W	EIGHT	(1000 K	G)	
Α	ALTITUDE (FT)	40	50	60	70	80	90
40000	PITCH ATT	4.0	4.0	4.5			
40000	V/S (FT/MIN)	1700	1100	600			
30000	PITCH ATT	4.0	4.0	4.0	4.0	4.0	4.0
30000	V/S (FT/MIN)	2500	1900	1500	1100	800	600
20000	PITCH ATT	6.5	6.0	5.5	5.5	5.5	6.0
20000	V/S (FT/MIN)	3700	2900	2300	1800	1500	1200
10000	PITCH ATT	10.0	8.5	8.0	7.5	7.5	7.5
10000	V/S (FT/MIN)	5100	4000	3200	2700	2200	1900
SEA	PITCH ATT	14.0	11.5	10.5	9.5	9.0	9.0
LEVEL	V/S (FT/MIN)	6300	4900	4000	3300	2800	2400

CRUISE (.76/280)

Flaps Up, Set Thrust for Level Flight

	PRESSURE	1	W	EIGHT	(1000 K	G)	
Α	LTITUDE (FT)	40	50	60	70	80	90
40000	PITCH ATT	2.0	2.5	3.5			
40000	%N1	78.4	80.9	84.5			
35000	PITCH ATT	1.5	2.0	2.5	3.0	3.5	
33000	%N1	76.8	78.2	80.0	82.5	85.7	
30000	PITCH ATT	1.0	1.5	2.0	2.5	3.0	3.5
30000	%N1	76.2	77.1	78.3	79.8	81.6	84.2
25000	PITCH ATT	1.0	1.5	2.0	2.5	3.0	4.0
23000	%N1	72.2	73.0	74.3	75.7	77.6	79.8
20000	PITCH ATT	1.0	1.5	2.0	3.0	3.5	4.0
20000	%N1	68.1	69.0	70.1	71.5	73.2	75.4
15000	PITCH ATT	1.0	1.5	2.5	3.0	3.5	4.0
13000	%N1	64.3	65.0	66.1	67.3	68.9	70.9

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

DESCENT (.76/280) Flaps Up, Set Idle Thrust

	PRESSURE		W	EIGHT	(1000 K	G)	
Α	LTITUDE (FT)	40	50	60	70	80	90
40000	PITCH ATT	-1.0	0.0	0.5	1.5	1.5	1.0
40000	V/S (FT/MIN)	-2400	-2200	-2200	-2300	-2800	-3600
30000	PITCH ATT	-3.0	-2.0	-1.0	0.0	0.5	1.0
30000	V/S (FT/MIN)	-3000	-2500	-2200	-2000	-1900	-1900
20000	PITCH ATT	-3.5	-2.0	-1.0	0.0	0.5	1.5
20000	V/S (FT/MIN)	-2900	-2400	-2100	-1900	-1800	-1700
10000	PITCH ATT	-3.5	-2.0	-1.0	0.0	0.5	1.5
10000	V/S (FT/MIN)	-2700	-2200	-1900	-1800	-1600	-1600
SEA	PITCH ATT	-4.0	-2.5	-1.5	-0.5	0.5	1.0
LEVEL	V/S (FT/MIN)	-2400	-2000	-1800	-1600	-1500	-1400

HOLDING (VREF40 + 70)

Flaps Up, Set Thrust for Level Flight

• •		_								
PRESSURE ALTITUDE (FT)		WEIGHT (1000 KG)								
FKESS	OKE ALITIODE (F1)	40	50	60	70	80	90			
	PITCH ATT	4.5	5.0	5.5	5.0	5.5	5.0			
15000	%N1	49.9	54.5	59.1	63.2	66.8	70.1			
	KIAS	178	191	206	224	240	254			
	PITCH ATT	4.5	5.0	5.5	5.5	5.5	5.5			
10000	%N1	46.7	51.0	55.1	59.0	62.6	65.7			
	KIAS	178	191	206	222	80 5.5 66.8 240 5.5	253			
	PITCH ATT	5.0	5.0	5.5	5.5	5.5	5.5			
5000	%N1	43.7	47.8	51.7	55.3	58.8	61.9			
	KIAS	178	191	204	222	237	251			

737 Flight Crew Operations Manual

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

TERMINAL AREA (5000 FT)

Set Thrust for Level Flight Airport Altitude = -2000 FT

EL VD/CE	AR POSITION	WEIGHT (1000 KG)						
TLAI/GE	ARTOSITION	40	50	60	70	80	90	
FLAPS UP	PITCH ATT	4.5	5.0	5.5	6.0	6.0	6.5	
(GEAR UP)	%N1	41.9	45.9	49.7	53.1	56.4	59.7	
(VREF40+70)	KIAS	176	189	202	212	223	236	
FLAPS 1	PITCH ATT	4.5	5.0	5.5	6.0	6.0	6.0	
(GEAR UP)	%N1	44.1	48.2	52.1	55.6	59.1	62.5	
(VREF40+50)	KIAS	156	169	182	192	203	216	
FLAPS 5	PITCH ATT	5.5	5.5	6.0	6.0	6.5	6.0	
(GEAR UP)	%N1	43.5	48.1	52.4	56.0	59.7	63.1	
(VREF40+30)	KIAS	136	149	162	172	183	196	
FLAPS 10	PITCH ATT	4.0	4.5	5.0	5.0	5.0	5.0	
(GEAR UP)	%N1	44.7	49.4	53.6	57.4	61.1	64.6	
(VREF40+30)	KIAS	136	149	162	172	183	196	
FLAPS 15	PITCH ATT	5.0	5.0	5.5	5.5	5.5	5.5	
(GEAR UP)	%N1	44.9	49.9	54.2	58.2	62.0	65.5	
(VREF40+20)	KIAS	126	139	152	162	173	186	
FLAPS 25	PITCH ATT	6.0	6.0	6.0	6.5	6.0	6.0	
(GEAR UP)	%N1	45.7	50.8	55.3	59.5	63.3	66.7	
(VREF40+10)	KIAS	116	129	142	152	163	176	
FLAPS 15	PITCH ATT	5.0	5.0	5.5	5.5	5.5	5.5	
(GEAR DOWN)	%N1	49.1	54.2	58.9	63.2	67.2	70.9	
(VREF40+20)	KIAS	126	139	152	162	173	186	

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

TERMINAL AREA (5000 FT)

Set Thrust for Level Flight Airport Altitude = -1000 FT

ELAD/GE	AR POSITION	WEIGHT (1000 KG)							
FLAF/GE	AK FOSITION	40	50	60	70	80	90		
FLAPS UP	PITCH ATT	4.5	5.0	5.5	6.0	6.0	6.5		
(GEAR UP)	%N1	42.4	46.5	50.4	53.8	57.1	60.4		
(VREF40+70)	KIAS	176	189	202	212	223	236		
FLAPS 1	PITCH ATT	4.5	5.0	5.5	6.0	6.0	6.0		
(GEAR UP)	%N1	44.6	48.8	52.8	56.3	59.9	63.3		
(VREF40+50)	KIAS	156	169	182	192	203	216		
FLAPS 5	PITCH ATT	5.5	5.5	6.0	6.0	6.5	6.0		
(GEAR UP)	%N1	44.1	48.8	53.0	56.7	60.4	63.9		
(VREF40+30)	KIAS	136	149	162	172	183	196		
FLAPS 10	PITCH ATT	4.0	4.5	5.0	5.0	5.0	5.0		
(GEAR UP)	%N1	45.3	50.0	54.3	58.2	61.9	65.5		
(VREF40+30)	KIAS	136	149	162	172	183	196		
FLAPS 15	PITCH ATT	5.0	5.0	5.5	5.5	5.5	5.5		
(GEAR UP)	%N1	45.6	50.6	54.9	59.0	62.8	66.4		
(VREF40+20)	KIAS	126	139	152	162	173	186		
FLAPS 25	PITCH ATT	6.0	6.0	6.0	6.5	6.0	6.0		
(GEAR UP)	%N1	46.3	51.5	56.0	60.3	64.2	67.5		
(VREF40+10)	KIAS	116	129	142	152	163	176		
FLAPS 15	PITCH ATT	5.0	5.0	5.0	5.5	5.5	5.5		
(GEAR DOWN)	%N1	49.7	54.9	59.7	64.0	68.0	71.8		
(VREF40+20)	KIAS	126	139	152	162	173	186		

737 Flight Crew Operations Manual

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

TERMINAL AREA (5000 FT)

Set Thrust for Level Flight
Airport Altitude = SEA LEVEL

FLAP/GEAR POSITION			WEIGHT (1000 KG)						
TLAI/GE	AKTOSITION	40	50	60	70	80	90		
FLAPS UP	PITCH ATT	4.5	5.0	5.5	6.0	6.0	6.5		
(GEAR UP)	%N1	43.0	47.1	51.0	54.5	57.9	61.2		
(VREF40+70)	KIAS	176	190	202	212	224	236		
FLAPS 1	PITCH ATT	4.5	5.0	5.5	5.5	6.0	6.0		
(GEAR UP)	%N1	45.1	49.5	53.5	57.0	60.7	64.1		
(VREF40+50)	KIAS	156	170	182	192	204	216		
FLAPS 5	PITCH ATT	5.5	5.5	6.0	6.0	6.0	6.0		
(GEAR UP)	%N1	44.7	49.4	53.6	57.4	61.2	64.7		
(VREF40+30)	KIAS	136	150	162	172	184	196		
FLAPS 10	PITCH ATT	4.0	4.5	5.0	5.0	5.0	5.0		
(GEAR UP)	%N1	45.9	50.7	54.9	58.9	62.7	66.3		
(VREF40+30)	KIAS	136	150	162	172	184	196		
FLAPS 15	PITCH ATT	5.0	5.0	5.5	5.5	5.5	5.5		
(GEAR UP)	%N1	46.2	51.2	55.5	59.7	63.6	67.2		
(VREF40+20)	KIAS	126	140	152	162	174	186		
FLAPS 25	PITCH ATT	6.0	6.0	6.0	6.5	6.0	6.0		
(GEAR UP)	%N1	46.9	52.1	56.6	61.0	65.0	68.4		
(VREF40+10)	KIAS	116	130	142	152	164	176		
FLAPS 15	PITCH ATT	5.0	5.0	5.0	5.5	5.5	5.0		
(GEAR DOWN)	%N1	50.3	55.5	60.5	64.9	68.9	72.7		
(VREF40+20)	KIAS	126	140	152	162	174	186		

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

TERMINAL AREA (5000 FT)

Set Thrust for Level Flight Airport Altitude = 1000 FT

ELAD/GE	AR POSITION	WEIGHT (1000 KG)							
FLAF/GE	AK FOSITION	40	50	60	70	80	90		
FLAPS UP	PITCH ATT	4.5	5.0	5.5	6.0	6.0	6.5		
(GEAR UP)	%N1	43.6	47.7	51.6	55.2	58. 7	61.9		
(VREF40+70)	KIAS	177	190	202	212	224	236		
FLAPS 1	PITCH ATT	4.5	5.0	5.5	5.5	6.0	6.0		
(GEAR UP)	%N1	45.7	50.1	54.1	57.8	61.5	65.0		
(VREF40+50)	KIAS	157	170	182	192	204	216		
FLAPS 5	PITCH ATT	5.5	5.5	6.0	6.0	6.0	6.0		
(GEAR UP)	%N1	45.3	50.1	54.3	58.2	62.0	65.6		
(VREF40+30)	KIAS	137	150	162	172	184	196		
FLAPS 10	PITCH ATT	4.0	4.5	5.0	5.0	5.0	5.0		
(GEAR UP)	%N1	46.5	51.4	55.6	59.7	63.6	67.2		
(VREF40+30)	KIAS	137	150	162	172	184	196		
FLAPS 15	PITCH ATT	5.0	5.0	5.5	5.5	5.5	5.5		
(GEAR UP)	%N1	46.7	51.8	56.2	60.5	64.5	68.0		
(VREF40+20)	KIAS	127	140	152	162	174	186		
FLAPS 25	PITCH ATT	6.0	6.0	6.0	6.5	6.0	6.0		
(GEAR UP)	%N1	47.5	52.7	57.4	61.9	65.9	69.3		
(VREF40+10)	KIAS	117	130	142	152	164	176		
FLAPS 15	PITCH ATT	5.0	5.0	5.0	5.5	5.5	5.0		
(GEAR DOWN)	%N1	50.9	56.2	61.3	65.8	69.8	73.8		
(VREF40+20)	KIAS	127	140	152	162	174	186		

737 Flight Crew Operations Manual

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

TERMINAL AREA (5000 FT)

Set Thrust for Level Flight Airport Altitude = 2000 FT

ELAD/GE	AR POSITION	WEIGHT (1000 KG)						
FLAF/GE	AK FUSITION	40	50	60	70	80	90	
FLAPS UP	PITCH ATT	4.5	5.0	5.5	6.0	6.0	6.5	
(GEAR UP)	%N1	44.2	48.4	52.3	55.9	59.4	62.7	
(VREF40+70)	KIAS	177	190	202	213	224	236	
FLAPS 1	PITCH ATT	4.5	5.0	5.5	5.5	6.0	6.0	
(GEAR UP)	%N1	46.3	50.8	54.9	58.6	62.3	65.8	
(VREF40+50)	KIAS	157	170	182	193	204	216	
FLAPS 5	PITCH ATT	5.5	5.5	6.0	6.0	6.0	6.0	
(GEAR UP)	%N1	45.9	50.8	55.0	59.1	62.9	66.5	
(VREF40+30)	KIAS	137	150	162	173	184	196	
FLAPS 10	PITCH ATT	4.0	4.5	5.0	5.0	5.0	5.0	
(GEAR UP)	%N1	47.1	52.0	56.4	60.6	64.5	68.1	
(VREF40+30)	KIAS	137	150	162	173	184	196	
FLAPS 15	PITCH ATT	5.0	5.0	5.0	5.5	5.5	5.5	
(GEAR UP)	%N1	47.3	52.4	57.0	61.4	65.5	68.9	
(VREF40+20)	KIAS	127	140	152	163	174	186	
FLAPS 25	PITCH ATT	6.0	6.0	6.0	6.0	6.0	5.5	
(GEAR UP)	%N1	48.1	53.4	58.1	62.7	66.7	70.2	
(VREF40+10)	KIAS	117	130	142	153	164	176	
FLAPS 15	PITCH ATT	5.0	5.0	5.0	5.5	5.5	5.0	
(GEAR DOWN)	%N1	51.6	57.0	62.2	66.7	70.8	74.8	
(VREF40+20)	KIAS	127	140	152	163	174	186	

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

TERMINAL AREA (5000 FT)

Set Thrust for Level Flight Airport Altitude = 3000 FT

FLAD/GE	AR POSITION		WE	IGHT	(1000)	KG)	
FLAI/GE	AKTOSITION	40	50	60	70	80	90
FLAPS UP	PITCH ATT	4.5	5.0	5.5	6.0	6.0	6.5
(GEAR UP)	%N1	44.7	49.1	53.0	56.6	60.2	63.5
(VREF40+70)	KIAS	177	190	203	213	224	237
FLAPS 1	PITCH ATT	4.5	5.0	5.5	5.5	6.0	6.0
(GEAR UP)	%N1	46.9	51.6	55.6	59.4	63.2	66.7
(VREF40+50)	KIAS	157	170	183	193	204	217
FLAPS 5	PITCH ATT	5.5	5.5	6.0	6.0	6.0	6.0
(GEAR UP)	%N1	46.4	51.4	55.8	59.9	63.8	67.4
(VREF40+30)	KIAS	137	150	163	173	184	197
FLAPS 10	PITCH ATT	4.0	4.5	4.5	5.0	5.0	5.0
(GEAR UP)	%N1	47.6	52.6	57.1	61.5	65.4	69.0
(VREF40+30)	KIAS	137	150	163	173	184	197
FLAPS 15	PITCH ATT	5.0	5.0	5.0	5.5	5.5	5.5
(GEAR UP)	%N1	47.9	53.1	57.8	62.3	66.3	69.9
(VREF40+20)	KIAS	127	140	153	163	174	187
FLAPS 25	PITCH ATT	6.0	6.0	6.0	6.0	6.0	5.5
(GEAR UP)	%N1	48.8	54.0	58.9	63.7	67.6	71.2
(VREF40+10)	KIAS	117	130	143	153	164	177
FLAPS 15	PITCH ATT	5.0	5.0	5.0	5.5	5.5	5.0
(GEAR DOWN)	%N1	52.2	57.8	63.1	67.6	71.8	75.8
(VREF40+20)	KIAS	127	140	153	163	174	187

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

TERMINAL AREA (5000 FT)

Set Thrust for Level Flight Airport Altitude = 4000 FT

ELAD/GE	AR POSITION		WE	IGHT	(1000	KG)	
FLAF/GE	AK FUSITION	40	50	60	70	80	90
FLAPS UP	PITCH ATT	4.5	5.0	5.5	6.0	6.0	6.0
(GEAR UP)	%N1	45.3	49.7	53.7	57.4	61.0	64.3
(VREF40+70)	KIAS	177	190	203	213	224	237
FLAPS 1	PITCH ATT	4.5	5.0	5.5	5.5	6.0	6.0
(GEAR UP)	%N1	47.6	52.3	56.4	60.3	64.1	67.6
(VREF40+50)	KIAS	157	170	183	193	204	217
FLAPS 5	PITCH ATT	5.5	5.5	6.0	6.0	6.0	6.0
(GEAR UP)	%N1	47.0	52.1	56.5	60.8	64.7	68.3
(VREF40+30)	KIAS	137	150	163	173	184	197
FLAPS 10	PITCH ATT	4.0	4.5	4.5	5.0	5.0	5.0
(GEAR UP)	%N1	48.3	53.3	58.0	62.4	66.3	70.0
(VREF40+30)	KIAS	137	150	163	173	184	197
FLAPS 15	PITCH ATT	5.0	5.0	5.0	5.5	5.5	5.5
(GEAR UP)	%N1	48.5	53.7	58.6	63.2	67.2	70.9
(VREF40+20)	KIAS	127	140	153	163	174	187
FLAPS 25	PITCH ATT	6.0	6.0	6.0	6.0	6.0	5.5
(GEAR UP)	%N1	49.4	54.7	59.7	64.6	68.5	72.2
(VREF40+10)	KIAS	117	130	143	153	164	177
FLAPS 15	PITCH ATT	5.0	5.0	5.0	5.5	5.5	5.0
(GEAR DOWN)	%N1	52.9	58.6	64.1	68.5	72.8	76.9
(VREF40+20)	KIAS	127	140	153	163	174	187

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

TERMINAL AREA (5000 FT)

Set Thrust for Level Flight Airport Altitude = 5000 FT

ELAD/GE	AR POSITION		WE	IGHT	(1000	KG)	
TLAI/GE	AKTOSITION	40	50	60	70	80	90
FLAPS UP	PITCH ATT	4.5	5.0	5.5	6.0	6.0	6.0
(GEAR UP)	%N1	45.9	50.4	54.4	58.2	61.8	65.1
(VREF40+70)	KIAS	177	191	203	213	225	237
FLAPS 1	PITCH ATT	4.5	5.0	5.5	5.5	6.0	6.0
(GEAR UP)	%N1	48.2	53.0	57.2	61.2	65.0	68.5
(VREF40+50)	KIAS	157	171	183	193	205	217
FLAPS 5	PITCH ATT	5.5	5.5	6.0	6.0	6.0	6.0
(GEAR UP)	%N1	47.7	52.7	57.4	61.7	65.7	69.3
(VREF40+30)	KIAS	137	151	163	173	185	197
FLAPS 10	PITCH ATT	4.0	4.5	4.5	5.0	5.0	5.0
(GEAR UP)	%N1	49.0	54.0	58.9	63.3	67.2	71.0
(VREF40+30)	KIAS	137	151	163	173	185	197
FLAPS 15	PITCH ATT	5.0	5.0	5.0	5.5	5.5	5.0
(GEAR UP)	%N1	49.2	54.4	59.5	64.2	68.1	71.9
(VREF40+20)	KIAS	127	141	153	163	175	187
FLAPS 25	PITCH ATT	6.0	6.0	6.0	6.0	6.0	5.5
(GEAR UP)	%N1	50.0	55.4	60.6	65.5	69.5	73.2
(VREF40+10)	KIAS	117	131	143	153	165	177
FLAPS 15	PITCH ATT	4.5	5.0	5.0	5.5	5.5	5.0
(GEAR DOWN)	%N1	53.5	59.5	65.0	69.5	73.8	78.0
(VREF40+20)	KIAS	127	141	153	163	175	187

737-8/LEAP-1B27 FAA CATB

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

TERMINAL AREA (5000 FT)

Set Thrust for Level Flight Airport Altitude = 6000 FT

ELAD/GE	AR POSITION		WE	IGHT	(1000	KG)	
rlar/GE	AK FOSITION	40	50	60	70	80	90
FLAPS UP	PITCH ATT	4.5	5.0	5.5	6.0	6.0	6.0
(GEAR UP)	%N1	46.5	51.0	55.1	59.0	62.7	66.0
(VREF40+70)	KIAS	177	191	203	213	225	238
FLAPS 1	PITCH ATT	4.5	5.0	5.5	5.5	6.0	6.0
(GEAR UP)	%N1	48.9	53.7	58.0	62.0	65.9	69.4
(VREF40+50)	KIAS	157	171	183	193	205	218
FLAPS 5	PITCH ATT	5.0	5.5	6.0	6.0	6.0	6.0
(GEAR UP)	%N1	48.3	53.5	58.3	62.6	66.6	70.2
(VREF40+30)	KIAS	137	151	163	173	185	198
FLAPS 10	PITCH ATT	4.0	4.5	4.5	5.0	5.0	5.0
(GEAR UP)	%N1	49.7	54.8	59.8	64.2	68.2	72.0
(VREF40+30)	KIAS	137	151	163	173	185	198
FLAPS 15	PITCH ATT	5.0	5.0	5.0	5.5	5.5	5.0
(GEAR UP)	%N1	49.8	55.2	60.4	65.1	69.1	72.9
(VREF40+20)	KIAS	127	141	153	163	175	188
FLAPS 25	PITCH ATT	6.0	6.0	6.0	6.0	6.0	5.5
(GEAR UP)	%N1	50.6	56.2	61.6	66.4	70.5	74.2
(VREF40+10)	KIAS	117	131	143	153	165	178
FLAPS 15	PITCH ATT	4.5	5.0	5.0	5.5	5.5	5.0
(GEAR DOWN)	%N1	54.3	60.4	65.9	70.5	74.9	79.1
(VREF40+20)	KIAS	127	141	153	163	175	188

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

TERMINAL AREA (5000 FT)

Set Thrust for Level Flight Airport Altitude = 7000 FT

ELAD/GE	AR POSITION		WE	IGHT	(1000	KG)	
FLAF/GE	AK FOSITION	40	50	60	70	80	90
FLAPS UP	PITCH ATT	4.5	5.0	5.5	6.0	6.0	6.0
(GEAR UP)	%N1	47.1	51.7	55.9	59.8	63.5	66.9
(VREF40+70)	KIAS	177	191	203	213	225	238
FLAPS 1	PITCH ATT	4.5	5.0	5.5	5.5	6.0	6.0
(GEAR UP)	%N1	49.7	54.4	58.9	63.0	66.8	70.4
(VREF40+50)	KIAS	157	171	183	193	205	218
FLAPS 5	PITCH ATT	5.0	5.5	5.5	6.0	6.0	6.0
(GEAR UP)	%N1	49.1	54.3	59.1	63.5	67.5	71.2
(VREF40+30)	KIAS	137	151	163	173	185	198
FLAPS 10	PITCH ATT	4.0	4.5	4.5	5.0	5.0	5.0
(GEAR UP)	%N1	50.4	55.7	60.7	65.2	69.2	72.9
(VREF40+30)	KIAS	137	151	163	173	185	198
FLAPS 15	PITCH ATT	5.0	5.0	5.0	5.5	5.5	5.0
(GEAR UP)	%N1	50.5	56.0	61.4	66.0	70.1	73.9
(VREF40+20)	KIAS	127	141	153	163	175	188
FLAPS 25	PITCH ATT	6.0	6.0	6.0	6.0	6.0	5.5
(GEAR UP)	%N1	51.3	57.0	62.6	67.3	71.5	75.3
(VREF40+10)	KIAS	117	131	143	153	165	178
FLAPS 15	PITCH ATT	4.5	5.0	5.0	5.5	5.5	5.0
(GEAR DOWN)	%N1	55.0	61.4	66.9	71.5	75.9	80.1
(VREF40+20)	KIAS	127	141	153	163	175	188

737-8/LEAP-1B27 FAA CATB

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

TERMINAL AREA (5000 FT)

Set Thrust for Level Flight Airport Altitude = 8000 FT

ELAD/GE	AR POSITION		WE	IGHT	(1000	KG)	
TLAI/GE	AKTOSITION	40	50	60	70	80	90
FLAPS UP	PITCH ATT	4.5	5.0	5.5	6.0	6.0	6.0
(GEAR UP)	%N1	47.8	52.4	56.7	60.7	64.4	67.8
(VREF40+70)	KIAS	177	191	204	214	226	238
FLAPS 1	PITCH ATT	4.5	5.0	5.5	5.5	6.0	6.0
(GEAR UP)	%N1	50.4	55.2	59.8	63.9	67.7	71.3
(VREF40+50)	KIAS	157	171	184	194	206	218
FLAPS 5	PITCH ATT	5.0	5.5	5.5	6.0	6.0	6.0
(GEAR UP)	%N1	49.8	55.1	60.0	64.5	68.5	72.2
(VREF40+30)	KIAS	137	151	164	174	186	198
FLAPS 10	PITCH ATT	4.0	4.5	4.5	5.0	5.0	5.0
(GEAR UP)	%N1	51.0	56.5	61.6	66.1	70.2	74.0
(VREF40+30)	KIAS	137	151	164	174	186	198
FLAPS 15	PITCH ATT	5.0	5.0	5.0	5.5	5.5	5.0
(GEAR UP)	%N1	51.2	56.9	62.3	66.9	71.1	74.9
(VREF40+20)	KIAS	127	141	154	164	176	188
FLAPS 25	PITCH ATT	6.0	6.0	6.0	6.0	6.0	5.5
(GEAR UP)	%N1	52.0	57.9	63.5	68.3	72.5	76.3
(VREF40+10)	KIAS	117	131	144	154	166	178
FLAPS 15	PITCH ATT	4.5	5.0	5.0	5.5	5.5	5.0
(GEAR DOWN)	%N1	55.8	62.4	67.9	72.6	77.0	81.1
(VREF40+20)	KIAS	127	141	154	164	176	188

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

TERMINAL AREA (5000 FT)

Set Thrust for Level Flight Airport Altitude = 9000 FT

ELAD/GE	AR POSITION		WE	IGHT	(1000	KG)	
TLAI/GE	AKTOSITION	40	50	60	70	80	90
FLAPS UP	PITCH ATT	4.5	5.0	5.5	6.0	6.0	6.0
(GEAR UP)	%N1	48.5	53.2	57.6	61.6	65.3	68.7
(VREF40+70)	KIAS	178	191	204	214	226	239
FLAPS 1	PITCH ATT	4.5	5.0	5.5	5.5	6.0	6.0
(GEAR UP)	%N1	51.2	56.0	60.7	64.8	68.7	72.3
(VREF40+50)	KIAS	158	171	184	194	206	219
FLAPS 5	PITCH ATT	5.0	5.5	5.5	6.0	6.0	6.0
(GEAR UP)	%N1	50.5	56.0	61.0	65.4	69.5	73.2
(VREF40+30)	KIAS	138	151	164	174	186	199
FLAPS 10	PITCH ATT	4.0	4.5	4.5	5.0	5.0	5.0
(GEAR UP)	%N1	51.8	57.5	62.6	67.0	71.2	75.0
(VREF40+30)	KIAS	138	151	164	174	186	199
FLAPS 15	PITCH ATT	5.0	5.0	5.0	5.5	5.5	5.0
(GEAR UP)	%N1	51.9	57.8	63.3	67.9	72.1	76.0
(VREF40+20)	KIAS	128	141	154	164	176	189
FLAPS 25	PITCH ATT	5.5	6.0	6.0	6.0	6.0	5.5
(GEAR UP)	%N1	52.7	58.8	64.5	69.3	73.5	77.4
(VREF40+10)	KIAS	118	131	144	154	166	179
FLAPS 15	PITCH ATT	4.5	5.0	5.0	5.5	5.5	5.0
(GEAR DOWN)	%N1	56.7	63.4	68.9	73.6	78.1	82.1
(VREF40+20)	KIAS	128	141	154	164	176	189

737-8/LEAP-1B27 FAA CATB

737 Flight Crew Operations Manual

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

TERMINAL AREA (5000 FT)

Set Thrust for Level Flight Airport Altitude = 10000 FT

ELAD/GE	AR POSITION		WE	IGHT	(1000	KG)	
TLAI/GE	AKTOSITION	40	50	60	70	80	90
FLAPS UP	PITCH ATT	4.5	5.0	5.5	6.0	6.0	6.0
(GEAR UP)	%N1	49.2	53.9	58.4	62.4	66.2	69.6
(VREF40+70)	KIAS	178	192	204	214	226	239
FLAPS 1	PITCH ATT	4.5	5.0	5.5	5.5	6.0	6.0
(GEAR UP)	%N1	51.9	56.9	61.6	65.7	69.7	73.3
(VREF40+50)	KIAS	158	172	184	194	206	219
FLAPS 5	PITCH ATT	5.0	5.5	5.5	6.0	6.0	6.0
(GEAR UP)	%N1	51.2	56.8	61.9	66.4	70.5	74.3
(VREF40+30)	KIAS	138	152	164	174	186	199
FLAPS 10	PITCH ATT	4.0	4.5	4.5	5.0	5.0	5.0
(GEAR UP)	%N1	52.5	58.4	63.5	68.0	72.2	76.0
(VREF40+30)	KIAS	138	152	164	174	186	199
FLAPS 15	PITCH ATT	4.5	5.0	5.0	5.5	5.5	5.0
(GEAR UP)	%N1	52.7	58.8	64.3	68.9	73.2	77.0
(VREF40+20)	KIAS	128	142	154	164	176	189
FLAPS 25	PITCH ATT	5.5	5.5	6.0	6.0	6.0	5.5
(GEAR UP)	%N1	53.5	59.8	65.4	70.3	74.6	78.4
(VREF40+10)	KIAS	118	132	144	154	166	179
FLAPS 15	PITCH ATT	4.5	5.0	5.0	5.5	5.0	5.0
(GEAR DOWN)	%N1	57.7	64.4	69.9	74.7	79.2	83.1
(VREF40+20)	KIAS	128	142	154	164	176	189

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

TERMINAL AREA (5000 FT)

Set Thrust for Level Flight Airport Altitude = 11000 FT

EL VD/CE	AR POSITION		WE	IGHT	(1000	KG)	
FLAF/GE	AK FOSITION	40	50	60	70	80	90
FLAPS UP	PITCH ATT	4.5	5.0	5.5	6.0	6.0	6.0
(GEAR UP)	%N1	49.9	54.7	59.2	63.3	67.1	70.6
(VREF40+70)	KIAS	178	192	204	214	227	240
FLAPS 1	PITCH ATT	4.5	5.0	5.5	5.5	6.0	5.5
(GEAR UP)	%N1	52.6	57.8	62.6	66.6	70.6	74.3
(VREF40+50)	KIAS	158	172	184	194	207	220
FLAPS 5	PITCH ATT	5.0	5.5	5.5	6.0	6.0	6.0
(GEAR UP)	%N1	52.0	57.7	62.9	67.3	71.5	75.3
(VREF40+30)	KIAS	138	152	164	174	187	200
FLAPS 10	PITCH ATT	4.0	4.5	4.5	5.0	5.0	5.0
(GEAR UP)	%N1	53.4	59.3	64.5	69.0	73.2	77.1
(VREF40+30)	KIAS	138	152	164	174	187	200
FLAPS 15	PITCH ATT	4.5	5.0	5.0	5.5	5.5	5.0
(GEAR UP)	%N1	53.5	59.8	65.2	69.9	74.2	78.1
(VREF40+20)	KIAS	128	142	154	164	177	190
FLAPS 25	PITCH ATT	5.5	5.5	6.0	6.0	6.0	5.5
(GEAR UP)	%N1	54.4	60.9	66.4	71.3	75.6	79.4
(VREF40+10)	KIAS	118	132	144	154	167	180
FLAPS 15	PITCH ATT	4.5	5.0	5.0	5.5	5.0	5.0
(GEAR DOWN)	%N1	58.8	65.4	70.9	75.7	80.2	84.2
(VREF40+20)	KIAS	128	142	154	164	177	190

737-8/LEAP-1B27 FAA CATB

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

TERMINAL AREA (5000 FT)

Set Thrust for Level Flight Airport Altitude = 12000 FT

ELAD/GE	AR POSITION		WE	GHT	(1000	KG)	
FLAF/GE	AK FOSITION	40	50	60	70	80	90
FLAPS UP	PITCH ATT	4.5	5.0	5.5	6.0	6.0	6.0
(GEAR UP)	%N1	50.6	55.5	60.1	64.3	68.0	71.6
(VREF40+70)	KIAS	178	192	204	214	227	240
FLAPS 1	PITCH ATT	4.5	5.0	5.5	5.5	6.0	5.5
(GEAR UP)	%N1	53.4	58.7	63.5	67.6	71.6	75.3
(VREF40+50)	KIAS	158	172	184	194	207	220
FLAPS 5	PITCH ATT	5.0	5.5	5.5	6.0	6.0	6.0
(GEAR UP)	%N1	52.8	58.6	63.9	68.3	72.5	76.3
(VREF40+30)	KIAS	138	152	164	174	187	200
FLAPS 10	PITCH ATT	4.0	4.5	4.5	5.0	5.0	5.0
(GEAR UP)	%N1	54.3	60.3	65.4	70.0	74.2	78.1
(VREF40+30)	KIAS	138	152	164	174	187	200
FLAPS 15	PITCH ATT	4.5	5.0	5.0	5.5	5.5	5.0
(GEAR UP)	%N1	54.5	60.8	66.2	70.9	75.2	79.1
(VREF40+20)	KIAS	128	142	154	164	177	190
FLAPS 25	PITCH ATT	5.5	5.5	6.0	6.0	6.0	5.5
(GEAR UP)	%N1	55.3	62.0	67.4	72.4	76.7	80.4
(VREF40+10)	KIAS	118	132	144	154	167	180
FLAPS 15	PITCH ATT	4.5	5.0	5.0	5.5	5.0	5.0
(GEAR DOWN)	%N1	59.9	66.4	72.0	76.8	81.2	85.3
(VREF40+20)	KIAS	128	142	154	164	177	190

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

TERMINAL AREA (5000 FT)

Set Thrust for Level Flight Airport Altitude = 13000 FT

ELAD/GE	AR POSITION		WE	IGHT	(1000	KG)	
FLAF/GE	AK FOSITION	40	50	60	70	80	90
FLAPS UP	PITCH ATT	4.5	5.0	5.5	6.0	6.0	6.0
(GEAR UP)	%N1	51.3	56.4	61.0	65.2	69.0	72.5
(VREF40+70)	KIAS	178	192	204	215	227	241
FLAPS 1	PITCH ATT	4.5	5.0	5.5	5.5	5.5	5.5
(GEAR UP)	%N1	54.2	59.6	64.4	68.6	72.6	76.4
(VREF40+50)	KIAS	158	172	184	195	207	221
FLAPS 5	PITCH ATT	5.0	5.5	5.5	6.0	6.0	6.0
(GEAR UP)	%N1	53.7	59.6	64.8	69.3	73.5	77.4
(VREF40+30)	KIAS	138	152	164	175	187	201
FLAPS 10	PITCH ATT	4.0	4.5	4.5	5.0	5.0	5.0
(GEAR UP)	%N1	55.2	61.3	66.4	71.0	75.3	79.1
(VREF40+30)	KIAS	138	152	164	175	187	201
FLAPS 15	PITCH ATT	4.5	5.0	5.0	5.5	5.0	5.0
(GEAR UP)	%N1	55.4	61.8	67.2	72.0	76.3	80.1
(VREF40+20)	KIAS	128	142	154	165	177	191
FLAPS 25	PITCH ATT	5.5	5.5	5.5	6.0	5.5	5.5
(GEAR UP)	%N1	56.3	63.0	68.4	73.4	77.7	81.4
(VREF40+10)	KIAS	118	132	144	155	167	181
FLAPS 15	PITCH ATT	4.5	5.0	5.0	5.5	5.0	5.0
(GEAR DOWN)	%N1	61.0	67.4	73.0	77.9	82.3	86.4
(VREF40+20)	KIAS	128	142	154	165	177	191

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

TERMINAL AREA (5000 FT)

Set Thrust for Level Flight Airport Altitude = 14000 FT

ELAD/GE	AR POSITION		WE	IGHT	(1000	KG)	
TLAI/GE	AKTOSITION	40	50	60	70	80	90
FLAPS UP	PITCH ATT	4.5	5.0	5.5	6.0	6.0	6.0
(GEAR UP)	%N1	52.1	57.2	61.9	66.1	69.9	73.5
(VREF40+70)	KIAS	179	192	205	215	228	241
FLAPS 1	PITCH ATT	4.5	5.0	5.5	5.5	5.5	5.5
(GEAR UP)	%N1	55.1	60.6	65.4	69.6	73.7	77.4
(VREF40+50)	KIAS	159	172	185	195	208	221
FLAPS 5	PITCH ATT	5.0	5.5	5.5	6.0	6.0	6.0
(GEAR UP)	%N1	54.5	60.6	65.8	70.3	74.6	78.4
(VREF40+30)	KIAS	139	152	165	175	188	201
FLAPS 10	PITCH ATT	4.0	4.5	4.5	5.0	5.0	4.5
(GEAR UP)	%N1	56.1	62.2	67.4	72.0	76.4	80.1
(VREF40+30)	KIAS	139	152	165	175	188	201
FLAPS 15	PITCH ATT	4.5	5.0	5.0	5.5	5.0	5.0
(GEAR UP)	%N1	56.4	62.9	68.2	73.0	77.4	81.1
(VREF40+20)	KIAS	129	142	155	165	178	191
FLAPS 25	PITCH ATT	5.5	5.5	5.5	6.0	5.5	5.5
(GEAR UP)	%N1	57.3	63.9	69.4	74.5	78.8	82.5
(VREF40+10)	KIAS	119	132	145	155	168	181
FLAPS 15	PITCH ATT	4.5	5.0	5.0	5.5	5.0	5.0
(GEAR DOWN)	%N1	62.1	68.4	74.1	79.0	83.3	87.5
(VREF40+20)	KIAS	129	142	155	165	178	191

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

FINAL APPROACH (1500 FT)

Gear Down, Set Thrust for 3° Glideslope Airport Altitude = -2000 FT

ELAD/GE	FLAP/GEAR POSITION		WE	IGHT	(1000)	KG)	
FLAI/GE	AKTOSITION	40	50	60	70	80	90
FLAPS 15	PITCH ATT	1.5	1.5	2.0	2.0	2.0	2.0
(VREF15+10)	%N1	35.5	38.9	42.0	44.8	47.4	49.9
(VKEF15+10)	KIAS	128	142	155	166	176	186
FLAPS 30	PITCH ATT	0.5	0.5	1.0	1.0	1.0	1.0
(VREF30+10)	%N1	40.0	44.2	48.1	51.6	54.7	57.6
(VKEF30+10)	KIAS	122	135	148	158	169	178
FLAPS 40	PITCH ATT	0.0	0.0	0.0	0.5	0.0	-0.5
	%N1	44.4	49.2	53.5	57.2	61.0	64.9
(VREF40+10)	KIAS	116	129	141	151	162	175

Flap placard speed exceeded in shaded area.

Airport Altitude = -1000 FT

ELAD/GE	FLAP/GEAR POSITION		WE	IGHT	(1000)	KG)	
FLAI/GE	ARTOSITION	40	50	60	70	80	90
FLAPS 15	PITCH ATT	1.5	1.5	2.0	2.0	2.0	2.0
(VREF15+10)	%N1	35.8	39.2	42.5	45.3	48.0	50.5
(VKEF15+10)	KIAS	128	142	155	166	176	186
FLAPS 30	PITCH ATT	0.5	0.5	1.0	1.0	1.0	1.0
(VREF30+10)	%N1	40.5	44.8	48.7	52.2	55.3	58.2
(VKEF30+10)	KIAS	122	135	148	159	169	178
FLAPS 40	PITCH ATT	0.0	0.0	0.0	0.5	0.0	-0.5
(VREF40+10)	%N1	45.0	49.8	54.2	57.9	61.8	65.7
(VKEP40+10)	KIAS	116	129	141	151	163	175

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

FINAL APPROACH (1500 FT)

Gear Down, Set Thrust for 3° Glideslope Airport Altitude = SEA LEVEL

EL VD/CE	FLAP/GEAR POSITION		WE	IGHT	(1000	KG)	
TLAI/OL	AKTOSITION	40	50	60	70	80	90
FLAPS 15	PITCH ATT	1.5	1.5	2.0	2.0	2.0	2.0
(VREF15+10)	%N1	36.1	39.6	43.0	45.8	48.6	51.1
(VKEF13+10)	KIAS	128	142	155	166	176	187
FLAPS 30	PITCH ATT	0.5	0.5	1.0	1.0	1.0	1.0
	%N1	41.0	45.4	49.4	52.8	55.9	58.9
(VREF30+10)	KIAS	122	135	148	159	169	178
FLAPS 40	PITCH ATT	0.0	0.0	0.0	0.0	0.0	-0.5
-	%N1	45.6	50.5	54.8	58.6	62.5	66.5
(VREF40+10)	KIAS	116	129	141	151	163	175

Flap placard speed exceeded in shaded area.

Airport Altitude = 1000 FT

ELAD/GE	FLAP/GEAR POSITION		WE	IGHT	(1000	KG)	
FLAI/GE	AKTOSITION	40	50	60	70	80	90
FLAPS 15	PITCH ATT	1.5	1.5	2.0	2.0	2.0	2.0
(VREF15+10)	%N1	36.4	40.1	43.5	46.4	49.2	51.8
(VKEF15+10)	KIAS	128	142	155	166	176	187
FLAPS 30	PITCH ATT	0.5	0.5	1.0	1.0	1.0	1.0
(VREF30+10)	%N1	41.6	46.0	50.0	53.4	56.6	59.6
(VKEF30+10)	KIAS	122	135	148	159	169	179
FLAPS 40	PITCH ATT	0.0	0.0	0.0	0.0	0.0	-0.5
(VREF40+10)	%N1	46.2	51.1	55.5	59.3	63.3	67.2
(VKEP40+10)	KIAS	116	129	141	151	163	175

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

FINAL APPROACH (1500 FT)

Gear Down, Set Thrust for 3° Glideslope Airport Altitude = 2000 FT

ELAD/GE	FLAP/GEAR POSITION		WE	IGHT	(1000)	KG)	
FLAI/GE	AKTOSITION	40	50	60	70	80	90
FLAPS 15	PITCH ATT	1.5	1.5	2.0	2.0	2.0	2.0
(VREF15+10)	%N1	36.7	40.5	44.0	46.9	49.7	52.4
(VKEF15+10)	KIAS	128	142	155	166	177	187
FLAPS 30	PITCH ATT	0.5	0.5	1.0	1.0	1.0	1.0
(VREF30+10)	%N1	42.1	46.6	50.7	54.0	57.2	60.3
(VKEF30+10)	KIAS	122	135	148	159	169	179
FLAPS 40	PITCH ATT	0.0	0.0	0.0	0.0	0.0	-0.5
(VREF40+10)	%N1	46.8	51.7	56.1	60.1	64.1	68.0
(VKEF40+10)	KIAS	116	129	141	152	163	176

Flap placard speed exceeded in shaded area.

Airport Altitude = 3000 FT

ELAD/GE	FLAP/GEAR POSITION		WE.	IGHT	(1000)	KG)	
FLAI/GE	AKTOSITION	40	50	60	70	80	90
FLAPS 15	PITCH ATT	1.5	1.5	2.0	2.0	2.0	2.0
(VREF15+10)	%N1	37.1	41.1	44.5	47.5	50.3	53.0
(VKEF15+10)	KIAS	128	142	155	166	177	187
FLAPS 30	PITCH ATT	0.5	0.5	1.0	1.0	1.0	1.0
(VREF30+10)	%N1	42.7	47.2	51.3	54.6	57.9	61.0
(VKEF30+10)	KIAS	122	136	148	159	169	179
FLAPS 40	PITCH ATT	0.0	0.0	0.0	0.0	0.0	-0.5
(VREF40+10)	%N1	47.4	52.3	56.8	60.9	65.0	68.9
(VKEP40+10)	KIAS	116	129	142	152	163	176

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

FINAL APPROACH (1500 FT)

Gear Down, Set Thrust for 3° Glideslope Airport Altitude = 4000 FT

ELAD/GE	FLAP/GEAR POSITION		WE	IGHT	(1000	KG)	
TLAI/GE	AKTOSITION	40	50	60	70	80	90
FLAPS 15	PITCH ATT	1.5	1.5	2.0	2.0	2.0	2.0
(VREF15+10)	%N1	37.5	41.6	45.0	48.1	51.0	53.6
(VKEF15+10)	KIAS	128	142	155	166	177	187
FLAPS 30	PITCH ATT	0.5	0.5	1.0	1.0	1.0	1.0
(VREF30+10)	%N1	43.2	47.8	51.9	55.3	58.7	61.8
(VKEF30+10)	KIAS	122	136	148	159	169	179
FLAPS 40	PITCH ATT	0.0	0.0	0.0	0.0	0.0	-0.5
(VREF40+10)	%N1	48.0	53.0	57.6	61.7	65.8	69.8
(VKEF40+10)	KIAS	116	129	142	152	163	176

Flap placard speed exceeded in shaded area.

Airport Altitude = 5000 FT

ELAD/GE	FLAP/GEAR POSITION		WE	IGHT	(1000	KG)	
FLAI/GE	AKTOSITION	40	50	60	70	80	90
FLAPS 15	PITCH ATT	1.5	1.5	2.0	2.0	2.0	2.0
	%N1	37.9	42.1	45.6	48.7	51.6	54.3
(VREF15+10)	KIAS	128	142	155	166	177	187
FLAPS 30	PITCH ATT	0.5	0.5	1.0	1.0	1.0	1.0
(VREF30+10)	%N1	43.7	48.3	52.5	56.0	59.4	62.7
(VKEF30+10)	KIAS	122	136	148	159	169	179
FLAPS 40	PITCH ATT	0.0	0.0	0.0	0.0	0.0	-0.5
(VREF40+10)	%N1	48.7	53.7	58.3	62.5	66.7	70.7
(VKEF40+10)	KIAS	116	130	142	152	164	176

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

FINAL APPROACH (1500 FT)

Gear Down, Set Thrust for 3° Glideslope Airport Altitude = 6000 FT

ELAD/GE	FLAP/GEAR POSITION		WE	IGHT	(1000)	KG)	
FLAI/GE	AKTOSITION	40	50	60	70	80	90
FLAPS 15	PITCH ATT	1.5	1.5	2.0	2.0	2.0	2.0
(VREF15+10)	%N1	38.3	42.5	46.1	49.3	52.3	54.9
(VKEF15+10)	KIAS	128	142	155	166	177	187
FLAPS 30	PITCH ATT	0.5	0.5	1.0	1.0	1.0	1.0
(VREF30+10)	%N1	44.3	49.0	53.1	56.7	60.2	63.5
(VKEF30+10)	KIAS	122	136	148	159	169	179
FLAPS 40	PITCH ATT	0.0	0.0	0.0	0.0	0.0	-0.5
(VREF40+10)	%N1	49.3	54.3	59.2	63.5	67.6	71.7
(VKEF40+10)	KIAS	117	130	142	152	164	176

Flap placard speed exceeded in shaded area.

Airport Altitude = 7000 FT

ELAD/GE	FLAP/GEAR POSITION		WE	IGHT	(1000)	KG)	
FLAI/GE	AKTOSITION	40	50	60	70	80	90
FLAPS 15	PITCH ATT	1.5	1.5	2.0	2.0	2.0	2.0
(VREF15+10)	%N1	38.8	43.0	46.7	49.9	52.9	55.6
(VKEF15+10)	KIAS	128	142	155	166	177	187
FLAPS 30	PITCH ATT	0.5	0.5	1.0	1.0	1.0	1.0
(VREF30+10)	%N1	44.9	49.6	53.7	57.4	61.1	64.4
(VKEF30+10)	KIAS	122	136	148	159	169	179
FLAPS 40	PITCH ATT	0.0	0.0	0.0	0.0	0.0	-0.5
(VREF40+10)	%N1	49.8	55.0	60.1	64.4	68.5	72.7
(VKEF40+10)	KIAS	117	130	142	153	164	176

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

FINAL APPROACH (1500 FT)

Gear Down, Set Thrust for 3° Glideslope Airport Altitude = 8000 FT

FLAD/GE	AR POSITION	WEIGHT (1000 KG)							
FLAI/GE	AKTOSITION	40	50	60	70	80	90		
FLAPS 15	PITCH ATT	1.5	1.5	2.0	2.0	2.0	2.0		
	%N1	39.3	43.5	47.4	50.6	53.6	56.3		
(VREF15+10)	KIAS	128	142	155	166	177	187		
FLAPS 30	PITCH ATT	0.5	0.5	1.0	1.0	1.0	1.0		
	%N1	45.4	50.2	54.4	58.3	62.0	65.3		
(VREF30+10)	KIAS	122	136	148	159	169	179		
FLAPS 40	PITCH ATT	0.0	0.0	0.0	0.0	0.0	-0.5		
	%N1	50.5	55.8	61.0	65.3	69.5	73.7		
(VREF40+10)	KIAS	117	130	143	153	164	177		

Flap placard speed exceeded in shaded area.

Airport Altitude = 9000 FT

ELAD/GE	FLAP/GEAR POSITION		WE	IGHT	(1000	KG)	
FLAI/GE	AKTOSITION	40	50	60	70	80	90
FLAPS 15	PITCH ATT	1.5	1.5	2.0	2.0	2.0	2.0
(VREF15+10)	%N1	39.8	44.1	48.0	51.3	54.2	57.0
(VKEF15+10)	KIAS	128	142	155	166	177	187
FLAPS 30	PITCH ATT	0.5	0.5	1.0	1.0	1.0	1.0
(VREF30+10)	%N1	46.0	50.8	55.1	59.1	62.8	66.1
(VKEF30+10)	KIAS	122	136	148	159	169	179
FLAPS 40	PITCH ATT	0.0	0.0	0.0	0.0	0.0	-0.5
(VREF40+10)	%N1	51.1	56.6	62.0	66.2	70.5	74.8
(VKEF40+10)	KIAS	117	130	143	153	164	177

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

FINAL APPROACH (1500 FT)

Gear Down, Set Thrust for 3° Glideslope Airport Altitude = 10000 FT

ELAD/GE	AR POSITION		WE	IGHT	(1000)	KG)	
FLAI/GE	AKTOSITION	40	50	60	70	80	90
FLAPS 15	PITCH ATT	1.5	1.5	2.0	2.0	2.0	2.0
(VREF15+10)	%N1	40.4	44.7	48.6	51.9	54.9	57.8
(VKEF13+10)	KIAS	128	142	155	166	177	188
FLAPS 30	PITCH ATT	0.5	0.5	1.0	1.0	1.0	1.0
(VREF30+10)	%N1	46.6	51.5	55.9	60.0	63.7	67.0
(VKEF30+10)	KIAS	122	136	148	159	169	179
ELADS 40	PITCH ATT	-0.5	0.0	0.0	0.0	0.0	-0.5
FLAPS 40	%N1	51.9	57.5	63.0	67.2	71.5	75.8
(VREF40+10)	KIAS	117	131	143	153	165	177

Flap placard speed exceeded in shaded area.

Airport Altitude = 11000 FT

ELAD/GE	AR POSITION	WEIGHT (1000 KG)								
FLAI/GE				60	70	80	90			
FLAPS 15	PITCH ATT	1.5	1.5	2.0	2.0	2.0	2.0			
(VREF15+10)	%N1	40.9	45.3	49.3	52.6	55.6	58.6			
(VKEF15+10)	KIAS	128	142	155	166	177	188			
FLAPS 30	PITCH ATT	0.5	0.5	1.0	1.0	1.0	1.0			
(VREF30+10)	%N1	47.2	52.1	56.8	60.9	64.6	67.9			
(VKEF30+10)	KIAS	122	136	148	159	169	179			
ELADS 40	PITCH ATT	-0.5	-0.5	-0.5	0.0	0.0	-0.5			
FLAPS 40	%N1	52.6	58.4	63.9	68.1	72.5	76.9			
(VREF40+10)	KIAS	117	1.5 2.0 2.0 2.0 9 45.3 49.3 52.6 55.6 8 142 155 166 177 0.5 1.0 1.0 1.0 2 52.1 56.8 60.9 64.6 1 136 148 159 169 5 -0.5 -0.5 0.0 0.0 6 58.4 63.9 68.1 72.5	165	178					

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

FINAL APPROACH (1500 FT)

Gear Down, Set Thrust for 3° Glideslope Airport Altitude = 12000 FT

ELAD/GE	AR POSITION		WE	IGHT	(1000	KG)	
TLAI/GE	AKTOSITION	40	50	60	70	80	90
FLAPS 15	PITCH ATT	1.5	1.5	2.0	2.0	2.0	2.0
(VREF15+10)	%N1	41.5	46.0	50.0	53.2	56.4	59.4
(VKEF15+10)	KIAS	128	142	155	166	.0 2.0 3.2 56.4 66 177 .0 1.0 1.8 65.5 59 169 .0 0.0 0.1 73.6	188
FLAPS 30	PITCH ATT	0.5	0.5	1.0	1.0	1.0	1.0
(VREF30+10)	%N1	47.9	52.9	57.6	61.8	65.5	68.8
(VKEF30+10)	KIAS	122	136	149	159	169	179
ELADS 40	PITCH ATT	-0.5	-0.5	-0.5	0.0	0.0	-0.5
FLAPS 40 (VREF40+10)	%N1	53.3	59.4	64.9	69.1	73.6	78.0
(VKEF40±10)	KIAS	117	131	143	153	165	178

Flap placard speed exceeded in shaded area.

Airport Altitude = 13000 FT

ELAD/GE	AR POSITION	WEIGHT (1000 KG)								
FLAI/GE	AKTOSITION	40	50	60	70	80	90			
FLAPS 15	PITCH ATT	1.5	1.5	2.0	2.0	2.0	2.0			
(VREF15+10)	%N1	42.0	46.6	50.7	53.9	57.1	60.2			
(VKEF15+10)	KIAS	KIAS 128 142 155 166 177	188							
FLAPS 30	PITCH ATT	0.5	0.5	1.0	1.0	1.0	1.0			
(VREF30+10)	%N1	48.6	53.6	58.5	62.6	66.4	69.8			
(VKEF30+10)	KIAS	122	136	149	159	170	179			
ELADS 40	PITCH ATT	-0.5	-0.5	-0.5	0.0	0.0	-0.5			
FLAPS 40 (VREF40+10)	%N1	54.1	60.4	65.8	70.1	74.6	79.1			
(VKEF40+10)	KIAS	117	131	144	154	166	178			

Flight With Unreliable Airspeed/ Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

FINAL APPROACH (1500 FT)

Gear Down, Set Thrust for 3° Glideslope Airport Altitude = 14000 FT

ELAD/GE	AR POSITION	WEIGHT (1000 KG)								
FLAI/GE	AKTOSITION	40	50	60	70	80	90			
FLAPS 15	PITCH ATT	1.5	1.5	2.0	2.0	2.0	2.0			
(VREF15+10)	%N1	42.7	47.3	51.3	54.6	57.9	61.1			
(VKEF15+10)	KIAS	128	142	155	166	0 80 .0 2.0 4.6 57.9 66 178 .0 1.0 3.6 67.3 59 170 .0 -0.5	189			
FLAPS 30	PITCH ATT	0.5	0.5	1.0	1.0	1.0	1.0			
(VREF30+10)	%N1	49.3	54.4	59.4	63.6	67.3	70.7			
(VKEF30+10)	KIAS	122	136	149	159	170	179			
ELADS 40	PITCH ATT	-0.5	-0.5	-0.5	0.0	-0.5	-0.5			
FLAPS 40 (VREF40+10)	%N1	55.0	61.5	66.8	71.2	75.7	80.1			
(VKEF40+10)	KIAS	118	131	144	154	166	179			

Flap placard speed exceeded in shaded area.

GO-AROUND

Flaps 15, Gear Up, Set Go-Around Thrust

DDECCI	URE ALTITUDE (FT)		W	EIGHT	(1000 K	G)	
TKESS	OKE ALITIODE (F1)	40	50	60	70	80	90
	PITCH ATT	17.5	13.5	11.5	10.0	8.5	7.5
14000	V/S (FT/MIN)	3500	2700	2100	1600	1300	900
	KIAS	128	141	154	164	176	189
	PITCH ATT	20.5	16.5	13.5	11.5	10.0	9.0
10000	V/S (FT/MIN)	4200	3300	2600	2100	1700	1400
	KIAS	127	141	153	163	175	187
	PITCH ATT	24.0	19.0	16.0	13.5	12.0	10.5
5000	V/S (FT/MIN)	4700	3800	3100	2500	2100	1800
	KIAS	126	140	152	162	174	186
SEA	PITCH ATT	28.5	22.5	18.5	16.0	14.0	12.0
	V/S (FT/MIN)	5300	4300	3600	3000	2600	2200
LEVEL	KIAS	126	139	151	161	173	185
	PITCH ATT	29.0	23.0	19.0	16.5	14.0	12.5
-2000	V/S (FT/MIN)	5200	4300	3600	3000	2500	2200
	KIAS	126	139	151	161	172	185

737-8/LEAP-1B27 FAA CATB

Intentionally Blank

Performance Inflight All Engine

Chapter PI Section 11

Long Range Cruise Maximum Operating Altitude Max Cruise Thrust

ISA + 10°C and Below

WEIGHT	OPTIMUM	TAT	MAF	RGIN TO INIT	IAL BUFFET '	G' (BANK AN	GLE)
(1000 KG)	ALT (FT)	(°C)	1.20 (33°)	1.25 (36°)	1.30 (39°)	1.40 (44°)	1.50 (48°)
85	33500	-12	35000*	35000*	35000*	34200	32600
80	34800	-15	36200*	36200*	36200*	35500	33900
75	36200	-18	37400*	37400*	37400*	36800	35200
70	37600	-18	38700*	38700*	38700*	38200	36700
65	39100	-18	40000*	40000*	40000*	39800	38200
60	40800	-18	41000	41000	41000	41000	39900
55	41000	-18	41000	41000	41000	41000	41000
50	41000	-18	41000	41000	41000	41000	41000
45	41000	-18	41000	41000	41000	41000	41000
40	41000	-18	41000	41000	41000	41000	41000

ISA + 15°C

WEIGHT	OPTIMUM	TAT	MAF	MARGIN TO INITIAL BUFFET 'G' (BANK ANGLE)							
(1000 KG)	ALT (FT)	(°C)	1.20 (33°)	1.25 (36°)	1.30 (39°)	1.40 (44°)	1.50 (48°)				
85	33500	-6	34000*	34000*	34000*	34000*	32600				
80	34800	-9	35500*	35500*	35500*	35500	33900				
75	36200	-12	36700*	36700*	36700*	36700*	35200				
70	37600	-12	37900*	37900*	37900*	37900*	36700				
65	39100	-12	39200*	39200*	39200*	39200*	38200				
60	40800	-12	40400*	40400*	40400*	40400*	39900				
55	41000	-12	41000	41000	41000	41000	41000				
50	41000	-12	41000	41000	41000	41000	41000				
45	41000	-12	41000	41000	41000	41000	41000				
40	41000	-12	41000	41000	41000	41000	41000				

ISA + 20°C

WEIGHT	OPTIMUM	TAT	MAF	RGIN TO INIT	IAL BUFFET '	G' (BANK AN	GLE)
(1000 KG)	ALT (FT)	(°C)	1.20 (33°)	1.25 (36°)	1.30 (39°)	1.40 (44°)	1.50 (48°)
85	33500	-1	32400*	32400*	32400*	32400*	32400*
80	34800	-4	34300*	34300*	34300*	34300*	33900
75	36200	-7	35800*	35800*	35800*	35800*	35200
70	37600	-7	37000*	37000*	37000*	37000*	36700
65	39100	-7	38200*	38200*	38200*	38200*	38200
60	40800	-7	39500*	39500*	39500*	39500*	39500*
55	41000	-7	40900*	40900*	40900*	40900*	40900*
50	41000	-7	41000	41000	41000	41000	41000
45	41000	-7	41000	41000	41000	41000	41000
40	41000	-7	41000	41000	41000	41000	41000

^{*}Denotes altitude thrust limited in level flight, 100 fpm residual rate of climb.

Long Range Cruise Control

W	EIGHT			PI	RESSURE	ALTITUD	E (1000 F	T)		
	000 KG)	25	27	29	31	33	35	37	39	41
	%N1	80.4	81.8	83.4	84.7	86.2	88.1			
85	MACH	.737	.762	.787	.796	.797	.789			
65	KIAS	309	307	305	296	283	268			
	FF/ENG	1312	1305	1303	1289	1276	1278			
	%N1	79.1	80.6	82.0	83.5	84.9	86.4			
80	MACH	.719	.744	.770	.792	.797	.795			
80	KIAS	301	300	298	294	283	270			
	FF/ENG	1239	1234	1228	1225	1210	1200			
	%N1	77.7	79.2	80.6	82.1	83.5	85.0	87.0		
75	MACH	.700	.726	.751	.778	.794	.797	.793		
13	KIAS	292	292	290	289	282	271	257		
	FF/ENG	1165	1161	1155	1153	1146	1134	1134		
	%N1	76.0	77.7	79.1	80.6	82.1	83.4	85.3	88.2	
70	MACH	.679	.706	.732	.758	.784	.796	.797	.789	
/0	KIAS	283	283	282	280	278	270	259	244	
	FF/ENG	1089	1088	1083	1077	1079	1068	1063	1078	
	%N1	74.2	75.9	77.5	79.0	80.4	82.0	83.7	86.0	
65	MACH	.656	.683	.710	.737	.763	.788	.796	.796	
0.5	KIAS	273	273	273	272	270	268	258	247	
	FF/ENG	1013	1012	1010	1006	1002	1004	997	1001	
	%N1	72.3	74.0	75.7	77.3	78.8	80.2	82.1	84.2	86.6
60	MACH	.633	.658	.686	.714	.740	.767	.791	.797	.795
00	KIAS	263	263	263	262	261	260	256	247	235
	FF/ENG	939	935	935	933	930	928	935	933	936
	%N1	70.3	71.9	73.6	75.3	76.9	78.4	80.2	82.5	84.6
55	MACH	.612	.633	.659	.687	.715	.742	.770	.792	.797
33	KIAS	254	252	252	252	252	250	249	245	236
	FF/ENG	872	861	858	859	858	861	864	870	868
	%N1	68.2	69.8	71.3	73.1	74.8	76.4	78.2	80.4	82.7
50	MACH	.589	.610	.632	.658	.686	.715	.742	.770	.792
30	KIAS	244	242	241	240	241	240	239	238	234
	FF/ENG	804	796	783	785	783	794	797	808	803
	%N1	65.5	67.4	69.0	70.6	72.3	74.0	76.0	78.2	80.4
45	MACH	.558	.584	.607	.628	.654	.683	.712	.740	.767
.5	KIAS	230	231	231	229	229	229	228	227	226
	FF/ENG	727	734	722	717	715	725	731	739	747
	%N1	62.6	64.3	66.2	68.0	69.6	71.2	73.4	75.8	77.9
40	MACH	.527	.550	.576	.600	.622	.647	.676	.706	.734
	KIAS	217	217	218	218	217	216	216	216	215
	FF/ENG	669	661	665	657	659	654	663	670	679

Shaded area approximates optimum altitude.

Long Range Cruise Enroute Fuel and Time - Low Altitudes Table 1 of 3: Ground to Air Miles Conversion

	AIR D	ISTANCE	(NM)		GROUND		AIR D	ISTANCE	E (NM)	
HE.	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TA	ILWIND	COMPO	VENT (K	TS)
100	80	60	40	20	(NM)	20	40	60	80	100
295	270	248	230	214	200	190	181	173	166	159
444	406	373	345	321	300	286	272	260	249	239
594	543	498	461	429	400	381	363	347	332	319
744	680	623	576	536	500	476	454	434	415	398
894	817	749	692	643	600	571	544	520	498	478
1044	953	874	807	750	700	666	635	607	581	558
1195	1091	999	923	858	800	761	726	693	664	638
1346	1228	1125	1039	965	900	857	817	780	747	718
1498	1366	1251	1155	1073	1000	952	908	867	830	797
1650	1504	1377	1270	1180	1100	1047	998	954	913	876
1802	1643	1503	1386	1288	1200	1142	1089	1040	995	955
1955	1781	1629	1503	1395	1300	1238	1180	1127	1078	1035
2108	1920	1756	1619	1503	1400	1333	1270	1213	1161	1114
2261	2059	1882	1735	1611	1500	1427	1360	1299	1243	1193
2415	2199	2009	1852	1718	1600	1522	1451	1385	1325	1272
2569	2338	2136	1968	1826	1700	1617	1541	1472	1408	1351
2724	2478	2263	2085	1934	1800	1713	1632	1558	1491	1430
2879	2619	2391	2202	2042	1900	1807	1722	1644	1573	1509
3035	2760	2519	2319	2150	2000	1902	1812	1730	1655	1588

Table 2 of 3: Reference Fuel And Time Required at Check Point

_	PRESSURE ALTITUDE (1000 FT)											
AIR												
DIST	1	0	1	4	2	20	2	.4	2	.8		
(NM)	FUEL	TIME	FUEL	TIME	FUEL	TIME	FUEL	TIME	FUEL	TIME		
(1111)	(1000 KG)	(HR:MIN)	(1000 KG)	(HR:MIN)	(1000 KG)	(HR:MIN)	(1000 KG)	(HR:MIN)	(1000 KG)	(HR:MIN)		
200	1.2	0:42	1.1	0:40	0.9	0:38	0.8	0:37	0.7	0:35		
300	1.9	1:02	1.7	0:59	1.5	0:55	1.3	0:53	1.2	0:50		
400	2.5	1:22	2.3	1:18	2.0	1:12	1.8	1:09	1.6	1:06		
500	3.2	1:42	2.9	1:37	2.6	1:29	2.3	1:25	2.1	1:21		
600	3.8	2:02	3.5	1:56	3.1	1:46	2.8	1:41	2.6	1:36		
700	4.4	2:22	4.1	2:15	3.7	2:04	3.3	1:57	3.0	1:51		
800	5.1	2:42	4.7	2:34	4.2	2:21	3.8	2:13	3.5	2:07		
900	5.7	3:02	5.3	2:53	4.7	2:38	4.3	2:30	3.9	2:22		
1000	6.3	3:23	5.9	3:12	5.3	2:56	4.8	2:46	4.4	2:38		
1100	7.0	3:43	6.5	3:32	5.8	3:14	5.2	3:03	4.8	2:53		
1200	7.6	4:04	7.1	3:51	6.3	3:31	5.7	3:19	5.3	3:09		
1300	8.2	4:25	7.7	4:11	6.9	3:49	6.2	3:36	5.7	3:25		
1400	8.9	4:45	8.2	4:31	7.4	4:07	6.7	3:52	6.2	3:40		
1500	9.5	5:06	8.8	4:50	7.9	4:25	7.2	4:09	6.6	3:56		
1600	10.1	5:27	9.4	5:10	8.5	4:43	7.6	4:26	7.1	4:12		
1700	10.7	5:49	10.0	5:30	9.0	5:01	8.1	4:43	7.5	4:28		
1800	11.3	6:10	10.6	5:50	9.5	5:20	8.6	5:00	8.0	4:44		
1900	11.9	6:31	11.1	6:11	10.0	5:38	9.1	5:17	8.4	5:00		
2000	12.6	6:53	11.7	6:31	10.5	5:57	9.5	5:34	8.8	5:16		

737-8/LEAP-1B27 FAA CATB

737 Flight Crew Operations Manual

Long Range Cruise Enroute Fuel and Time - Low Altitudes Table 3 of 3: Fuel Required Adjustment (1000 KG)

REFERENCE FUEL REQUIRED		WEIGHT AT	CHECK POIN	T (1000 KG)	
(1000 KG)	40	50	60	70	80
1	-0.1	0.0	0.0	0.0	0.1
2	-0.2	-0.1	0.0	0.1	0.3
3	-0.3	-0.2	0.0	0.2	0.4
4	-0.4	-0.2	0.0	0.3	0.6
5	-0.5	-0.3	0.0	0.4	0.8
6	-0.7	-0.3	0.0	0.5	0.9
7	-0.8	-0.4	0.0	0.6	1.1
8	-0.9	-0.4	0.0	0.7	1.3
9	-1.0	-0.5	0.0	0.7	1.5
10	-1.1	-0.6	0.0	0.8	1.6
11	-1.3	-0.6	0.0	0.9	1.8
12	-1.4	-0.7	0.0	1.0	2.0
13	-1.5	-0.7	0.0	1.1	2.2

Long Range Cruise Enroute Fuel and Time - High Altitudes Table 1 of 3: Ground to Air Miles Conversion

	AIR D	ISTANCE	E (NM)		GROUND						
HE	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TA	ILWIND	COMPO	NENT (K7	ſS)	
100	80	60	40	20	(NM)	20	40	60	80	100	
538	504	473	446	422	400	382	366	351	337	325	
804	754	708	668	633	600	574	549	527	507	489	
1071	1005	944	891	843	800	765	733	704	677	653	
1339	1256	1180	1113	1054	1000	957	917	880	846	816	
1607	1507	1416	1336	1265	1200	1149	1101	1057	1016	979	
1876	1759	1652	1559	1476	1400	1340	1284	1233	1186	1142	
2146	2011	1889	1782	1687	1600	1531	1468	1409	1355	1305	
2417	2264	2126	2005	1898	1800	1723	1651	1584	1524	1468	
2688	2518	2364	2229	2109	2000	1914	1834	1760	1692	1631	
2960	2772	2602	2453	2321	2200	2105	2017	1935	1861	1794	
3233	3027	2840	2677	2532	2400	2296	2200	2111	2030	1956	
3507	3282	3079	2901	2744	2600	2487	2383	2287	2198	2118	
3780	3537	3318	3126	2955	2800	2679	2566	2462	2366	2279	
4055	3793	3557	3350	3167	3000	2870	2749	2637	2535	2441	
4331	4050	3796	3575	3379	3200	3061	2931	2812	2702	2603	
4607	4307	4036	3800	3590	3400	3252	3114	2987	2870	2764	
4883	4564	4277	4025	3802	3600	3442	3296	3161	3038	2925	
5161	4823	4517	4251	4015	3800	3633	3479	3336	3205	3086	
5439	5081	4758	4477	4227	4000	3824	3661	3510	3372	3247	
5718	5340	4999	4702	4439	4200	4015	3843	3684	3539	3408	
5998	5600	5241	4928	4651	4400	4205	4025	3859	3706	3568	
6279	5860	5483	5154	4864	4600	4396	4207	4033	3873	3728	
6561	6121	5725	5381	5076	4800	4587	4389	4207	4040	3888	
6844	6383	5968	5608	5289	5000	4778	4571	4381	4206	4048	
7128	6646	6212	5835	5502	5200	4968	4753	4554	4372	4207	
7414	6909	6456	6062	5715	5400	5158	4934	4727	4538	4367	
7701	7174	6701	6290	5928	5600	5348	5115	4900	4704	4525	
7989	7440	6946	6518	6141	5800	5539	5296	5073	4869	4684	
8278	7706	7192	6747	6355	6000	5729	5477	5246	5034	4842	

Long Range Cruise Enroute Fuel and Time - High Altitudes Table 2 of 3: Reference Fuel And Time Required at Check Point

				PRESS	URE ALT	TUDE (10	00 FT)			
AIR DIST	2	9	3	1	3	3	3	5	3	7
(NM)	FUEL	TIME	FUEL	TIME	FUEL	TIME	FUEL	TIME	FUEL	TIME
	(,					(HR:MIN)	` /	
400	1.6	1:05	1.6	1:03	1.5	1:02	1.4	1:01	1.4	1:00
600	2.5	1:35	2.4	1:32	2.3	1:30	2.3	1:28	2.2	1:27
800	3.4	2:05	3.3	2:02	3.2	1:59	3.1	1:56	3.0	1:53
1000	4.3	2:35	4.2	2:31	4.0	2:27	3.9	2:24	3.8	2:20
1200	5.2	3:06	5.0	3:01	4.9	2:56	4.7	2:52	4.6	2:47
1400	6.1	3:37	5.9	3:30	5.7	3:25	5.5	3:20	5.4	3:14
1600	6.9	4:08	6.7	4:00	6.5	3:54	6.3	3:48	6.2	3:41
1800	7.8	4:39	7.6	4:31	7.3	4:23	7.1	4:16	6.9	4:09
2000	8.7	5:11	8.4	5:01	8.1	4:52	7.9	4:44	7.7	4:36
2200	9.5	5:43	9.2	5:32	8.9	5:22	8.7	5:13	8.5	5:04
2400	10.4	6:15	10.0	6:03	9.7	5:52	9.5	5:42	9.2	5:32
2600	11.2	6:47	10.9	6:34	10.5	6:22	10.3	6:11	10.0	6:00
2800	12.0	7:19	11.7	7:05	11.3	6:52	11.0	6:40	10.7	6:28
3000	12.9	7:52	12.5	7:37	12.1	7:22	11.8	7:09	11.5	6:56
3200	13.7	8:25	13.3	8:09	12.8	7:53	12.6	7:39	12.2	7:25
3400	14.5	8:58	14.0	8:41	13.6	8:24	13.3	8:09	13.0	7:54
3600	15.3	9:31	14.8	9:13	14.4	8:55	14.1	8:39	13.7	8:23
3800	16.1	10:05	15.6	9:46	15.1	9:27	14.8	9:09	14.4	8:52
4000	16.9	10:39	16.4	10:18	15.9	9:58	15.5	9:40	15.1	9:21
4200	17.7	11:13	17.2	10:51	16.6	10:30	16.3	10:10	15.9	9:50
4400	18.5	11:47	17.9	11:25	17.4	11:02	17.0	10:41	16.6	10:20
4600	19.3	12:22	18.7	11:58	18.1	11:34	17.7	11:12	17.3	10:50
4800	20.0	12:57	19.4	12:32	18.9	12:07	18.4	11:44	18.0	11:20
5000	20.8	13:32	20.2	13:06	19.6	12:40	19.2	12:15	18.7	11:50
5200	21.6	14:08	20.9	13:40	20.3	13:13	19.9	12:48	19.4	12:21
5400	22.4	14:44	21.7	14:14	21.1	13:46	20.6	13:20	20.1	12:51
5600	23.1	15:20	22.4	14:49	21.8	14:20	21.3	13:52	20.8	13:22
5800	23.9	15:57	23.1	15:24	22.5	14:54	22.0	14:25	21.4	13:54
6000	24.7	16:34	23.9	16:00	23.2	15:28	22.7	14:58	22.1	14:25

Table 3 of 3: Fuel Required Adjustment (1000 KG)

	J	, ,			
REFERENCE FUEL REQUIRED		WEIGHT AT	CHECK POIN	T (1000 KG)	
(1000 KG)	40	50	60	70	80
2	-0.2	-0.1	0.0	0.2	0.5
4	-0.5	-0.3	0.0	0.4	1.0
6	-0.8	-0.5	0.0	0.6	1.5
8	-1.1	-0.6	0.0	0.8	2.0
10	-1.4	-0.7	0.0	1.0	2.4
12	-1.7	-0.9	0.0	1.2	2.8
14	-2.0	-1.0	0.0	1.4	3.2
16	-2.3	-1.2	0.0	1.5	3.6
18	-2.6	-1.3	0.0	1.7	3.9
20	-2.9	-1.4	0.0	1.8	4.2
22	-3.3	-1.6	0.0	2.0	4.5
24	-3.6	-1.7	0.0	2.1	4.7
26	-4.0	-1.9	0.0	2.2	4.9

Long Range Cruise Wind-Altitude Trade

PRESSURE ALTITUDE				CRUIS	E WEIC	GHT (10	00 KG))		
(1000 FT)	85	80	75	70	65	60	55	50	45	40
41					13	1	0	3	14	30
39			25	8	0	0	3	13	27	44
37		16	4	0	0	4	13	26	41	59
35	9	1	0	0	5	14	26	40	56	72
33	0	0	1	7	16	27	40	54	69	85
31	0	3	10	18	29	40	53	67	82	97
29	6	13	21	31	42	54	67	80	93	107
27	16	25	34	44	55	67	79	91	104	116
25	29	38	47	58	68	79	91	102	113	124
23	41	51	60	70	80	90	101	111	121	131

The above wind factor table is for calculation of wind required to maintain present range capability at new pressure altitude, i.e., break-even wind.

Method:

- Read wind factors for present and new altitudes from table.
 Determine difference (new altitude wind factor minus present altitude wind factor); this difference may be negative or positive.
- 3. Break-even wind at new altitude is present altitude wind plus difference from step 2.

737-8/LEAP-1B27 FAA CATB

737 Flight Crew Operations Manual

Descent at .78/280/250 KIAS

PRESSURE				DISTAN	CE (NM)	
ALTITUDE	TIME	FUEL			GHT (1000 KG)	
(FT)	(MIN)	(KG)	40	50	60	70
41000	26	270	102	119	132	141
39000	25	260	96	113	126	135
37000	24	250	91	107	119	128
35000	24	250	87	102	114	123
33000	23	240	83	97	108	117
31000	22	240	78	91	102	110
29000	21	230	73	86	95	103
27000	20	230	69	80	89	96
25000	19	220	64	74	83	89
23000	18	210	59	69	76	82
21000	17	200	55	63	70	75
19000	16	190	51	58	64	69
17000	15	190	46	53	58	62
15000	14	180	42	48	53	56
10000	10	140	30	33	36	37
5000	7	110	18	19	20	21
1500	4	80	10	10	10	10

Allowances for a straight-in approach are included.

Holding Flaps Up

W	EIGHT				PRESSUI	RE ALTIT	UDE (FT)			
(10	000 KG)	1500	5000	10000	15000	20000	25000	30000	35000	41000
	%N1	57.8	60.4	64.2	68.4	73.2	78.1	82.6		
85	KIAS	244	244	246	247	249	251	254		
	FF/ENG	1220	1200	1200	1190	1190	1200	1220		
	%N1	56.2	58.8	62.6	66.8	71.5	76.4	81.0	85.9	
80	KIAS	237	237	238	239	242	243	246	249	
	FF/ENG	1150	1140	1130	1130	1120	1120	1140	1190	
	%N1	54.6	57.1	60.8	65.1	69.6	74.6	79.4	84.1	
75	KIAS	229	229	230	232	233	235	238	241	
	FF/ENG	1090	1070	1070	1070	1070	1050	1060	1100	
	%N1	53.0	55.3	59.0	63.2	67.7	72.7	77.6	82.2	
70	KIAS	220	222	222	224	225	227	229	232	
	FF/ENG	1030	1010	1000	1010	1000	980	990	1010	
	%N1	51.3	53.5	57.1	61.2	65.7	70.5	75.7	80.3	
65	KIAS	211	214	214	215	216	218	220	223	
	FF/ENG	960	950	930	940	930	910	920	930	
	%N1	49.5	51.7	55.1	59.1	63.6	68.3	73.5	78.3	86.0
60	KIAS	204	204	206	206	208	209	211	213	217
	FF/ENG	900	890	870	870	870	840	840	860	930
	%N1	47.6	49.8	53.1	56.9	61.3	65.9	71.0	76.1	83.7
55	KIAS	198	198	198	198	199	200	201	203	207
	FF/ENG	850	840	810	800	800	780	780	790	850
	%N1	45.7	47.8	51.0	54.5	58.8	63.4	68.3	73.6	81.1
50	KIAS	191	191	191	191	191	191	192	193	196
	FF/ENG	790	780	760	740	730	730	720	730	770
	%N1	43.8	45.8	48.9	52.2	56.2	60.8	65.4	70.6	78.4
45	KIAS	185	185	185	185	185	185	185	185	185
	FF/ENG	740	720	700	680	670	660	660	660	690
	%N1	41.8	43.7	46.7	49.9	53.5	57.9	62.5	67.5	75.4
40	KIAS	178	178	178	178	178	178	178	178	178
	FF/ENG	690	670	640	620	610	600	590	590	620

This table includes 5% additional fuel for holding in a racetrack pattern.

737-8/LEAP-1B27 FAA CATB

Intentionally Blank

Performance Inflight Advisory Information

Chapter PI Section 12

ADVISORY INFORMATION

Runway Surface Condition Correlation

RUNWAY CONDITION CODE	RUNWAY SURFACE CONDITION DESCRIPTION	REPORTED BRAKING ACTION
6	Dry	Dry
5	Wet (Smooth, Grooved or PFC) or Frost 3 mm (0.12 inches) or less of: Water, Slush, Dry Snow or Wet Snow	Good
4	Compacted Snow at or below -15°C OAT	Good to Medium
3	Wet (Slippery), Dry Snow or Wet Snow (any depth) over Compacted Snow Greater than 3 mm (0.12 inches) of : Dry Snow or Wet Snow Compacted Snow at OAT warmer than -15°C	Medium
2	Greater than 3 mm (0.12 inches) of: Water or Slush	Medium to Poor
1	Ice	Poor
0	Wet Ice, Water on top of Compacted Snow, Dry Snow or Wet Snow over Ice	Nil

ADVISORY INFORMATION

Normal Configuration Landing Distance Flaps 15

		LANDING DISTANCE AND ADJUSTMENTS (FT)										
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR				
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	I BIW	PER 5 KTS ABOVE VREF15	REV	NO REV			

Dry Runway

MAX MANUAL	4820	280/-290	120/160	-210/700	50/-50	120/-130	210	90	150
AUTOBRAKE MAX	5400	290/-330	140/180	-240/770	10/0	150/-150	280	10	40
AUTOBRAKE 3	6170	350/-400	170/220	-280/920	0/0	180/-180	340	0	0
AUTOBRAKE 2	7280	440/-490	210/270	-350/1140	0/0	220/-220	420	0	0
AUTOBRAKE 1	9170	600/-660	290/380	-460/1520	50/-120	290/-290	470	100	100

Good Reported Braking Action

MAX MANUAL	6070	440/-440	220/300	-330/1170	130/-110	200/-200	320	320	630
AUTOBRAKE MAX	6130	440/-440	220/300	-330/1160	120/-110	200/-200	340	330	650
AUTOBRAKE 3	6390	410/-420	200/290	-310/1060	60/-50	190/-190	350	190	470
AUTOBRAKE 2	7390	450/-500	220/280	-360/1180	40/-30	220/-230	430	0	0
AUTOBRAKE 1	9190	610/-670	300/380	-460/1540	90/-130	290/-290	480	110	110

Good To Medium Reported Braking Action

MAX MANUAL	6670	450/-450	220/300	-350/1240	180/-150	210/-210	320	430	890
AUTOBRAKE MAX	6730	450/-460	220/300	-350/1230	170/-150	210/-210	340	440	910
AUTOBRAKE 3	6750	440/-460	220/310	-350/1210	160/-120	210/-210	350	410	880
AUTOBRAKE 2	7460	450/-500	220/290	-370/1240	80/-60	230/-230	430	70	290
AUTOBRAKE 1	9190	610/-670	300/380	-460/1540	90/-130	290/-290	480	110	110

Medium Reported Braking Action

•		0							
MAX MANUAL	7110	460/-470	230/310	-370/1310	220/-190	210/-210	320	550	1200
AUTOBRAKE MAX	7170	470/-490	230/310	-370/1300	220/-180	210/-210	340	560	1230
AUTOBRAKE 3	7160	470/-480	230/310	-370/1300	220/-180	220/-210	340	560	1220
AUTOBRAKE 2	7640	470/-510	240/300	-390/1340	140/-90	230/-240	430	260	810
AUTOBRAKE 1	9190	610/-660	300/380	-470/1550	130/-130	290/-290	480	140	230

ADVISORY INFORMATION

Normal Configuration Landing Distance Flaps 15

Ī			LANDING DISTANCE AND ADJUSTMENTS (FT)										
		REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al	UST			
	BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	BIW/	PER 5 KTS ABOVE VREF15					

Medium To Poor Reported Braking Action

MAX MANUAL	8160	640/-630	320/440	-480/1720	330/-270	280/-280	380	1000	2470
AUTOBRAKE MAX	8210	640/-630	320/440	-480/1720	360/-290	280/-290	380	1010	2500
AUTOBRAKE 3	8210	640/-630	320/440	-480/1720	360/-290	280/-290	380	1010	2500
AUTOBRAKE 2	8210	640/-580	320/440	-460/1720	360/-250	280/-290	390	1010	2500
AUTOBRAKE 1	9420	600/-670	300/410	-470/1550	180/-190	290/-290	430	240	1320

Poor Reported Braking Action

MAX MANUAL	10440	750/-760	380/500	-650/2390	930/-590	330/-330	380	2080	5870
AUTOBRAKE MAX	10490	760/-770	390/510	-650/2390	960/-610	330/-330	380	2090	5900
AUTOBRAKE 3	10490	760/-770	390/510	-650/2390	960/-610	330/-330	380	2090	5900
AUTOBRAKE 2	10490	760/-770	390/510	-650/2390	960/-600	330/-330	390	2090	5900
AUTOBRAKE 1	10900	770/-790	390/510	-670/2440	880/-570	350/-350	430	1740	5500

Reference distance is based on sea level, standard day, no wind or slope, VREF15, two-engine detent No. 2 reverse thrust, and auto or manual speedbrakes.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. All reference distances and adjustments shown have been increased by 15%.

*For landing distance at or below 8000 ft pressure altitude, apply the STD adjustment. For altitudes higher than 8000 ft, first apply the STD adjustment to derive a new reference landing distance for 8000 ft then apply the HIGH adjustment to this new reference distance.

ADVISORY INFORMATION

Normal Configuration Landing Distance Flaps 30

		LANDING DISTANCE AND ADJUSTMENTS (FT)										
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al				
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG ARV/RI W		PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	RIW/	PER 5 KTS ABOVE VREF30	REV	NO REV			

Dry Runway

MAX MANUAL	4480	260/-270	110/140	-210/680	50/-40	110/-120	210	70	120
AUTOBRAKE MAX	5030	270/-310	130/160	-230/740	10/0	130/-140	270	10	30
AUTOBRAKE 3	5720	330/-370	160/200	-270/890	0/0	160/-170	330	0	0
AUTOBRAKE 2	6730	400/-450	200/250	-330/1100	0/0	200/-200	410	0	0
AUTOBRAKE 1	8420	550/-610	270/340	-440/1460	50/-120	260/-260	430	110	110

Good Reported Braking Action

MAX MANUAL	5510	380/-390	190/260	-310/1100	110/-90	180/-180	300	230	450
AUTOBRAKE MAX	5630	390/-400	190/260	-310/1090	110/-90	180/-180	320	250	480
AUTOBRAKE 3	5890	360/-390	180/260	-290/990	50/-40	170/-180	330	100	290
AUTOBRAKE 2	6820	410/-460	200/260	-340/1120	30/-30	200/-210	420	0	0
AUTOBRAKE 1	8430	550/-610	270/350	-440/1480	90/-120	260/-270	430	110	110

Good To Medium Reported Braking Action

MAX MANUAL	6100	400/-410	200/270	-330/1180	160/-130	190/-190	300	330	680
AUTOBRAKE MAX	6220	400/-420	200/270	-330/1170	160/-130	190/-190	320	350	710
AUTOBRAKE 3	6230	390/-410	200/270	-330/1150	150/-110	190/-190	330	320	680
AUTOBRAKE 2	6900	410/-470	200/260	-350/1180	70/-50	210/-210	420	70	230
AUTOBRAKE 1	8430	550/-610	270/350	-440/1480	90/-120	260/-270	430	110	110

Medium Reported Braking Action

_		_							
MAX MANUAL	6530	410/-430	200/280	-350/1250	200/-170	190/-190	290	440	950
AUTOBRAKE MAX	6640	420/-440	210/280	-360/1240	200/-170	190/-200	320	460	980
AUTOBRAKE 3	6630	420/-440	210/280	-360/1240	200/-170	190/-200	320	460	980
AUTOBRAKE 2	7070	430/-470	210/280	-370/1280	130/-90	210/-220	410	210	630
AUTOBRAKE 1	8440	550/-600	270/350	-440/1490	130/-130	260/-270	430	140	220

ADVISORY INFORMATION

Normal Configuration Landing Distance Flaps 30

		LA	NDING DIS	TANCE AN	D ADJUST	MENTS (F	Γ)		
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al	UST
BBAKING	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	I BIW	PER 5 KTS ABOVE VREF30		

Medium To Poor Reported Braking Action

MAX MANUAL	7370	560/-560	280/380	-450/1630	280/-230	250/-250	360	740	1730
AUTOBRAKE MAX	7420	570/-570	280/390	-460/1630	310/-260	260/-260	360	750	1760
AUTOBRAKE 3	7420	570/-570	280/390	-460/1630	310/-260	260/-260	360	750	1760
AUTOBRAKE 2	7440	570/-530	280/390	-420/1630	300/-180	260/-250	370	750	1760
AUTOBRAKE 1	8580	550/-610	270/360	-440/1480	170/-170	260/-260	400	170	630

Poor Reported Braking Action

MAX MANUAL	9580	670/-690	340/440	-620/2310	860/-540	300/-300	350	1690	4590
AUTOBRAKE MAX	9630	680/-690	350/450	-630/2310	890/-560	300/-300	360	1700	4620
AUTOBRAKE 3	9630	680/-690	350/450	-630/2310	890/-560	300/-300	360	1700	4620
AUTOBRAKE 2	9630	680/-690	350/450	-630/2320	880/-540	300/-300	380	1700	4620
AUTOBRAKE 1	10000	690/-720	350/460	-640/2360	830/-520	320/-320	400	1430	4260

Reference distance is based on sea level, standard day, no wind or slope, VREF30, two-engine detent No. 2 reverse thrust, and auto or manual speedbrakes.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. All reference distances and adjustments shown have been increased by 15%.

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Normal Configuration Landing Distance Flaps 40

		LANDING DISTANCE AND ADJUSTMENTS (FT)											
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al					
BRAKING CONFIGURATION		5000 KG		PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	I BIW	PER 5 KTS ABOVE VREF40	REV	NO REV				

Dry Runway

MAX MANUAL	4210	290/-250	110/140	-200/670	50/-40	110/-110	210	60	100
AUTOBRAKE MAX	4670	310/-290	130/160	-220/720	10/0	120/-130	270	10	30
AUTOBRAKE 3	5280	370/-340	160/200	-260/860	0/0	150/-150	320	0	0
AUTOBRAKE 2	6190	450/-420	190/250	-320/1060	0/0	180/-190	390	0	0
AUTOBRAKE 1	7780	600/-550	260/330	-420/1410	20/-90	240/-240	430	40	40

Good Reported Braking Action

MAX MANUAL	5110	420/-360	180/250	-300/1060	100/-90	160/-170	290	190	360
AUTOBRAKE MAX	5240	430/-360	190/260	-300/1050	100/-90	170/-170	310	210	390
AUTOBRAKE 3	5460	400/-360	180/250	-280/970	50/-40	160/-160	330	90	240
AUTOBRAKE 2	6280	460/-420	200/250	-330/1080	30/-20	190/-190	400	0	0
AUTOBRAKE 1	7790	600/-560	260/340	-430/1430	60/-100	240/-250	440	50	50

Good To Medium Reported Braking Action

MAX MANUAL	5710	430/-370	190/260	-320/1140	150/-130	170/-170	290	290	590
AUTOBRAKE MAX	5830	440/-380	190/260	-320/1130	150/-130	170/-170	310	300	620
AUTOBRAKE 3	5820	440/-380	190/260	-320/1130	150/-110	170/-170	330	300	610
AUTOBRAKE 2	6360	460/-430	200/260	-340/1140	70/-50	190/-190	400	70	230
AUTOBRAKE 1	7790	600/-560	260/340	-430/1430	60/-100	240/-250	440	50	50

Medium Reported Braking Action

•		0							
MAX MANUAL	6140	440/-400	200/270	-340/1210	200/-160	180/-180	290	390	830
AUTOBRAKE MAX	6240	460/-420	200/270	-350/1210	190/-160	180/-180	320	400	860
AUTOBRAKE 3	6240	460/-410	200/270	-350/1210	200/-160	180/-180	310	400	860
AUTOBRAKE 2	6540	480/-430	210/270	-360/1240	130/-90	200/-200	400	220	610
AUTOBRAKE 1	7800	600/-550	260/340	-420/1440	100/-100	240/-240	440	80	150

ADVISORY INFORMATION

Normal Configuration Landing Distance Flaps 40

		LA	NDING DIS	TANCE AN	D ADJUST	MENTS (F	Γ)		
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al	UST
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	I BIW	PER 5 KTS ABOVE VREF40		

Medium To Poor Reported Braking Action

MAX MANUAL	6830	590/-520	270/370	-440/1590	270/-220	230/-230	350	600	1390
AUTOBRAKE MAX	6890	600/-530	270/380	-440/1590	290/-240	240/-240	350	620	1420
AUTOBRAKE 3	6890	600/-530	270/380	-440/1590	290/-240	240/-240	350	620	1420
AUTOBRAKE 2	6900	610/-500	280/370	-420/1590	290/-170	240/-230	370	620	1420
AUTOBRAKE 1	7950	590/-570	260/350	-430/1440	140/-150	240/-240	400	100	420

Poor Reported Braking Action

MAX MANUAL	9020	700/-640	330/430	-610/2280	840/-520	280/-280	350	1510	4020
AUTOBRAKE MAX	9090	710/-650	340/440	-610/2280	870/-550	290/-290	350	1520	4050
AUTOBRAKE 3	9090	710/-650	340/440	-610/2280	870/-550	290/-290	350	1520	4050
AUTOBRAKE 2	9090	720/-650	340/440	-610/2280	870/-530	290/-290	370	1520	4050
AUTOBRAKE 1	9380	730/-670	340/450	-630/2310	800/-510	300/-300	400	1270	3780

Reference distance is based on sea level, standard day, no wind or slope, VREF40, two-engine detent No. 2 reverse thrust, and auto or manual speedbrakes.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. All reference distances and adjustments shown have been increased by 15%.

737-8/LEAP-1B27 FAA CATB

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Airspeed Unreliable (Flaps 15)

VREF15

		LANDING DISTANCE AND ADJUSTMENTS (FT)										
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al				
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF					

Dry Runway

MAX MANUAL	4550	290/-270	120/150	-190/630	50/-40	120/-120	N/A	100	160
AUTOBRAKE MAX	5170	270/-300	140/170	-210/690	10/0	140/-140	N/A	10	30
AUTOBRAKE 2	7050	400/-450	210/260	-320/1040	0/0	210/-210	N/A	0	0

Good Reported Braking Action

MAX MANUAL	5770	400/-400	210/280	-300/1050	120/-100	190/-190	N/A	340	690
AUTOBRAKE MAX	5870	410/-400	210/280	-300/1040	120/-100	190/-190	N/A	360	730
AUTOBRAKE 2	7160	410/-460	210/270	-320/1060	30/-30	220/-220	N/A	0	0

Good To Medium Reported Braking Action

MAX MANU	۱L	6290	410/-410	210/290	-320/1110	160/-140	200/-200	N/A	440	920
AUTOBRAKE N	ЛΑХ	6380	420/-420	210/290	-320/1110	160/-140	200/-200	N/A	460	960
AUTOBRAKI	Ξ 2	7230	410/-460	210/280	-340/1120	70/-50	220/-220	N/A	60	250

Medium Reported Braking Action

MAX MANUAL	6650	430/-430	220/300	-340/1180	200/-170	200/-200	N/A	550	1210
AUTOBRAKE MAX	6750	430/-440	220/300	-330/1170	200/-170	200/-200	N/A	570	1250
AUTOBRAKE 3	6750	430/-440	220/300	-340/1160	200/-150	210/-210	N/A	560	1230

Medium To Poor Reported Braking Action

1	MAX MANUAL	7640	580/-560	300/400	-420/1510	290/-240	260/-260	N/A	1000	2530
1	AUTOBRAKE MAX	7680	580/-560	300/410	-430/1510	320/-260	260/-260	N/A	1010	2560
1	AUTOBRAKE 3	7680	580/-560	300/410	-430/1510	320/-260	260/-260	N/A	1010	2560

Poor Reported Braking Action

MAX MANUAL	9560	670/-680	350/460	-570/2090	800/-510	300/-300	N/A	1940	5550
AUTOBRAKE MAX	9610	680/-680	360/470	-570/2090	820/-530	300/-300	N/A	1950	5580
AUTOBRAKE 3	9610	680/-680	360/470	-570/2090	820/-530	300/-300	N/A	1950	5580

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Airspeed Unreliable (Flaps 30)

VREF30

		LA	NDING DIS	ΓANCE AN	D ADJUST	MENTS (F	Γ)	
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	ERSE UST DJ
BR AKING	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF	

Dry Runway

MAX MANUAL	4240	250/-250	110/140	-190/610	40/-40	110/-110	N/A	80	130
AUTOBRAKE MAX	4840	250/-280	130/160	-210/670	10/0	130/-130	N/A	10	30
AUTOBRAKE 2	6550	370/-420	190/240	-310/1000	0/-10	200/-200	N/A	0	0

Good Reported Braking Action

MAX MANUAL	5260	360/-360	180/250	-280/990	100/-90	170/-170	N/A	250	500
AUTOBRAKE MAX	5410	360/-360	190/250	-280/990	100/-90	180/-170	N/A	270	540
AUTOBRAKE 2	6640	370/-420	190/250	-310/1020	20/-30	200/-200	N/A	0	0

Good To Medium Reported Braking Action

MAX MANUAL	5770	370/-370	190/250	-300/1060	140/-120	180/-180	N/A	340	710
AUTOBRAKE MAX	5910	370/-380	190/260	-300/1050	140/-120	180/-180	N/A	360	750
AUTOBRAKE 2	6710	380/-430	200/250	-320/1070	60/-60	200/-200	N/A	50	200

Medium Reported Braking Action

MAX MANUAL	6130	380/-390	200/260	-320/1120	180/-150	180/-180	N/A	440	960
AUTOBRAKE MAX	6270	390/-400	200/270	-320/1120	180/-150	190/-190	N/A	460	1000
AUTOBRAKE 3	6270	390/-400	200/270	-320/1120	180/-130	190/-190	N/A	450	990

Medium To Poor Reported Braking Action

MAX MANUAL	6930	510/-500	260/350	-400/1430	250/-210	230/-230	N/A	750	1790
AUTOBRAKE MAX	6980	520/-510	260/360	-400/1440	280/-230	240/-240	N/A	760	1820
AUTOBRAKE 3	6980	520/-500	260/360	-400/1440	280/-220	240/-240	N/A	760	1820

Poor Reported Braking Action

•	U								
MAX MANUAL	8800	600/-610	310/410	-550/2030	740/-470	270/-280	N/A	1580	4330
AUTOBRAKE MAX	8840	610/-620	320/420	-550/2030	760/-480	280/-280	N/A	1590	4360
AUTOBRAKE 3	8840	610/-620	320/420	-550/2030	760/-480	280/-280	N/A	1590	4360

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

737-8/LEAP-1B27

FAA CATB

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Airspeed Unreliable (Flaps 40)

VREF40

		LANDING DISTANCE AND ADJUSTMENTS (FT)										
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al				
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG	1000 6.1.	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF		NO REV			

Dry Runway

MAX MANUAL	4000	270/-230	110/140	-180/600	40/-40	100/-100	N/A	70	110
AUTOBRAKE MAX	4520	290/-260	130/160	-200/650	20/-10	120/-120	N/A	10	30
AUTOBRAKE 2	6050	430/-380	190/240	-290/970	0/-10	180/-180	N/A	0	0

Good Reported Braking Action

MAX MANUAL	4910	400/-330	180/240	-270/960	90/-80	160/-160	N/A	210	410
AUTOBRAKE MAX	5060	410/-330	180/250	-270/960	100/-80	160/-160	N/A	230	450
AUTOBRAKE 2	6150	440/-390	190/240	-300/990	20/-30	180/-190	N/A	0	0

Good To Medium Reported Braking Action

MAX MANUAL	5420	410/-340	180/250	-290/1030	140/-120	160/-170	N/A	300	610
AUTOBRAKE MAX	5570	420/-350	190/250	-290/1020	140/-120	170/-170	N/A	320	650
AUTOBRAKE 2	6220	440/-390	190/250	-310/1040	60/-60	190/-190	N/A	60	200

Medium Reported Braking Action

MAX MANUAL	5780	420/-360	190/250	-310/1090	180/-150	170/-170	N/A	390	840
AUTOBRAKE MAX	5930	430/-380	200/260	-310/1090	180/-150	170/-170	N/A	410	880
AUTOBRAKE 3	5920	430/-370	200/260	-310/1090	180/-140	170/-170	N/A	410	880

Medium To Poor Reported Braking Action

MAX MANUAL	6470	550/-470	250/340	-390/1400	240/-200	220/-220	N/A	620	1460
AUTOBRAKE MAX	6520	560/-470	260/350	-390/1400	260/-220	220/-220	N/A	640	1490
AUTOBRAKE 3	6520	560/-470	260/350	-390/1400	260/-210	220/-220	N/A	640	1490

Poor Reported Braking Action

•	_								
MAX MANUAL	8330	640/-570	310/400	-540/2000	730/-460	260/-260	N/A	1410	3800
AUTOBRAKE MAX	8380	650/-580	310/400	-540/2000	750/-480	260/-260	N/A	1420	3830
AUTOBRAKE 3	8380	650/-580	310/400	-540/2000	750/-470	260/-260	N/A	1420	3830

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds.

Actual (unfactored) distances are shown.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance All Flaps Up Landing

VREF40 + 55

	LA	NDING DIST	ΓANCE AN	D ADJUST	MENTS (F	Γ)		
REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al	
65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF	ONE REV	NO REV

Dry Runway

MAX MANUAL	5660	580/-290	160/260	-210/680	60/-50	150/-150	190	150	240
AUTOBRAKE MAX	6780	410/-320	190/240	-240/780	10/-10	190/-190	280	10	40
AUTOBRAKE 2	9500	500/-500	290/370	-370/1190	0/0	290/-290	440	0	0

Good Reported Braking Action

MAX MANUAL	7610	530/-470	290/400	-350/1200	160/-140	260/-260	300	620	1290
AUTOBRAKE MAX	7710	530/-460	300/400	-350/1200	160/-140	260/-260	320	640	1330
AUTOBRAKE 2	9650	510/-510	300/380	-370/1210	30/-40	300/-300	440	0	0

Good To Medium Reported Braking Action

MAX MANUAL	8130	540/-480	300/400	-370/1260	200/-180	270/-270	300	720	1530
AUTOBRAKE MAX	8220	540/-480	300/410	-370/1260	200/-170	270/-270	320	740	1570
AUTOBRAKE 2	9720	520/-520	300/390	-390/1260	70/-60	300/-300	440	60	270

Medium Reported Braking Action

_		_							
MAX MANUAL	8510	550/-500	310/410	-390/1320	240/-210	270/-270	300	850	1860
AUTOBRAKE MAX	8610	550/-500	310/420	-380/1320	240/-200	270/-270	320	870	1900
AUTOBRAKE 3	8760	520/-460	300/410	-380/1270	200/-150	270/-270	350	730	1760

Medium To Poor Reported Braking Action

MAX MANUAL	10090	750/-670	410/560	-490/1690	390/-320	340/-350	340	1730	4640
AUTOBRAKE MAX	10130	750/-670	420/560	-490/1690	420/-340	350/-350	340	1740	4660
AUTOBRAKE 3	10130	750/-670	420/560	-490/1690	420/-340	350/-350	340	1740	4660

Poor Reported Braking Action

,	MAX MANUAL	12110	850/-790	470/620	-630/2250	910/-600	380/-380	340	2810	8340
	AUTOBRAKE MAX	12140	850/-790	470/620	-630/2260	940/-620	390/-390	340	2820	8360
	AUTOBRAKE 3	12140	850/-790	470/620	-630/2260	940/-620	390/-390	340	2820	8360

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance ANTISKID INOPERATIVE (Flaps 15)

VREF15

		LA	NDING DIS	TANCE AN	D ADJUST	MENTS (F	Γ)		
	REF	WT	ALT	WIND	SLOPE	TEMP	APP		ERSE
	DIST	ADJ	ADJ	ADJ	ADJ	ADJ	SPD ADJ	THR Al	
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF		NO REV

Dry Runway

1	MAX MANUAL	6410	390/-420	200/250	-330/1130	200/-160	180/-180	270	510	1140	
1	AUTOBRAKE MAX		Autobrake Inoperative								
1	AUTOBRAKE 2		Autobrake Inoperative								

Good Reported Braking Action

MAX MANUAL	7460	570/-550	280/390	-430/1590	310/-250	250/-250	330	980	2510		
AUTOBRAKE MAX		Autobrake Inoperative									
AUTOBRAKE 2		Autobrake Inoperative									

Good To Medium Reported Braking Action

MAX MANUA	ΛL	8650	620/-620	320/420	-530/1930	620/-420	270/-270	330	1510	4170	
AUTOBRAKE M	1AX			1	Autobrake Ir	noperative					
AUTOBRAKE	2		Autobrake Inoperative								

Medium Reported Braking Action

MAX MANUA	ΑL	9170	660/-660	330/440	-570/2120	810/-500	290/-290	330	1850	5390		
AUTOBRAKE N	ИAХ		Autobrake Inoperative									
AUTOBRAKI	Ξ3		Autobrake Inoperative									

Medium To Poor Reported Braking Action

	MAX MANUAL	9550	750/-720	380/510	-620/2310	860/-540	320/-320	360	2120	6410		
ĺ	AUTOBRAKE MAX		Autobrake Inoperative									
ĺ	AUTOBRAKE 3		Autobrake Inoperative									

Poor Reported Braking Action

MAX MANUAL	11550	880/-870	460/590	-860/3440	4410/-1020	380/-380	360	4210	**	
AUTOBRAKE MAX		Autobrake Inoperative								
AUTOBRAKE 3		Autobrake Inoperative								

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds.

Actual (unfactored) distances are shown.

^{**}Deceleration insufficient to stop airplane on the runway.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance ANTISKID INOPERATIVE (Flaps 30)

VREF30								
		LA	NDING DIS	TANCE AN	D ADJUST	MENTS (F	Γ)	
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVERSE THRUST ADJ
	·	DED		PER	DED 1%	PER	DED	

REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	SPD ADJ	THR Al	
65000 KG LANDING WEIGHT	2000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF	ONE REV	NO REV

Dry Runway

MAX MANUAL	5900	360/-380	180/230	-320/1090	180/-150	170/-170	250	410	900			
AUTOBRAKE MAX		Autobrake Inoperative										
AUTOBRAKE 2		Autobrake Inoperative										

Good Reported Braking Action

1	MAX MANUAL	6770	500/-490	250/340	-410/1510	270/-220	220/-220	310	750	1830			
1	AUTOBRAKE MAX		Autobrake Inoperative										
1	AUTOBRAKE 2		Autobrake Inoperative										

Good To Medium Reported Braking Action

MAX MANUAL	7920	550/-550	280/370	-500/1850	570/-380	250/-250	310	1220	3250		
AUTOBRAKE MAX		Autobrake Inoperative									
AUTOBRAKE 2		Autobrake Inoperative									

Medium Reported Braking Action

MAX MANUAL	8420	590/-600	300/390	-550/2040	750/-460	260/-260	310	1510	4210		
AUTOBRAKE MAX		Autobrake Inoperative									
AUTOBRAKE 3		Autobrake Inoperative									

Medium To Poor Reported Braking Action

Γ	MAX MANUAL	8700	660/-650	330/440	-590/2220	790/-490	290/-290	340	1670	4760			
Α	UTOBRAKE MAX		Autobrake Inoperative										
Γ	AUTOBRAKE 3		Autobrake Inoperative										

Poor Reported Braking Action

MAX MA	NUAL	10630	790/-790	410/520	-820/3350	4350/-950	350/-340	340	3530	**			
AUTOBRAI	KE MAX		Autobrake Inoperative										
AUTOBR	AKE 3		Autobrake Inoperative										

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

^{**}Deceleration insufficient to stop airplane on the runway.

737-8/LEAP-1B27 FAA CATB

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance ANTISKID INOPERATIVE (Flaps 40)

VREF40

		LA	NDING DIS	ΓANCE AN	D ADJUST	MENTS (F	Γ)		
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al	
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF		NO REV

Dry Runway

1	MAX MANUAL	5540	400/-360	170/220	-310/1070	170/-140	160/-160	250	360	780		
1	AUTOBRAKE MAX		Autobrake Inoperative									
1	AUTOBRAKE 2		Autobrake Inoperative									

Good Reported Braking Action

MAX MANUAL	6290	550/-450	240/320	-400/1460	260/-210	200/-210	310	630	1510			
AUTOBRAKE MAX		Autobrake Inoperative										
AUTOBRAKE 2		Autobrake Inoperative										

Good To Medium Reported Braking Action

MAX MANUAL	7450	590/-520	270/350	-490/1810	560/-370	230/-230	310	1080	2830			
AUTOBRAKE MAX		Autobrake Inoperative										
AUTOBRAKE 2		Autobrake Inoperative										

Medium Reported Braking Action

MAX MANUAL	7930	630/-560	290/370	-540/2010	740/-450	240/-240	310	1340	3670			
AUTOBRAKE MAX		Autobrake Inoperative										
AUTOBRAKE 3		Autobrake Inoperative										

Medium To Poor Reported Braking Action

	MAX MANUAL	8150	700/-600	320/420	-580/2180	770/-470	270/-270	330	1450	4030				
ĺ	AUTOBRAKE MAX		Autobrake Inoperative											
ĺ	AUTOBRAKE 3		Autobrake Inoperative											

Poor Reported Braking Action

Γ	MAX MANUAL	10070	830/-740	400/500	-810/3330	4560/-930	330/-320	330	3230	14990		
1	AUTOBRAKE MAX		Autobrake Inoperative									
Ī	AUTOBRAKE 3		Autobrake Inoperative									

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds.

Actual (unfactored) distances are shown.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Jammed or Restricted Flight Controls (Flaps 15)

VREF15 + 10

	LA	NDING DIST	ΓANCE AN	D ADJUST	MENTS (F	Γ)		
REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al	
65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF	ONE REV	NO REV

Dry Runway

MAX MANUAL	4550	290/-270	120/150	-190/630	50/-40	120/-120	190	100	160
AUTOBRAKE MAX	5170	270/-300	140/170	-210/690	10/0	140/-140	250	10	30
AUTOBRAKE 2	7050	400/-450	210/260	-320/1040	0/0	210/-210	380	0	0

Good Reported Braking Action

MAX MANUAL	5770	400/-400	210/280	-300/1050	120/-100	190/-190	280	340	690
AUTOBRAKE MAX	5870	410/-400	210/280	-300/1040	120/-100	190/-190	300	360	730
AUTOBRAKE 2	7160	410/-460	210/270	-320/1060	30/-30	220/-220	390	0	0

Good To Medium Reported Braking Action

MAX MANUAL	6290	410/-410	210/290	-320/1110	160/-140	200/-200	280	440	920
AUTOBRAKE MAX	6380	420/-420	210/290	-320/1110	160/-140	200/-200	300	460	960
AUTOBRAKE 2	7230	410/-460	210/280	-340/1120	70/-50	220/-220	390	60	250

Medium Reported Braking Action

_		_							
MAX MANUAL	6650	430/-430	220/300	-340/1180	200/-170	200/-200	280	550	1210
AUTOBRAKE MAX	6750	430/-440	220/300	-330/1170	200/-170	200/-200	300	570	1250
AUTOBRAKE 3	6750	430/-440	220/300	-340/1160	200/-150	210/-210	310	560	1230

Medium To Poor Reported Braking Action

MAX MANUAL	7640	580/-560	300/400	-420/1510	290/-240	260/-260	320	1000	2530
AUTOBRAKE MAX	7680	580/-560	300/410	-430/1510	320/-260	260/-260	320	1010	2560
AUTOBRAKE 3	7680	580/-560	300/410	-430/1510	320/-260	260/-260	320	1010	2560

Poor Reported Braking Action

MAX MANUAL	9560	670/-680	350/460	-570/2090	800/-510	300/-300	320	1940	5550
AUTOBRAKE MAX	9610	680/-680	360/470	-570/2090	820/-530	300/-300	320	1950	5580
AUTOBRAKE 3	9610	680/-680	360/470	-570/2090	820/-530	300/-300	320	1950	5580

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance LEADING EDGE FLAPS TRANSIT (Flaps 15)

VREF15 + 15

		LA	NDING DIS	TANCE AN	D ADJUST	MENTS (F	Γ)		
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al	
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 K (+	1000 6.1.	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF		NO REV

Dry Runway

MAX MANUAL	4790	300/-270	130/160	-200/640	50/-50	130/-130	200	110	180
AUTOBRAKE MAX	5420	280/-310	140/180	-220/710	20/-10	150/-150	270	10	40
AUTOBRAKE 2	7420	410/-460	220/280	-330/1060	0/0	220/-230	390	0	0

Good Reported Braking Action

MAX MANUAL	6160	430/-420	220/300	-310/1090	130/-120	210/-210	290	410	840
AUTOBRAKE MAX	6280	430/-420	220/310	-310/1080	130/-110	210/-210	310	430	880
AUTOBRAKE 2	7580	420/-470	220/290	-330/1100	40/-30	230/-230	400	0	10

Good To Medium Reported Braking Action

MAX MANUAL	6680	440/-440	230/310	-330/1150	180/-150	210/-210	290	510	1080
AUTOBRAKE MAX	6800	440/-440	230/310	-330/1140	180/-150	210/-210	310	530	1120
AUTOBRAKE 2	7650	430/-470	230/290	-340/1150	80/-50	230/-230	400	70	310

Medium Reported Braking Action

MAX MANUAL	7060	450/-460	240/320	-350/1210	220/-180	220/-220	290	630	1380
AUTOBRAKE MAX	7170	450/-460	240/320	-350/1210	220/-180	220/-220	310	650	1420
AUTOBRAKE 3	7170	450/-460	240/320	-350/1200	210/-160	220/-220	320	640	1410

Medium To Poor Reported Braking Action

MAX MANUAL	8110	610/-590	320/430	-440/1550	320/-260	280/-280	330	1140	2930
AUTOBRAKE MAX	8180	610/-590	320/440	-440/1550	350/-280	280/-280	330	1160	2980
AUTOBRAKE 3	8180	610/-590	320/440	-440/1550	350/-280	280/-280	330	1160	2970

Poor Reported Braking Action

•	_								
MAX MANUAL	10060	700/-710	370/490	-590/2130	830/-540	320/-320	330	2120	6100
AUTOBRAKE MAX	10130	710/-710	380/500	-590/2140	860/-560	320/-320	330	2130	6140
AUTOBRAKE 3	10130	710/-710	380/500	-590/2140	860/-560	320/-320	330	2130	6140

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance LOSS OF BOTH ENGINE DRIVEN GENERATORS (Flaps 15) VREF15

		LA	NDING DIS	ΓANCE AN	D ADJUST	MENTS (F	Γ)		
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al	UST
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG		PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF	ONE REV	

Dry Runway

MAX MANUAL	7530	500/-520	250/330	-370/1260	300/-240	220/-220	380	920	2150	
AUTOBRAKE MAX		Autobrake Inoperative								
AUTOBRAKE 2			1	Autobrake Ir	noperative					

Good Reported Braking Action

1	MAX MANUAL	8830	730/-690	370/510	-500/1790	480/-370	300/-300	450	1790	5200
1	AUTOBRAKE MAX			I	Autobrake Ir	noperative				
1	AUTOBRAKE 2			1	Autobrake Ir	noperative				

Good To Medium Reported Braking Action

1	MAX MANUAL	10130	790/-760	400/540	-590/2130	840/-570	330/-330	450	2480	7640
1	AUTOBRAKE MAX			1	Autobrake Ir	noperative				
1	AUTOBRAKE 2			1	Autobrake Ir	operative				

Medium Reported Braking Action

MAX N	MANUAL	10720	830/-810	430/570	-640/2330	1080/-670	340/-340	450	2960	9710
AUTOBR	RAKE MAX			1	Autobrake Ir	noperative				
AUTO	BRAKE 3			I	Autobrake Ir	noperative				

Medium To Poor Reported Braking Action

N	MAX MANUAL	11160	940/-880	480/660	-700/2560	1160/-720	380/-380	470	3460	12540
ΑU	TOBRAKE MAX			A	Autobrake Ir	noperative				
Α	AUTOBRAKE 3			A	Autobrake Ir	noperative				

Poor Reported Braking Action

MAX MANUAL	13400	1100/-1050	580/760	-950/3730	5590/-1280	450/-440	470	6180	**
AUTOBRAKE MAX			1	Autobrake Ir	noperative				
AUTOBRAKE 3			1	Autobrake Ir	noperative				

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

^{**}Deceleration insufficient to stop airplane on the runway.

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance LOSS OF BOTH ENGINE DRIVEN GENERATORS (Flaps 30) VREF30

		LA	NDING DIS	TANCE AN	D ADJUST	MENTS (F	Γ)		
	REF	WT	ALT	WIND	SLOPE	TEMP	APP		ERSE
	DIST	ADJ	ADJ	ADJ	ADJ	ADJ	SPD ADJ	THR Al	
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF		NO REV

Dry Runway

Ì	MAX MANUAL	7030	460/-480	230/300	-360/1230	280/-230	210/-210	370	780	1790	
1	AUTOBRAKE MAX		Autobrake Inoperative								
1	AUTOBRAKE 2		Autobrake Inoperative								

Good Reported Braking Action

MAX MANUAL	8110	650/-620	320/450	-470/1720	440/-340	270/-270	420	1420	3880			
AUTOBRAKE MAX		Autobrake Inoperative										
AUTOBRAKE 2		Autobrake Inoperative										

Good To Medium Reported Braking Action

1	MAX MANUAL	9390	710/-690	360/480	-570/2060	800/-530	300/-300	420	2050	6000			
1	AUTOBRAKE MAX		Autobrake Inoperative										
1	AUTOBRAKE 2		Autobrake Inoperative										

Medium Reported Braking Action

MAX MANUAL	9950	750/-740	380/510	-620/2260	1030/-630	320/-320	420	2460	7640			
AUTOBRAKE MAX		Autobrake Inoperative										
AUTOBRAKE 3		Autobrake Inoperative										

Medium To Poor Reported Braking Action

	MAX MANUAL	10280	840/-800	430/580	-670/2470	1090/-670	350/-350	440	2770	9120				
ĺ	AUTOBRAKE MAX		Autobrake Inoperative											
ĺ	AUTOBRAKE 3		Autobrake Inoperative											

Poor Reported Braking Action

MAX MANUAL	12470	990/-960	520/680	-930/3660	5660/-1210	420/-410	440	5250	**			
AUTOBRAKE MAX		Autobrake Inoperative										
AUTOBRAKE 3		Autobrake Inoperative										

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds.

Actual (unfactored) distances are shown.

^{**}Deceleration insufficient to stop airplane on the runway.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance LOSS OF BOTH ENGINE DRIVEN GENERATORS (Flaps 40) VREF40

		LA	NDING DIS	ΓANCE AN	D ADJUST	MENTS (F	Γ)		
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al	UST
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG		PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF		NO REV

Dry Runway

MAX MANUAL	6620	530/-450	230/290	-360/1210	280/-220	190/-200	370	690	1560			
AUTOBRAKE MAX		Autobrake Inoperative										
AUTOBRAKE 2		Autobrake Inoperative										

Good Reported Braking Action

MAX MANUAL	7550	710/-570	310/430	-460/1670	420/-320	250/-250	420	1200	3170			
AUTOBRAKE MAX		Autobrake Inoperative										
AUTOBRAKE 2		Autobrake Inoperative										

Good To Medium Reported Braking Action

1	MAX MANUAL	8830	770/-640	350/460	-560/2020	780/-510	280/-280	420	1800	5120			
	AUTOBRAKE MAX		Autobrake Inoperative										
1	AUTOBRAKE 2		Autobrake Inoperative										

Medium Reported Braking Action

MAX MANUAL	9370	810/-690	370/490	-610/2230	1010/-610	300/-300	420	2170	6530		
AUTOBRAKE MAX		Autobrake Inoperative									
AUTOBRAKE 3		Autobrake Inoperative									

Medium To Poor Reported Braking Action

Ī	MAX MANUAL	9610	890/-730	410/550	-650/2420	1060/-640	320/-320	430	2380	7440			
I	AUTOBRAKE MAX		Autobrake Inoperative										
I	AUTOBRAKE 3		Autobrake Inoperative										

Poor Reported Braking Action

MAX MANUAL	11790	1050/-900	500/650	-910/3630	5950/-1190	400/-390	430	4740	**	
AUTOBRAKE MAX		Autobrake Inoperative								
AUTOBRAKE 3			1	Autobrake Ir	noperative					

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

^{**}Deceleration insufficient to stop airplane on the runway.

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance LOSS OF SYSTEM A (Flaps 15)

VREF15

		LA	NDING DIS	TANCE AN	D ADJUST	MENTS (F	Γ)		
	REF	WT	ALT	WIND	SLOPE	TEMP	APP		ERSE
	DIST	ADJ	ADJ	ADJ	ADJ	ADJ	SPD ADJ	THR Al	
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF		NO REV

Dry Runway

MAX MANUAL	4700	290/-290	130/160	-200/660	70/-60	120/-130	250	110	170
AUTOBRAKE MAX	4790	280/-300	130/160	-210/670	40/-20	130/-130	260	80	140
AUTOBRAKE 2	6330	380/-430	190/240	-300/990	0/0	190/-190	370	0	0

Good Reported Braking Action

MAX MANUAL	6190	470/-460	230/320	-330/1160	180/-150	210/-210	380	550	1030
AUTOBRAKE MAX	6190	470/-460	230/330	-330/1170	200/-170	210/-210	380	510	960
AUTOBRAKE 2	6680	450/-470	220/320	-340/1130	120/-80	220/-220	400	250	580

Good To Medium Reported Braking Action

MAX MANUAL	6750	480/-470	240/330	-350/1220	230/-190	220/-220	380	670	1320
AUTOBRAKE MAX	6750	480/-470	240/330	-350/1220	250/-210	220/-220	380	630	1250
AUTOBRAKE 2	6770	450/-470	230/330	-350/1200	180/-110	220/-220	400	470	1090

Medium Reported Braking Action

MAX MANUAL	7170	500/-490	250/340	-360/1280	280/-230	220/-220	380	820	1750
AUTOBRAKE MAX	7170	500/-480	250/340	-360/1280	300/-250	220/-220	380	790	1680
AUTOBRAKE 3	7170	500/-480	250/340	-360/1280	300/-250	220/-220	380	790	1680

Medium To Poor Reported Braking Action

MAX MANUAL	8280	680/-650	340/470	-470/1660	420/-330	290/-290	430	1590 4	1190
AUTOBRAKE MAX	8280	680/-650	340/480	-470/1660	450/-360	290/-290	420	1580 4	1140
AUTOBRAKE 3	8280	680/-650	340/480	-470/1660	450/-360	290/-290	420	1580 4	1140

Poor Reported Braking Action

•	_								
MAX MANUAL	10400	790/-770	400/540	-620/2250	1020/-640	330/-330	430	2810	8570
AUTOBRAKE MAX	10400	790/-770	400/540	-620/2240	1050/-670	330/-330	420	2790	8520
AUTOBRAKE 3	10400	790/-770	400/540	-620/2240	1050/-670	330/-330	420	2790	8520

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds.

Actual (unfactored) distances are shown.

^{*}For landing distance at or below 8000 ft pressure altitude, apply the STD adjustment. For altitudes higher than 8000 ft, first apply the STD adjustment to derive a new reference landing distance for 8000 ft then apply the HIGH adjustment to this new reference distance.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance LOSS OF SYSTEM A (Flaps 30)

VREF30

		LA	NDING DIS	ΓANCE AN	D ADJUST	MENTS (F	Γ)		
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD	REVI THR	ERSE UST
	DIST	ADJ	ADJ	ADJ	ADJ	ADJ	ADJ	Al	DJ
BRAKING	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF		

Dry Runway

MAX MANUAL	4320	260/-260	110/150	-200/630	60/-50	110/-120	240	80	120
AUTOBRAKE MAX	4440	260/-270	120/150	-200/650	30/-20	120/-120	240	60	110
AUTOBRAKE 2	5850	350/-390	170/220	-290/960	0/0	170/-180	350	0	0

Good Reported Braking Action

MAX MANUAL	5540	410/-400	200/280	-310/1090	150/-130	190/-190	340	380	670
AUTOBRAKE MAX	5540	410/-400	200/280	-310/1090	170/-140	190/-190	350	360	640
AUTOBRAKE 2	6080	390/-420	190/260	-320/1050	80/-60	190/-190	380	130	290

Good To Medium Reported Braking Action

MAX MANUAL	6090	420/-420	210/280	-330/1140	200/-170	190/-190	340	490	940
AUTOBRAKE MAX	6090	420/-410	210/290	-330/1150	220/-180	190/-190	350	470	900
AUTOBRAKE 2	6170	400/-420	200/270	-330/1110	140/-90	190/-200	380	320	760

Medium Reported Braking Action

MAX MANUAL	6500	430/-440	220/290	-340/1200	250/-200	200/-190	340	630	1300
AUTOBRAKE MAX	6500	440/-430	220/300	-340/1200	270/-220	200/-200	350	610	1260
AUTOBRAKE 3	6500	440/-430	220/300	-340/1200	270/-220	200/-200	350	610	1260

Medium To Poor Reported Braking Action

MAX MANUAL	7390	590/-580	290/400	-440/1570	350/-280	250/-250	390	1130	2680
AUTOBRAKE MAX	7390	590/-580	290/410	-440/1560	380/-310	260/-260	390	1120	2650
AUTOBRAKE 3	7390	590/-580	290/410	-440/1560	380/-310	260/-260	390	1120	2650

Poor Reported Braking Action

MAX MANUAL	9450	690/-690	350/470	-590/2160	930/-580	300/-300	390	2200	6260
AUTOBRAKE MAX	9450	690/-690	360/470	-590/2160	960/-600	300/-300	390	2190	6240
AUTOBRAKE 3	9450	690/-690	360/470	-590/2160	960/-600	300/-300	390	2190	6240

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance LOSS OF SYSTEM A (Flaps 40)

VREF40

		LA	NDING DIS	TANCE AN	D ADJUST	MENTS (F	Γ)		
	REF	WT	ALT	WIND	SLOPE	TEMP	APP		ERSE
	DIST	ADJ	ADJ	ADJ	ADJ	ADJ	SPD ADJ	THR Al	
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF		NO REV

Dry Runway

MAX MANUAL	4040	300/-240	110/140	-190/620	60/-50	110/-110	230	70	100
AUTOBRAKE MAX	4140	300/-250	120/150	-200/630	40/-20	110/-110	240	60	100
AUTOBRAKE 2	5390	410/-360	170/210	-280/920	0/0	160/-160	340	0	0

Good Reported Braking Action

MAX MANUAL	5080	460/-360	190/270	-290/1040	130/-120	170/-170	330	290	510
AUTOBRAKE MAX	5080	460/-360	200/270	-290/1040	150/-130	170/-170	340	280	490
AUTOBRAKE 2	5590	450/-390	190/250	-300/1010	70/-60	170/-180	360	100	200

Good To Medium Reported Braking Action

MAX MANUAL	5630	470/-380	200/270	-310/1100	190/-150	170/-170	330	400	770
AUTOBRAKE MAX	5630	470/-370	200/280	-310/1100	200/-170	180/-180	340	390	740
AUTOBRAKE 2	5690	460/-380	190/270	-310/1080	140/-90	180/-180	360	300	660

Medium Reported Braking Action

MAX MANUAL	6050	480/-400	210/280	-330/1150	230/-190	180/-180	330	530	1080
AUTOBRAKE MAX	6050	490/-400	210/280	-330/1150	250/-210	180/-180	330	520	1050
AUTOBRAKE 3	6050	490/-400	210/280	-330/1150	250/-210	180/-180	330	520	1050

Medium To Poor Reported Braking Action

MAX MANUAL	6770	640/-520	280/380	-430/1510	320/-260	230/-230	380	890	2000
AUTOBRAKE MAX	6770	640/-530	280/390	-430/1510	350/-280	230/-240	370	890	1990
AUTOBRAKE 3	6770	640/-530	280/390	-430/1510	350/-280	230/-240	370	890	1990

Poor Reported Braking Action

MAX MANUAL	8810	740/-640	340/440	-580/2120	900/-560	280/-280	380	1890	5210
AUTOBRAKE MAX	8810	740/-630	340/450	-580/2120	930/-580	280/-280	380	1890	5200
AUTOBRAKE 3	8810	740/-630	340/450	-580/2120	930/-580	280/-280	380	1890	5200

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance LOSS OF SYSTEM A AND SYSTEM B (Flaps 15) VREF15

		LA	NDING DIS	ΓANCE AN	D ADJUST	MENTS (F	Γ)		
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al	
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF	ONE REV	

Dry Runway

MAX MANUAL	6120	380/-380	170/220	-270/880	160/-140	170/-170	370	60	310		
AUTOBRAKE MAX		Autobrake Inoperative									
AUTOBRAKE 2		Autobrake Inoperative									

Good Reported Braking Action

1	MAX MANUAL	8230	630/-610	320/440	-440/1530	390/-310	280/-270	510	460	1940		
1	AUTOBRAKE MAX		Autobrake Inoperative									
1	AUTOBRAKE 2		Autobrake Inoperative									

Good To Medium Reported Braking Action

1	MAX MANUAL	8940	640/-630	330/450	-470/1630	480/-380	290/-280	510	680	2530			
1	AUTOBRAKE MAX		Autobrake Inoperative										
1	AUTOBRAKE 2		Autobrake Inoperative										

Medium Reported Braking Action

MAX MANUAL	9440	670/-640	340/460	-480/1710	560/-430	300/-290	500	930	3360			
AUTOBRAKE MAX		Autobrake Inoperative										
AUTOBRAKE 3		Autobrake Inoperative										

Medium To Poor Reported Braking Action

Ī	MAX MANUAL	10690	850/-810	430/600	-590/2070	750/-560	360/-350	520	1620	7320		
Z	AUTOBRAKE MAX		Autobrake Inoperative									
I	AUTOBRAKE 3		Autobrake Inoperative									

Poor Reported Braking Action

M	AX MANUAL	13110	990/-960	520/690	-790/2900	1860/-1000	420/-400	520	3500	16020		
AUT	OBRAKE MAX		Autobrake Inoperative									
Αl	JTOBRAKE 3		Autobrake Inoperative									

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance LOSS OF SYSTEM B (Flaps 15)

VREF15

		LANDING DISTANCE AND ADJUSTMENTS (FT)										
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al				
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF		NO REV			

Dry Runway

Ī	MAX MANUAL	4820	300/-300	130/170	-220/730	80/-70	130/-130	220	150	240		
Ī	AUTOBRAKE MAX		Autobrake Inoperative									
I	AUTOBRAKE 2		Autobrake Inoperative									

Good Reported Braking Action

MAX MANUAL	6110	460/-450	230/310	-340/1190	170/-150	210/-210	320	510	980		
AUTOBRAKE MAX		Autobrake Inoperative									
AUTOBRAKE 2		Autobrake Inoperative									

Good To Medium Reported Braking Action

MAX MANUAL	6730	470/-470	230/320	-370/1290	240/-200	210/-210	320	660	1360			
AUTOBRAKE MAX		Autobrake Inoperative										
AUTOBRAKE 2		Autobrake Inoperative										

Medium Reported Braking Action

MAX MANUAL	7160	490/-490	250/330	-380/1370	300/-240	220/-220	320	820	1820		
AUTOBRAKE MAX		Autobrake Inoperative									
AUTOBRAKE 3		Autobrake Inoperative									

Medium To Poor Reported Braking Action

	MAX MANUAL	8050	640/-620	320/440	-470/1700	400/-320	270/-270	360	1350	3370			
	AUTOBRAKE MAX		Autobrake Inoperative										
ĺ	AUTOBRAKE 3		Autobrake Inoperative										

Poor Reported Braking Action

MAX MANUAL	10190	760/-750	390/510	-660/2450	1200/-670	330/-320	360	2660	8180		
AUTOBRAKE MAX		Autobrake Inoperative									
AUTOBRAKE 3		Autobrake Inoperative									

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds.

Actual (unfactored) distances are shown.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance MANUAL REVERSION (Flaps 15)

VREF15

		LANDING DISTANCE AND ADJUSTMENTS (FT)										
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al	UST			
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF		NO REV			

Dry Runway

MAX MANUAL	6120	380/-380	170/220	-270/880	160/-140	170/-170	370	60	310			
AUTOBRAKE MAX		Autobrake Inoperative										
AUTOBRAKE 2		Autobrake Inoperative										

Good Reported Braking Action

MAX MANUAL	8230	630/-610	320/440	-440/1530	390/-310	280/-270	510	460	1940		
AUTOBRAKE MAX		Autobrake Inoperative									
AUTOBRAKE 2		Autobrake Inoperative									

Good To Medium Reported Braking Action

Ì	MAX MANUAL	8940	640/-630	330/450	-470/1630	480/-380	290/-280	510	680	2530			
1	AUTOBRAKE MAX		Autobrake Inoperative										
1	AUTOBRAKE 2		Autobrake Inoperative										

Medium Reported Braking Action

MAX MANUAL	9440	670/-640	340/460	-480/1710	560/-430	300/-290	500	930	3360			
AUTOBRAKE MAX		Autobrake Inoperative										
AUTOBRAKE 3		Autobrake Inoperative										

Medium To Poor Reported Braking Action

Ī	MAX MANUAL	10690	850/-810	430/600	-590/2070	750/-560	360/-350	520	1620	7320			
Į	AUTOBRAKE MAX		Autobrake Inoperative										
I	AUTOBRAKE 3		Autobrake Inoperative										

Poor Reported Braking Action

Τ	MAX MANUAL	13110	990/-960	520/690	-790/2900	1860/-1000	420/-400	520	3500	16020			
4	AUTOBRAKE MAX		Autobrake Inoperative										
I	AUTOBRAKE 3		Autobrake Inoperative										

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance One Engine Inoperative Landing (Flaps 15)

VREF15

		LA	NDING DIS	TANCE AN	D ADJUST	MENTS (F	Γ)		
	REF	WT	ALT	WIND	SLOPE	TEMP	APP		ERSE
	DIST	ADJ	ADJ	ADJ	ADJ	ADJ	SPD ADJ	THR Al	
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF		NO REV

Dry Runway

MAX MANUAL	4220	270/-260	110/140	-190/620	50/-40	110/-110	190	0	70
AUTOBRAKE MAX	4700	260/-290	120/150	-210/670	10/-10	130/-130	240	0	20
AUTOBRAKE 2	6330	380/-430	190/240	-300/990	0/0	190/-190	370	0	0

Good Reported Braking Action

MAX MANUAL	5400	410/-400	200/270	-300/1090	120/-110	190/-190	300	0	310
AUTOBRAKE MAX	5480	410/-400	200/270	-300/1070	120/-110	190/-190	320	0	320
AUTOBRAKE 2	6400	390/-440	190/250	-310/1010	30/-20	190/-200	370	0	0

Good To Medium Reported Braking Action

MAX MANUAL	5990	410/-410	200/270	-320/1140	180/-150	190/-190	300	0	430
AUTOBRAKE MAX	6060	420/-410	200/270	-320/1130	170/-150	190/-190	320	0	450
AUTOBRAKE 2	6500	400/-440	190/250	-320/1080	90/-60	200/-200	370	0	160

Medium Reported Braking Action

MAX MANUAL	6440	430/-430	210/280	-340/1200	230/-190	200/-200	300	0	600
AUTOBRAKE MAX	6520	430/-440	210/280	-340/1190	230/-190	200/-200	310	0	610
AUTOBRAKE 3	6510	430/-440	210/280	-340/1190	230/-190	200/-200	310	0	610

Medium To Poor Reported Braking Action

MAX MANUAL	7620	630/-610	300/410	-470/1700	370/-300	280/-280	380	0	1280
AUTOBRAKE MAX	7650	630/-620	310/420	-470/1700	400/-320	280/-280	380	0	1290
AUTOBRAKE 3	7650	630/-620	310/420	-470/1700	400/-320	280/-280	380	0	1290

Poor Reported Braking Action

•	_								
MAX MANUAL	10140	730/-740	360/470	-630/2290	1100/-670	330/-330	380	0	3000
AUTOBRAKE MAX	10170	740/-750	370/480	-630/2290	1130/-690	330/-330	380	0	3010
AUTOBRAKE 3	10170	740/-750	370/480	-630/2290	1130/-690	330/-330	380	0	3010

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance One Engine Inoperative Landing (Flaps 30)

VREF30

Τ			LA	NDING DIST	TANCE AN	D ADJUST	MENTS (F	Γ)		
		REF	WT	ALT	WIND	SLOPE	TEMP	APP	REVI	ERSE
		DIST	ADJ	ADJ	ADJ	ADJ	ADJ	SPD	THR	UST
		DIST	ADJ	ADJ	ADJ	ADJ	ADJ	ADJ	Al	DJ
	BRAKING	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF	ONE REV	NO REV

Dry Runway

MAX MANUAL	3910	230/-240	100/130	-180/600	40/-40	100/-100	180	0	60
AUTOBRAKE MAX	4380	240/-270	110/140	-200/650	10/0	120/-120	230	0	20
AUTOBRAKE 2	5850	350/-390	170/220	-290/960	0/0	170/-180	350	0	0

Good Reported Braking Action

MAX MANUAL	4880	350/-350	170/230	-280/1010	100/-90	170/-160	270	0	220
AUTOBRAKE MAX	5000	360/-360	170/240	-280/1000	100/-90	170/-170	290	0	230
AUTOBRAKE 2	5910	360/-400	170/220	-300/970	20/-20	180/-180	360	0	0

Good To Medium Reported Braking Action

MAX MANUAL	5440	360/-360	180/240	-300/1070	150/-130	170/-170	270	0	330
AUTOBRAKE MAX	5570	370/-370	180/240	-300/1060	150/-130	170/-170	290	0	350
AUTOBRAKE 2	6000	360/-410	180/230	-310/1040	80/-50	180/-180	360	0	130

Medium Reported Braking Action

_		-							
MAX MANUAL	5880	380/-390	180/240	-320/1130	200/-170	180/-170	270	0	470
AUTOBRAKE MAX	5990	380/-400	190/250	-320/1120	200/-170	180/-180	290	0	480
AUTOBRAKE 3	5980	380/-400	190/250	-320/1120	200/-170	180/-180	290	0	480

Medium To Poor Reported Braking Action

MAX MANUAL	6770	540/-540	260/350	-440/1580	310/-240	250/-250	350	0	870
AUTOBRAKE MAX	6800	550/-540	270/360	-440/1580	330/-270	250/-250	350	0	880
AUTOBRAKE 3	6800	550/-540	270/360	-440/1580	330/-270	250/-250	350	0	880

Poor Reported Braking Action

•	U								
MAX MANUAL	9140	640/-660	320/410	-600/2190	980/-590	290/-290	350	0	2290
AUTOBRAKE MAX	9180	650/-670	320/420	-600/2190	1010/-610	300/-300	350	0	2300
AUTOBRAKE 3	9180	650/-670	320/420	-600/2190	1010/-610	300/-300	350	0	2300

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance SPOILERS (Flaps 15)

VREF15

		LANDING DISTANCE AND ADJUSTMENTS (FT)									
	REF	WT	ALT	WIND	SLOPE	TEMP	APP		ERSE		
	DIST	ADJ	ADJ	ADJ	ADJ	ADJ	SPD ADJ	THR Al			
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF		NO REV		

Dry Runway

MAX MANUAL	4940	300/-310	140/180	-210/680	80/-70	130/-140	300	190	300
AUTOBRAKE MAX	4940	300/-310	140/170	-210/680	60/-30	130/-130	280	180	290
AUTOBRAKE 2	6330	380/-430	190/240	-300/990	0/0	190/-190	370	0	0

Good Reported Braking Action

MAX MANUAL	6500	520/-490	260/360	-350/1210	220/-180	230/-230	430	740	1640
AUTOBRAKE MAX	6500	510/-490	250/360	-350/1210	240/-200	230/-230	430	680	1500
AUTOBRAKE 2	6810	500/-480	240/350	-350/1180	170/-110	220/-220	430	500	1230

Good To Medium Reported Braking Action

MAX MANUAL	7070	530/-510	260/360	-360/1260	270/-220	230/-230	430	880	1970
AUTOBRAKE MAX	7070	520/-500	260/360	-360/1260	290/-240	230/-230	430	820	1830
AUTOBRAKE 2	7070	520/-480	260/360	-360/1250	280/-140	230/-230	430	790	1810

Medium Reported Braking Action

MAX MANUAL	7500	540/-530	270/370	-380/1320	330/-260	240/-240	430	1060	2480
AUTOBRAKE MAX	7500	540/-520	270/370	-380/1310	350/-280	240/-240	430	1000	2340
AUTOBRAKE 3	7500	540/-520	270/370	-380/1310	350/-280	240/-240	430	1000	2340

Medium To Poor Reported Braking Action

MAX MANUAL	8610	750/-690	370/520	-490/1730	490/-380	310/-310	470	1960	6130
AUTOBRAKE MAX	8610	740/-690	370/520	-490/1720	520/-400	300/-310	470	1910	5990
AUTOBRAKE 3	8610	740/-690	370/520	-490/1720	520/-400	300/-310	470	1910	5990

Poor Reported Braking Action

	•	_								
1	MAX MANUAL	10800	850/-830	440/590	-640/2310	1120/-700	350/-350	470	3310	11320
1	AUTOBRAKE MAX	10800	850/-820	440/590	-640/2300	1150/-730	350/-350	470	3270	11180
1	AUTOBRAKE 3	10800	850/-820	440/590	-640/2300	1150/-730	350/-350	470	3270	11180

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance SPOILERS (Flaps 30)

VREF30

	LA	NDING DIS	ΓANCE AN	D ADJUST	MENTS (F	Γ)		
REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al	UST
65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF	ONE REV	NO REV

Dry Runway

MAX MANUAL	4700	280/-300	130/170	-210/680	80/-70	130/-130	310	180	280
AUTOBRAKE MAX	4700	270/-290	130/170	-210/670	60/-40	130/-130	280	160	260
AUTOBRAKE 2	5850	350/-390	170/220	-290/960	0/0	170/-180	350	0	0

Good Reported Braking Action

MAX MANUAL	6020	470/-450	230/320	-330/1160	200/-170	210/-210	420	610	1300
AUTOBRAKE MAX	6020	460/-450	230/320	-330/1150	220/-180	210/-210	420	560	1190
AUTOBRAKE 2	6290	450/-440	220/320	-330/1140	160/-110	200/-210	420	410	970

Good To Medium Reported Braking Action

MAX MANUAL	6600	480/-470	240/330	-350/1210	260/-210	210/-210	420	740	1620
AUTOBRAKE MAX	6600	470/-460	240/330	-350/1210	280/-230	210/-210	420	690	1510
AUTOBRAKE 2	6600	470/-450	240/330	-350/1210	280/-160	210/-210	420	690	1510

Medium Reported Braking Action

_		_							
MAX MANUAL	7030	490/-500	250/340	-360/1270	310/-250	220/-220	420	910	2090
AUTOBRAKE MAX	7030	490/-480	250/340	-360/1260	330/-270	220/-220	420	860	1980
AUTOBRAKE 3	7030	490/-480	250/340	-360/1260	330/-270	220/-220	420	860	1980

Medium To Poor Reported Braking Action

MAX MANUAL	7900	670/-630	330/460	-470/1660	440/-340	280/-280	450	1530	4410
AUTOBRAKE MAX	7900	670/-630	330/470	-460/1650	470/-370	280/-280	450	1500	4310
AUTOBRAKE 3	7900	670/-630	330/470	-460/1650	470/-370	280/-280	450	1500	4310

Poor Reported Braking Action

MAX MANUAL	10060	780/-760	400/530	-630/2260	1080/-670	320/-320	450	2780	8940
AUTOBRAKE MAX	10060	770/-760	400/530	-620/2250	1100/-690	320/-320	450	2750	8830
AUTOBRAKE 3	10060	770/-760	400/530	-620/2250	1100/-690	320/-320	450	2750	8830

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance SPOILERS (Flaps 40)

VREF40

		LA	NDING DIS	TANCE AN	D ADJUST	MENTS (F	Γ)		
	REF	WT	ALT	WIND	SLOPE	TEMP	APP		ERSE
	DIST	ADJ	ADJ	ADJ	ADJ	ADJ	SPD ADJ	THR Al	
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF		NO REV

Dry Runway

MAX MANUAL	4470	340/-280	140/170	-210/670	90/-80	120/-120	330	160	250
AUTOBRAKE MAX	4470	320/-280	130/170	-200/660	60/-50	120/-120	290	140	230
AUTOBRAKE 2	5390	410/-360	170/210	-280/920	10/0	160/-160	350	0	0

Good Reported Braking Action

MAX MANUAL	5600	540/-420	230/310	-320/1110	190/-160	190/-190	420	510	1070
AUTOBRAKE MAX	5600	540/-410	230/320	-320/1110	210/-180	190/-190	420	470	980
AUTOBRAKE 2	5830	530/-410	220/310	-320/1110	160/-110	190/-190	420	350	800

Good To Medium Reported Braking Action

MAX MANUAL	6190	550/-430	230/320	-340/1170	250/-200	190/-190	420	640	1380
AUTOBRAKE MAX	6190	550/-430	230/320	-330/1170	270/-220	190/-200	420	600	1290
AUTOBRAKE 2	6190	550/-420	230/320	-330/1170	270/-190	190/-200	420	600	1290

Medium Reported Braking Action

MAX MANUAL	6620	570/-460	240/330	-350/1230	310/-240	200/-200	410	800	1830
AUTOBRAKE MAX	6620	570/-450	240/330	-350/1220	330/-260	200/-200	420	760	1740
AUTOBRAKE 3	6620	570/-450	240/330	-350/1220	330/-260	200/-200	420	760	1740

Medium To Poor Reported Braking Action

MAX MANUAL	7300	740/-580	320/450	-450/1610	410/-320	260/-260	450	1260	3430
AUTOBRAKE MAX	7300	730/-580	320/450	-450/1600	440/-340	260/-260	440	1230	3350
AUTOBRAKE 3	7300	730/-580	320/450	-450/1600	440/-340	260/-260	440	1230	3350

Poor Reported Braking Action

•	_								
MAX MANUAL	9460	840/-710	390/510	-610/2220	1060/-650	300/-300	450	2440	7560
AUTOBRAKE MAX	9460	840/-700	390/510	-610/2220	1090/-670	300/-310	440	2420	7480
AUTOBRAKE 3	9460	840/-700	390/510	-610/2220	1090/-670	300/-310	440	2420	7480

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Stabilizer Trim Inoperative (Flaps 15)

VREF15 + 10

		LA	NDING DIS	ΓANCE AN	D ADJUST	MENTS (F	Γ)		
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al	UST
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF	ONE REV	

Dry Runway

MAX MANUAL	4550	290/-270	120/150	-190/630	50/-40	120/-120	190	100	160
AUTOBRAKE MAX	5170	270/-300	140/170	-210/690	10/0	140/-140	250	10	30
AUTOBRAKE 2	7050	400/-450	210/260	-320/1040	0/0	210/-210	380	0	0

Good Reported Braking Action

MAX MANUAL	5770	400/-400	210/280	-300/1050	120/-100	190/-190	280	340	690
AUTOBRAKE MAX	5870	410/-400	210/280	-300/1040	120/-100	190/-190	300	360	730
AUTOBRAKE 2	7160	410/-460	210/270	-320/1060	30/-30	220/-220	390	0	0

Good To Medium Reported Braking Action

MAX MANUAL	6290	410/-410	210/290	-320/1110	160/-140	200/-200	280	440	920
AUTOBRAKE MAX	6380	420/-420	210/290	-320/1110	160/-140	200/-200	300	460	960
AUTOBRAKE 2	7230	410/-460	210/280	-340/1120	70/-50	220/-220	390	60	250

Medium Reported Braking Action

_		_							
MAX MANUAL	6650	430/-430	220/300	-340/1180	200/-170	200/-200	280	550	1210
AUTOBRAKE MAX	6750	430/-440	220/300	-330/1170	200/-170	200/-200	300	570	1250
AUTOBRAKE 3	6750	430/-440	220/300	-340/1160	200/-150	210/-210	310	560	1230

Medium To Poor Reported Braking Action

MAX MANUAL	7640	580/-560	300/400	-420/1510	290/-240	260/-260	320	1000	2530
AUTOBRAKE MAX	7680	580/-560	300/410	-430/1510	320/-260	260/-260	320	1010	2560
AUTOBRAKE 3	7680	580/-560	300/410	-430/1510	320/-260	260/-260	320	1010	2560

Poor Reported Braking Action

MAX MANUAL	9560	670/-680	350/460	-570/2090	800/-510	300/-300	320	1940	5550
AUTOBRAKE MAX	9610	680/-680	360/470	-570/2090	820/-530	300/-300	320	1950	5580
AUTOBRAKE 3	9610	680/-680	360/470	-570/2090	820/-530	300/-300	320	1950	5580

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Trailing Edge Flap Asymmetry (1 ≤ Flap Lever < 15) VREF40 + 30

		LA	NDING DIS	TANCE AN	D ADJUST	MENTS (F	T)		
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al	UST
BRAKING CONFIGURATION		5000 KG		PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF		NO REV

Dry Runway

•									
MAX MANUAL	4730	370/-260	130/160	-190/630	50/-40	120/-120	180	100	180
AUTOBRAKE MAX	5470	320/-290	150/190	-220/710	10/0	150/-150	260	10	30
AUTOBRAKE 2	7490	450/-430	230/300	-330/1070	0/0	230/-230	390	0	0

Good Reported Braking Action

MAX MANUAL	6060	450/-390	230/310	-310/1070	120/-110	200/-200	280	390	790
AUTOBRAKE MAX	6120	450/-380	230/310	-300/1060	120/-100	200/-200	290	400	820
AUTOBRAKE 2	7570	460/-440	240/300	-330/1090	30/-30	230/-230	400	0	0

Good To Medium Reported Braking Action

MAX MANUAL	6570	460/-410	240/320	-330/1140	160/-140	210/-210	280	490	1030
AUTOBRAKE MAX	6630	460/-400	240/320	-320/1130	160/-140	210/-210	290	500	1050
AUTOBRAKE 2	7630	460/-440	240/310	-350/1140	60/-50	230/-240	400	60	240

Medium Reported Braking Action

MAX MANUAL	6940	470/-420	240/320	-340/1200	200/-170	210/-210	280	600	1330
AUTOBRAKE MAX	7000	470/-420	240/330	-340/1190	200/-170	210/-210	290	610	1360
AUTOBRAKE 3	7030	460/-410	240/330	-340/1170	180/-140	220/-220	320	570	1310

Medium To Poor Reported Braking Action

MAX MANUAL	8060	640/-550	330/440	-430/1530	300/-250	270/-270	320	1150	2980
AUTOBRAKE MAX	8060	640/-550	330/450	-430/1530	330/-270	280/-280	320	1150	2980
AUTOBRAKE 3	8060	640/-550	330/450	-430/1530	330/-270	280/-280	320	1150	2980

Poor Reported Braking Action

•	_								
MAX MANUAL	9980	730/-670	380/500	-580/2110	800/-520	310/-310	320	2130	6210
AUTOBRAKE MAX	9980	730/-670	380/500	-580/2110	820/-540	320/-320	320	2130	6210
AUTOBRAKE 3	9980	730/-670	380/500	-580/2110	820/-540	320/-320	320	2130	6210

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Trailing Edge Flap Asymmetry (Flap Lever 15 or 25)

VREF15

Τ			LA	NDING DIST	TANCE AN	D ADJUST	MENTS (F	Γ)		
		REF	WT	ALT	WIND	SLOPE	TEMP	APP	REVI	ERSE
		DIST	ADJ	ADJ	ADJ	ADJ	ADJ	SPD	THR	UST
		DIST	ADJ	ADJ	ADJ	ADJ	ADJ	ADJ	Al	DJ
	BRAKING	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF	ONE REV	NO REV

Dry Runway

MAX MANUAL	4180	260/-250	110/140	-190/610	40/-40	110/-110	190	80	140
AUTOBRAKE MAX	4700	260/-290	120/150	-210/670	10/0	130/-130	240	10	30
AUTOBRAKE 2	6330	380/-430	190/240	-300/990	0/0	190/-190	370	0	0

Good Reported Braking Action

MAX MANUAL	5240	380/-370	190/260	-290/1010	110/-90	170/-170	270	280	570
AUTOBRAKE MAX	5300	380/-380	190/260	-280/990	100/-90	170/-170	290	290	590
AUTOBRAKE 2	6420	390/-430	190/250	-310/1020	30/-20	190/-200	370	0	0

Good To Medium Reported Braking Action

MAX MANUAL	5750	390/-390	190/260	-310/1070	150/-130	180/-180	270	380	800
AUTOBRAKE MAX	5810	390/-390	190/260	-300/1060	150/-130	180/-180	290	390	820
AUTOBRAKE 2	6490	400/-440	190/250	-320/1080	70/-50	200/-200	380	60	250

Medium Reported Braking Action

MAX MANUAL	6130	410/-410	200/270	-320/1130	190/-160	180/-180	270	490	1090
AUTOBRAKE MAX	6190	410/-420	200/270	-320/1120	190/-160	180/-180	290	500	1110
AUTOBRAKE 3	6180	410/-420	200/270	-320/1120	190/-150	190/-190	290	500	1110

Medium To Poor Reported Braking Action

	_		_						
MAX MANUAL	7010	550/-540	270/370	-410/1470	270/-230	240/-240	320	880	2220
AUTOBRAKE MAX	7050	560/-540	280/380	-410/1470	300/-250	240/-240	330	890	2250
AUTOBRAKE 3	7050	560/-540	280/380	-410/1470	300/-250	240/-240	330	890	2250

Poor Reported Braking Action

MAX MANUAL	8930	650/-650	330/430	-560/2050	780/-490	280/-280	320	1820	5240
AUTOBRAKE MAX	8970	650/-650	330/440	-560/2060	800/-510	280/-280	330	1830	5260
AUTOBRAKE 3	8970	650/-650	330/440	-560/2060	800/-510	280/-280	330	1830	5260

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Trailing Edge Flap Asymmetry (Flap Lever 30) VREF30

		LANDING DISTANCE AND ADJUSTMENTS (FT)											
	REF	WT	ALT	WIND	SLOPE	TEMP	APP		ERSE				
	DIST	ADJ	ADJ	ADJ	ADJ	ADJ	SPD ADJ	THR Al					
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF		NO REV				

Dry Runway

MAX MANUAL	3890	230/-230	100/130	-180/590	40/-40	100/-100	180	70	110
AUTOBRAKE MAX	4380	240/-270	110/140	-200/650	10/0	120/-120	230	10	30
AUTOBRAKE 2	5850	350/-390	170/220	-290/960	0/0	170/-180	350	0	0

Good Reported Braking Action

MAX MANUAL	4760	340/-330	160/220	-270/950	90/-80	160/-160	260	210	410
AUTOBRAKE MAX	4870	340/-340	170/230	-270/940	90/-80	160/-160	270	220	440
AUTOBRAKE 2	5930	360/-400	170/220	-300/980	20/-20	180/-180	360	0	0

Good To Medium Reported Braking Action

MAX MANUAL	5270	350/-350	170/230	-290/1020	130/-110	160/-160	260	300	620
AUTOBRAKE MAX	5380	350/-360	170/230	-290/1010	130/-110	160/-160	270	310	650
AUTOBRAKE 2	6000	360/-400	180/230	-310/1030	60/-50	180/-180	360	60	200

Medium Reported Braking Action

MAX MANUAL	5640	360/-370	180/240	-300/1080	170/-140	160/-160	250	390	860
AUTOBRAKE MAX	5740	370/-380	180/240	-310/1070	170/-140	170/-170	270	410	890
AUTOBRAKE 3	5730	370/-380	180/240	-310/1070	170/-140	170/-170	280	410	890

Medium To Poor Reported Braking Action

MAX MANUAL	6340	490/-480	240/330	-390/1390	240/-200	220/-220	300	650	1560
AUTOBRAKE MAX	6380	490/-490	240/330	-390/1400	260/-220	220/-220	300	660	1580
AUTOBRAKE 3	6380	490/-490	240/330	-390/1400	260/-220	220/-220	300	660	1580

Poor Reported Braking Action

•	_								
MAX MANUAL	8200	580/-590	290/380	-540/1990	720/-450	260/-260	300	1480	4100
AUTOBRAKE MAX	8250	590/-590	300/390	-540/1990	740/-470	260/-260	300	1490	4120
AUTOBRAKE 3	8250	590/-590	300/390	-540/1990	740/-470	260/-260	300	1490	4120

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Trailing Edge Flap Disagree (1 ≤ Indicated Flaps < 15)

VREF40	+	3	0
--------	---	---	---

		LA	NDING DIS	ΓANCE AN	D ADJUST	MENTS (F	Γ)		
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al	
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF	ONE REV	

Dry Runway

MAX MANUAL	4730	370/-260	130/160	-190/630	50/-40	120/-120	180	100	180
AUTOBRAKE MAX	5470	320/-290	150/190	-220/710	10/0	150/-150	260	10	30
AUTOBRAKE 2	7490	450/-430	230/300	-330/1070	0/0	230/-230	390	0	0

Good Reported Braking Action

MAX MANUAL	6060	450/-390	230/310	-310/1070	120/-110	200/-200	280	390	790
AUTOBRAKE MAX	6120	450/-380	230/310	-300/1060	120/-100	200/-200	290	400	820
AUTOBRAKE 2	7570	460/-440	240/300	-330/1090	30/-30	230/-230	400	0	0

Good To Medium Reported Braking Action

MAX MANUAL	6570	460/-410	240/320	-330/1140	160/-140	210/-210	280	490	1030
AUTOBRAKE MAX	6630	460/-400	240/320	-320/1130	160/-140	210/-210	290	500	1050
AUTOBRAKE 2	7630	460/-440	240/310	-350/1140	60/-50	230/-240	400	60	240

Medium Reported Braking Action

MAX MANUAL	6940	470/-420	240/320	-340/1200	200/-170	210/-210	280	600	1330
AUTOBRAKE MAX	7000	470/-420	240/330	-340/1190	200/-170	210/-210	290	610	1360
AUTOBRAKE 3	7030	460/-410	240/330	-340/1170	180/-140	220/-220	320	570	1310

Medium To Poor Reported Braking Action

MAX MANUAL	8060	640/-550	330/440	-430/1530	300/-250	270/-270	320	1150	2980
AUTOBRAKE MAX	8060	640/-550	330/450	-430/1530	330/-270	280/-280	320	1150	2980
AUTOBRAKE 3	8060	640/-550	330/450	-430/1530	330/-270	280/-280	320	1150	2980

Poor Reported Braking Action

MAX MANUAL	9980	730/-670	380/500	-580/2110	800/-520	310/-310	320	2130	6210
AUTOBRAKE MAX	9980	730/-670	380/500	-580/2110	820/-540	320/-320	320	2130	6210
AUTOBRAKE 3	9980	730/-670	380/500	-580/2110	820/-540	320/-320	320	2130	6210

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Trailing Edge Flap Disagree (15 ≤ Indicated Flaps < 30) VREF15

		LA	NDING DIS	TANCE AN	D ADJUST	MENTS (F	Γ)		
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al	
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG ARV/RI W	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF		NO REV

Dry Runway

•									
MAX MANUAL	4180	260/-250	110/140	-190/610	40/-40	110/-110	190	80	140
AUTOBRAKE MAX	4700	260/-290	120/150	-210/670	10/0	130/-130	240	10	30
AUTOBRAKE 2	6330	380/-430	190/240	-300/990	0/0	190/-190	370	0	0

Good Reported Braking Action

MAX MANUAL	5240	380/-370	190/260	-290/1010	110/-90	170/-170	270	280	570
AUTOBRAKE MAX	5300	380/-380	190/260	-280/990	100/-90	170/-170	290	290	590
AUTOBRAKE 2	6420	390/-430	190/250	-310/1020	30/-20	190/-200	370	0	0

Good To Medium Reported Braking Action

Ī	MAX MANUAL	5750	390/-390	190/260	-310/1070	150/-130	180/-180	270	380	800
I	AUTOBRAKE MAX	5810	390/-390	190/260	-300/1060	150/-130	180/-180	290	390	820
Ī	AUTOBRAKE 2	6490	400/-440	190/250	-320/1080	70/-50	200/-200	380	60	250

Medium Reported Braking Action

MAX MANUAL	6130	410/-410	200/270	-320/1130	190/-160	180/-180	270	490	1090
AUTOBRAKE MAX	6190	410/-420	200/270	-320/1120	190/-160	180/-180	290	500	1110
AUTOBRAKE 3	6180	410/-420	200/270	-320/1120	190/-150	190/-190	290	500	1110

Medium To Poor Reported Braking Action

MAX MANUAL	7010	550/-540	270/370	-410/1470	270/-230	240/-240	320	880	2220
AUTOBRAKE MAX	7050	560/-540	280/380	-410/1470	300/-250	240/-240	330	890	2250
AUTOBRAKE 3	7050	560/-540	280/380	-410/1470	300/-250	240/-240	330	890	2250

Poor Reported Braking Action

•	_								
MAX MANUAL	8930	650/-650	330/430	-560/2050	780/-490	280/-280	320	1820	5240
AUTOBRAKE MAX	8970	650/-650	330/440	-560/2060	800/-510	280/-280	330	1830	5260
AUTOBRAKE 3	8970	650/-650	330/440	-560/2060	800/-510	280/-280	330	1830	5260

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds.

Actual (unfactored) distances are shown.

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Trailing Edge Flap Disagree (30 ≤ Indicated Flaps < 40) VREF30

		LA	NDING DIS	ΓANCE AN	D ADJUST	MENTS (F	Γ)		
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al	
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF		NO REV

Dry Runway

MAX MANUAL	3890	230/-230	100/130	-180/590	40/-40	100/-100	180	70	110
AUTOBRAKE MAX	4380	240/-270	110/140	-200/650	10/0	120/-120	230	10	30
AUTOBRAKE 2	5850	350/-390	170/220	-290/960	0/0	170/-180	350	0	0

Good Reported Braking Action

MAX MANUAL	4760	340/-330	160/220	-270/950	90/-80	160/-160	260	210	410
AUTOBRAKE MAX	4870	340/-340	170/230	-270/940	90/-80	160/-160	270	220	440
AUTOBRAKE 2	5930	360/-400	170/220	-300/980	20/-20	180/-180	360	0	0

Good To Medium Reported Braking Action

MAX MANUAL	5270	350/-350	170/230	-290/1020	130/-110	160/-160	260	300	620
AUTOBRAKE MAX	5380	350/-360	170/230	-290/1010	130/-110	160/-160	270	310	650
AUTOBRAKE 2	6000	360/-400	180/230	-310/1030	60/-50	180/-180	360	60	200

Medium Reported Braking Action

MAX MANUAL	5640	360/-370	180/240	-300/1080	170/-140	160/-160	250	390	860
AUTOBRAKE MAX	5740	370/-380	180/240	-310/1070	170/-140	170/-170	270	410	890
AUTOBRAKE 3	5730	370/-380	180/240	-310/1070	170/-140	170/-170	280	410	890

Medium To Poor Reported Braking Action

MAX MANUAL	6340	490/-480	240/330	-390/1390	240/-200	220/-220	300	650	1560
AUTOBRAKE MAX	6380	490/-490	240/330	-390/1400	260/-220	220/-220	300	660	1580
AUTOBRAKE 3	6380	490/-490	240/330	-390/1400	260/-220	220/-220	300	660	1580

Poor Reported Braking Action

	U								
MAX MANUAL	8200	580/-590	290/380	-540/1990	720/-450	260/-260	300	1480	4100
AUTOBRAKE MAX	8250	590/-590	300/390	-540/1990	740/-470	260/-260	300	1490	4120
AUTOBRAKE 3	8250	590/-590	300/390	-540/1990	740/-470	260/-260	300	1490	4120

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse thrust.

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Trailing Edge Flaps Up Landing

VREF40 + 40

		LA	NDING DIS	ΓANCE AN	D ADJUST	MENTS (F	Γ)		
	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ		ERSE UST DJ
BRAKING CONFIGURATION	65000 KG LANDING WEIGHT	5000 KG	PER 1000 FT STD/HIGH*	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 5 KTS ABOVE VREF	ONE REV	NO REV

Dry Runway

MAX MANUAL	5070	450/-270	140/170	-200/650	50/-50	130/-130	180	120	200
AUTOBRAKE MAX	5980	350/-300	170/210	-230/740	10/0	160/-170	270	10	40
AUTOBRAKE 2	8270	470/-460	260/330	-340/1110	0/0	250/-250	410	0	0

Good Reported Braking Action

MAX MANUAL	6610	470/-410	250/340	-320/1120	130/-120	220/-220	280	450	930
AUTOBRAKE MAX	6660	470/-410	250/340	-320/1110	130/-110	220/-220	300	460	950
AUTOBRAKE 2	8340	480/-460	260/330	-350/1130	30/-30	260/-260	420	0	0

Good To Medium Reported Braking Action

MAX MANUAL	7120	480/-430	260/350	-340/1180	170/-150	230/-230	280	550	1170
AUTOBRAKE MAX	7170	480/-430	260/350	-340/1170	170/-150	230/-230	300	560	1190
AUTOBRAKE 2	8400	480/-470	260/340	-360/1190	60/-50	260/-260	420	60	240

Medium Reported Braking Action

MAX MANUAL	7490	500/-450	270/350	-360/1240	210/-180	230/-230	280	670	1470
AUTOBRAKE MAX	7540	500/-450	270/360	-350/1230	210/-180	230/-230	300	680	1500
AUTOBRAKE 3	7640	480/-430	260/350	-350/1200	180/-130	230/-240	330	580	1390

Medium To Poor Reported Braking Action

MAX MANUAL	8770	670/-590	350/480	-450/1580	330/-270	300/-300	330	1320	3430
AUTOBRAKE MAX	8770	670/-590	360/480	-450/1580	350/-290	300/-300	320	1310	3420
AUTOBRAKE 3	8770	670/-590	360/480	-450/1580	350/-290	300/-300	320	1310	3420

Poor Reported Braking Action

	U								
MAX MANUAL	10710	760/-710	410/540	-590/2150	830/-540	340/-340	330	2320	6770
AUTOBRAKE MAX									
AUTOBRAKE 3	10710	770/-710	410/540	-590/2150	850/-560	340/-340	320	2320	6760

Reference distance is based on sea level, standard day, no wind or slope, and maximum available reverse

MAX MANUAL assumes maximum achievable manual braking.

Includes an air distance from threshold to touchdown associated with a flare time of 7 seconds. Actual (unfactored) distances are shown.

ADVISORY INFORMATION

Recommended Brake Cooling Schedule Reference Brake Energy (Millions of Foot Pounds) Table 1(a) of 3: Sea Level to 10000 ft Pressure Altitude

BRAKES ON SPEED (KIAS)																						
T1			80		100 120 PRESSURE							140			160			180				
WEIGHT	OAT			4.0				. —				-			-	4.0		-				
(1000 KG)	(°C)	0	5	10	0	5	10	0	5	10	0	5	10	0	5	10	0	5	10			
	0	16.6	18.8	21.5		28.2		33.9		45.6	44.2			55.3								
	10	17.1			25.4			35.0				53.2	62.0									
00	15	17.4			25.8																	
90	20	17.7			26.2				41.8				64.0									
	30	18.2			26.9																	
	40	18.2			27.1								67.3									
	50	18.2			27.2										£0.1		(0.2					
	10	15.1 15.6		20.1	22.3 23.0			31.6						51.6			60.3 62.3					
	15	15.9			23.4									52.5			63.4					
80	20	16.1			23.4							49.5		53.3	62.0		64.4					
80	30	16.5			24.4												66.3					
	40	16.6			24.6												67.7					
	50	16.6			24.7									56.7			69.0					
	0	13.7			20.0				31.4					44.4		60.3						
	10	14.1		18.2				28.2						45.9								
	15	14.3	16.2		21.0									46.6								
70	20	14.6			21.3												57.4					
, ,	30	15.0			21.9												59.1					
	40	15.0			22.0																	
	50	15.0	17.0	19.3	22.1	25.3	29.1	30.3	35.1	40.7	39.7	46.2	54.1	50.1	58.7	69.0	61.2					
	0	12.2	13.8	15.7	17.7	20.2	23.1	24.0	27.5	31.7	31.0	35.8	41.5	38.6	44.8	52.1	46.7	54.4				
	10	12.7	14.3	16.2	18.3	20.9	23.8	24.8	28.4	32.8	32.0	37.0	42.9	39.9	46.3	53.9	48.3	56.2				
	15	12.8	14.5	16.4	18.6	21.2	24.2	25.2	28.9	33.3	32.5	37.5	43.6	40.5	47.0	54.8	49.1	57.1				
60	20	13.0	14.7	16.7	18.9	21.5	24.6	25.6	29.3	33.8	33.0	38.1	44.2	41.1	47.7	55.6	49.8	58.0				
	30	13.4	15.1		19.4												51.3	59.7				
	40	13.4			19.5													60.8				
	50	13.4			19.5																	
	0				15.5																	
	10	11.2			16.0													47.3				
	15	11.4			16.2												41.4		56.0			
50	20	11.5			16.5																	
	30	11.9		15.1				22.7						35.9					58.6			
	40	11.9	-	15.1				22.8														
	50	11.9		15.1		19.3		22.8						36.5				51.7				
	0	9.4	10.6		13.2									26.8					42.9			
	10	9.8	10.9		13.6																	
40	15	9.9	11.1			15.6	17.7		20.7					28.1			33.6		45.1			
40	20	10.1	11.3			15.9		18.5									34.1		45.8			
	30	10.3	11.6			16.3	18.5		21.6					29.4					47.1			
	40	10.3			14.5														47.8			
	50	10.3	11.6	13.1	14.4	16.3	18.6	19.1	21.7	24.9	24.2	27.8	32.0	29.8	34.4	39.9	35.7	41.4	48.4			

To correct for wind, enter table with the brakes-on speed minus one-half the headwind or plus 1.5 times the tailwind. If ground speed is used for brakes-on speed, ignore wind and enter table with sea level, 15°C.

737-8/LEAP-1B27 FAA CATB

ADVISORY INFORMATION

Recommended Brake Cooling Schedule Reference Brake Energy (Millions of Foot Pounds) Table 1(b) of 3: 10000 ft to 14500 ft Pressure Altitude

Table 1(b) of 3: 10000 ft to 14500 ft Pressure Alfitude																					
		BRAKES ON SPEED (KIAS)																			
			80			100			120			140		160				180			
WEIGHT	OAT							RESS				_ `							T		
(1000 KG)	(°C)	10	12	14.5	10	12	14.5		12	14.5	_	12	14.5	10	12	14.5	10	12	14.5		
	0			24.1							60.0										
	10	22.2		25.0							62.0										
	15			25.4																	
90	20			25.8																	
	30			26.5																	
	40			26.7																	
	50			26.8																	
	0	19.5		21.9																	
	10			22.6																	
	15			22.9																	
80	20			23.3																	
	30			23.9																	
	40			24.1																	
	50			24.1 19.7									540	(0.2							
	0	17.6 18.2		20.3																	
	10 15	18.4		20.5																	
70	20	18.7		21.0																	
70	30	19.2		21.5																	
	40	19.2		21.6																	
	50	19.3		21.7										69.0							
	0	15.7		17.5											55.4	59 9					
	10	16.2		18.0																	
	15	16.4		18.3																	
60	20	16.7		18.6																	
	30	17.2		19.1		26.7		34.8						57.3							
	40	17.2	18.1	19.2	25.4	26.8															
	50	17.2	18.1	19.2	25.5	27	28.8	35.4	37.5	40.4	46.7	49.7	53.7	59.3	63.2	68.5					
	0	13.8	14.5	15.3	20.0												53.3	56.7			
	10	14.2	14.9	15.8	20.6	21.7	23.1	28.0	29.6	31.7	36.3	38.5	41.4	45.4	48.3	52.0	55.1	58.6			
	15	14.5	15.2	16.1	21.0	22.1	23.5	28.5	30.1	32.2	36.9	39.1	42.1	46.2	49.0	52.9	56.0	59.6			
50	20	14.7	15.4	16.3	21.3	22.4	23.9	28.9	30.6	32.7	37.5	39.7	42.7	46.9	49.8	53.7	56.9	60.5			
	30	15.1	15.8	16.8	21.9	23.0	24.5	29.7	31.4	33.7	38.6	40.9	44.0	48.3	51.3	55.3	58.6	62.3			
	40	15.1	15.9	16.8	22.0	23.2	24.7	29.9	31.7	34.0	39.0	41.3	44.5	48.9	52.0	56.2	59.6	63.5			
	50	15.1	15.9	16.8	22.0	23.2	24.8	30.1	31.9	34.2	39.3	41.8	45.0	49.6	52.8	57.1	60.7	64.7			
	0	11.9		13.2																	
	10	12.3		13.7																	
	15	12.5		13.9																	
40	20	12.7		14.1															52.4		
	30	13.1		14.5													47.1		54.0		
	40	13.1		14.5																	
	50	13.1	13.7	14.5	18.6	19.6	20.8	24.9	26.3	28.1	32.0	33.9	36.4	39.9	42.4	45.7	48.4	51.5	55.7		

To correct for wind, enter table with the brakes-on speed minus one-half the headwind or plus 1.5 times the tailwind. If ground speed is used for brakes-on speed, ignore wind and enter table with sea level, 15°C.

ADVISORY INFORMATION

Recommended Brake Cooling Schedule Event Adjusted Brake Energy (Millions of Foot Pounds)

Table 2(a) of 3: No Reverse Thrust

		REFERENC	CE BRAKE EN	ERGY PER B	RAKE (MILLI	ONS OF FOOT	「POUNDS)
	EVENT	10	20	30	40	50	60
RT	O MAX MAN	10.0	20.0	30.0	40.0	50.0	60.0
ריז	MAX MAN	7.9	16.4	25.5	35.0	44.8	54.8
DING	MAX AUTO	7.4	15.3	23.7	32.6	41.9	51.5
	AUTOBRAKE 3	7.4	15.1	23.2	31.7	40.6	49.8
Ą	AUTOBRAKE 2	7.1	14.4	22.1	30.0	38.3	47.0
	AUTOBRAKE 1	6.6	13.3	20.1	27.1	34.3	41.8

Table 2(b) of 3: Two Engine Reverse Thrust

	,	REFERENC	CE BRAKE EN	ERGY PER BI	RAKE (MILLI	ONS OF FOOT	POUNDS)
	EVENT	10	20	30	40	50	60
R7	ΓΟ MAX MAN	10.0	20.0	30.0	40.0	50.0	60.0
ריז	MAX MAN	7.2	15.2	23.7	32.6	41.8	51.0
OING	MAX AUTO	6.0	12.6	19.8	27.5	35.7	44.4
P	AUTOBRAKE 3	5.4	11.3	17.7	24.7	32.1	40.0
Ą	AUTOBRAKE 2	4.3	9.0	14.3	20.2	26.5	33.3
	AUTOBRAKE 1	2.4	5.2	8.4	12.0	16.1	20.6

Table 3 of 3: Cooling Time (Minutes)

	EVENT	ADЛ	JSTEI) BRA	KE E	NERO	GΥ (M	ILLIC	NS O	F FOOT PO	UNDS)
	16.4 & BELOW	17	19	20.9	22.4	23.5	25.1	26.9	28.2	29.9 TO 41	41 & ABOVE
GEAR DOWN INFLIGHT	NO SPECIAL PROCEDURE	1.0	4.0	5.0	5.6	6.0	6.5	7.0	7.3	CAUTION	FUSE PLUG MELT ZONE
GROUND	REQUIRED	6.6	16.1	24.2	30	34.3	40	45.8	50		MELI ZONE
BRAKE TEMPERATURE INDICATION	UP TO 2.5	2.6	3.0	3.3	3.6	3.8	4.1	4.5	4.7	*5.0 TO 7.1	7.1 & ABOVE

Observe maximum quick turnaround limit. Table shows energy per brake added by a single stop with all brakes operating. Energy is assumed to be equally distributed among the operating brakes. Total energy is the sum of residual energy plus energy added.

Add 1.0 million foot pounds for each taxi mile.

When in caution zone, wheel fuse plugs may melt. Delay takeoff and inspect after one hour. If overheat occurs after takeoff, extend gear soon for at least 7 minutes.

When in fuse plug melt zone, clear runway immediately. Unless required, do not set parking brake. Do not approach gear or attempt taxi for one hour. Tire, wheel and brake replacement may be required. If overheat occurs after takeoff, extend gear soon for at least 12 minutes.

Brake temperature indication on Multifunction Display may be used 10 to 15 minutes after airplane has come to a complete stop, or in flight with gear retracted, to determine recommended cooling schedule.

*For airplanes with TBMS (combined Tire Pressure and Brake Temperature Monitoring System), the beginning of the caution range can vary from 5.0 to 6.2 depending on wheel temperature.

Intentionally Blank

Performance Inflight **Engine Inoperative**

Chapter PI Section 13

ENGINE INOP

Initial Max Continuous %N1

Based on .79M, A/C high and anti-ice off

TAT (9C)]	PRESSURE	ALTITUD	E (1000 FT)		
TAT (°C)	25	27	29	31	33	35	37	39	41
20	88.8	88.5	88.1	88.7	88.0	88.1	88.3	87.7	87.1
15	89.9	89.5	89.1	89.6	89.4	88.4	87.6	87.0	86.4
10	91.0	90.5	90.1	90.5	90.3	89.9	88.7	88.2	87.6
5	91.4	91.4	91.0	91.3	91.2	90.8	90.1	89.6	89.0
0	90.7	91.6	91.8	92.2	92.0	91.6	90.9	90.2	89.4
-5	89.8	90.7	91.7	92.8	92.6	92.3	91.5	90.8	89.9
-10	88.8	89.7	90.8	92.4	93.3	93.1	92.3	91.5	90.6
-15	88.0	88.9	89.9	91.6	92.9	93.9	93.1	92.4	91.5
-20	87.2	88.1	89.1	90.7	92.0	93.3	93.2	92.6	91.7
-25	86.4	87.3	88.3	89.9	91.2	92.3	92.3	91.6	90.7
-30	85.6	86.4	87.4	89.0	90.3	91.4	91.4	90.7	89.8
-35	84.7	85.6	86.5	88.1	89.4	90.5	90.4	89.8	88.9
-40	83.9	84.7	85.7	87.3	88.5	89.6	89.5	88.8	88.0

BLEED CONFIGURATION			PRE	SSURE A	ALTITUI	DE (1000	FT)		
BLEED CONFIGURATION	25	27	29	31	33	35	37	39	41
ENGINE ANTI-ICE	-0.9	-1.0	-1.1	-1.2	-1.5	-1.8	-2.0	-2.1	-2.1
ENGINE & WING ANTI-ICE	-3.3	-3.5	-3.8	-4.1	-4.9	-6.1	-6.3	-6.4	-6.4

ENGINE INOP

MAX CONTINUOUS THRUST

Max Continuous %N1 Based on A/C high and anti-ice off 37000 FT Pressure Altitude

			TAT (°C)										
KIAS	M	-55	-50	-45	-40	-35	-30	-25	-20	-15	-10	-5	0
160	.51	87.9	88.8	89.8	90.8	91.8	91.9	91.9	91.9	91.5	90.5	89.5	89.9
200	.63	87.6	88.6	89.6	90.6	91.6	92.5	92.8	92.8	92.4	91.6	90.6	89.7
240	.74	87.1	88.1	89.0	90.0	91.0	91.9	92.9	93.5	93.1	92.1	91.3	90.7
280	.86	85.3	86.2	87.2	88.2	89.1	90.0	91.0	91.9	92.8	92.6	91.8	91.2

35000 FT Pressure Altitude

			TAT (°C)										
KIAS	M	-55	-50	-45	-40	-35	-30	-25	-20	-15	-10	-5	0
160	.49	87.9	88.9	89.9	90.9	91.8	92.1	92.1	92.1	92.1	91.4	90.2	90.0
200	.60	87.1	88.1	89.0	90.0	90.9	91.9	92.3	92.3	92.3	92.3	91.4	90.4
240	.71	87.1	88.1	89.1	90.0	90.9	91.9	92.8	93.5	93.4	92.8	92.0	91.3
280	.82	86.0	87.0	87.9	88.9	89.8	90.7	91.6	92.5	93.4	93.2	92.4	91.7

33000 FT Pressure Altitude

			TAT (°C)										
KIAS	M	-50	-45	-40	-35	-30	-25	-20	-15	-10	-5	0	5
160	.47	88.9	89.9	90.8	91.8	92.6	92.6	92.6	92.2	91.6	90.8	89.5	89.9
200	.58	88.5	89.4	90.4	91.3	92.2	93.1	93.1	92.6	92.1	91.6	90.9	89.5
240	.68	87.8	88.8	89.7	90.6	91.5	92.4	93.3	93.4	92.8	92.2	91.6	90.6
280	.79	86.7	87.6	88.5	89.4	90.3	91.2	92.1	92.9	93.3	92.6	92.0	91.2
320	.89	85.3	86.3	87.2	88.0	88.9	89.8	90.6	91.5	92.3	93.3	93.1	92.3

31000 FT Pressure Altitude

			TAT (°C)										
KIAS	M	-50	-45	-40	-35	-30	-25	-20	-15	-10	-5	0	5
160	.45	88.7	89.7	90.6	91.5	92.4	93	92.9	92.5	91.7	90.9	90.0	89.0
200	.55	88.6	89.5	90.4	91.3	92.2	93.1	93.6	93.2	92.3	91.6	91.0	89.8
240	.66	87.7	88.6	89.5	90.4	91.3	92.2	93.1	93.7	93.1	92.2	91.6	90.7
280	.76	86.1	87.0	87.9	88.8	89.7	90.5	91.4	92.2	93.1	92.7	92.1	91.2
320	.85	84.1	85.0	85.9	86.8	87.6	88.5	89.3	90.1	91	91.9	92.4	91.7

29000 FT Pressure Altitude

			TAT (°C)										
KIAS	M	-45	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10
160	.43	89.0	89.9	90.8	91.8	92.7	92.9	92.3	91.3	90.5	89.8	88.2	87.9
200	.53	88.7	89.6	90.5	91.4	92.3	93.2	93.1	92.2	91.3	90.5	89.4	87.8
240	.63	88.0	88.9	89.8	90.7	91.6	92.5	93.3	92.9	92.0	91.1	90.1	89.0
280	.73	86.1	87.0	87.9	88.8	89.6	90.5	91.4	92.2	92.4	91.6	90.7	89.7
320	.82	84.0	84.9	85.8	86.6	87.5	88.3	89.2	90.0	90.9	91.8	91.1	90.3
360	.91	83.5	84.4	85.3	86.2	87.0	87.9	88.7	89.5	90.4	91.3	92.0	92.0

Max Continuous %N1

BLEED CONFIGURATION		PRESSUE	RE ALTITUDE	(1000 FT)	
BLEED CONFIGURATION	37	31	29		
ENGINE ANTI-ICE	-2.0	-1.8	-1.5	-1.2	-1.1
ENGINE & WING ANTI-ICE	-6.1	-6.0	-4.8	-4.0	-3.7

ENGINE INOP

MAX CONTINUOUS THRUST

Max Continuous %N1 Based on A/C high and anti-ice off 27000 FT Pressure Altitude

			TAT (°C)										
KIAS	M	-45	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10
160	.41	89.0	90.0	90.9	91.8	92.7	93.5	93.1	91.8	90.9	90.3	89.1	87.1
200	.51	88.2	89.2	90.1	91.0	91.8	92.7	93.3	92.5	91.7	91.0	89.8	88.6
240	.6	87.4	88.3	89.2	90.1	91.0	91.9	92.7	93.4	92.4	91.6	90.6	89.5
280	.7	85.7	86.6	87.5	88.4	89.2	90.1	90.9	91.7	92.7	92.1	91.1	90.0
320	.79	83.8	84.7	85.5	86.4	87.2	88.1	88.9	89.7	90.7	91.6	91.4	90.5
360	.88	82.6	83.5	84.4	85.2	86.1	86.9	87.7	88.5	89.5	90.4	91.1	91.6

25000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15
160	.39	90.1	91.0	91.9	92.8	93.7	93.7	92.4	91.4	90.7	89.7	88.1	86.9
200	.49	89.0	89.9	90.8	91.6	92.5	93.4	93.1	92.1	91.3	90.3	89.1	87.5
240	.58	87.7	88.6	89.4	90.3	91.2	92.0	92.9	92.8	91.9	90.9	89.8	88.6
280	.67	86.2	87.0	87.9	88.8	89.6	90.5	91.3	92.2	92.4	91.5	90.4	89.2
320	.76	84.4	85.3	86.1	87.0	87.8	88.6	89.4	90.4	91.3	91.8	90.8	89.7
360	.85	82.6	83.4	84.3	85.1	85.9	86.7	87.5	88.4	89.3	90.0	90.8	90.2

24000 FT Pressure Altitude

			TAT (°C)												
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15		
160	.38	89.4	90.3	91.3	92.2	93.0	93.9	92.7	91.7	90.9	89.9	88.7	86.9		
200	.48	88.9	89.8	90.7	91.6	92.5	93.4	93.8	92.8	91.8	90.9	89.8	88.6		
240	.57	88.1	89.0	89.9	90.8	91.7	92.5	93.4	93.7	92.8	91.8	90.8	89.7		
280	.66	86.7	87.6	88.5	89.4	90.2	91.1	91.9	92.7	93.3	92.4	91.4	90.3		
320	.75	85.0	85.9	86.8	87.7	88.5	89.3	90.2	91.0	91.8	92.6	91.8	90.8		
360	.83	83.2	84.1	85.0	85.8	86.6	87.5	88.3	89.1	89.9	90.6	91.4	91.3		

22000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20
160	.37	88.2	89.1	89.9	90.8	91.7	92.0	91.2	90.3	89.4	88.3	87.2	86.5
200	.46	87.9	88.8	89.7	90.6	91.4	92.3	92.2	91.4	90.4	89.3	88.3	87.1
240	.55	88.9	89.8	90.7	91.6	92.4	93.3	94.1	93.8	92.9	92.0	91.0	89.9
280	.63	87.7	88.6	89.5	90.4	91.2	92.1	92.9	93.7	93.5	92.5	91.5	90.5
320	.72	86.2	87.1	87.9	88.8	89.6	90.5	91.3	92.1	92.9	93.0	92.1	91.1
360	.80	84.5	85.4	86.2	87.1	87.9	88.7	89.5	90.3	91.1	91.9	92.4	91.5

20000 FT Pressure Altitude

		TAT (°C)												
KIAS	M	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20	
160	.35	86.4	87.3	88.2	89.0	89.9	90.7	90.7	89.9	88.9	87.8	86.7	85.9	
200	.44	86.0	86.9	87.8	88.6	89.5	90.3	91.1	90.6	89.5	88.4	87.3	86.2	
240	.53	88.7	89.6	90.5	91.4	92.3	93.1	94.0	94.7	94.0	93.0	92.0	91.0	
280	.61	88.0	88.9	89.8	90.7	91.6	92.4	93.3	94.1	94.8	93.8	92.9	92.0	
320	.69	86.6	87.5	88.3	89.2	90.1	90.9	91.7	92.6	93.4	94.2	93.5	92.6	
360	.77	85.1	85.9	86.8	87.6	88.4	89.3	90.1	90.9	91.7	92.5	93.3	92.9	

737 Flight Crew Operations Manual

ENGINE INOP MAX CONTINUOUS THRUST

Max Continuous %N1

BLEED CONFIGURATION		PRESSUF	RE ALTITUDE	(1000 FT)	
BLEED CONFIGURATION	27	25	24	22	20
ENGINE ANTI-ICE	-0.9	-0.9	-0.8	-0.9	-0.8
ENGINE & WING ANTI-ICE	-3.4	-3.3	-3.3	-3.3	-3.2

ENGINE INOP

MAX CONTINUOUS THRUST

Max Continuous %N1 Based on A/C high and anti-ice off 18000 FT Pressure Altitude

		TAT (°C)												
KIAS	M	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	
160	.34	86.6	87.4	88.3	89.1	89.9	90.7	90.2	89.2	88.1	87.0	85.9	85.1	
200	.42	85.9	86.8	87.6	88.4	89.2	90.0	90.5	89.9	88.8	87.6	86.5	85.6	
240	.51	88.6	89.4	90.3	91.1	92.0	92.8	93.6	93.8	93.1	92.1	90.9	90.0	
280	.59	89.1	90.0	90.8	91.7	92.5	93.3	94.2	95.0	94.9	94.1	93.2	92.4	
320	.67	87.8	88.7	89.5	90.4	91.2	92.0	92.8	93.6	94.4	94.6	93.8	92.9	
360	.75	86.5	87.3	88.1	88.9	89.8	90.6	91.4	92.2	92.9	93.7	94.1	93.3	

16000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25
160	.33	85.9	86.8	87.6	88.4	89.2	90.0	90.5	89.6	88.5	87.3	86.2	85.2
200	.41	85.3	86.1	86.9	87.7	88.5	89.3	90.1	90.0	89.1	87.9	86.8	85.8
240	.49	86.3	87.1	87.9	88.7	89.5	90.3	91.2	92.0	91.9	90.9	89.8	88.7
280	.57	89.0	89.9	90.7	91.6	92.4	93.2	94.0	94.9	95.7	94.9	94.1	93.3
320	.64	87.8	88.7	89.5	90.4	91.2	92.0	92.8	93.6	94.4	95.2	94.7	93.8
360	.72	86.6	87.4	88.3	89.1	89.9	90.7	91.5	92.3	93.1	93.9	94.7	94.2

14000 FT Pressure Altitude

			TAT (°C)												
KIAS	M	-25	-20	-15	-10	-5	0	5	10	15	20	25	30		
160	.31	86.4	87.3	88.1	88.9	89.7	90.5	90.5	89.6	88.5	87.4	86.4	85.3		
200	.39	85.8	86.6	87.4	88.2	89.0	89.7	90.5	90.1	89.1	88.0	86.9	85.9		
240	.47	85.4	86.2	87.1	87.8	88.6	89.4	90.2	90.9	90.9	89.8	88.8	87.7		
280	.54	89.1	90.0	90.8	91.6	92.5	93.3	94.1	94.9	95.2	94.4	93.5	92.6		
320	.62	88.3	89.2	90.0	90.8	91.7	92.5	93.3	94.0	94.8	95.0	94.3	93.4		
360	.69	86.6	87.5	88.3	89.1	89.9	90.7	91.5	92.3	93.0	93.8	94.2	93.7		

12000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-20	-15	-10	-5	0	5	10	15	20	25	30	35
160	.30	87.1	87.9	88.7	89.6	90.4	91.2	91.2	90.4	89.4	88.4	87.4	86.4
200	.38	86.3	87.1	88.0	88.8	89.6	90.4	91.0	90.9	89.9	89.0	88.0	87.0
240	.45	85.5	86.3	87.1	87.9	88.7	89.5	90.3	90.7	90.3	89.5	88.6	87.6
280	.52	88.5	89.4	90.2	91.1	91.9	92.7	93.5	94.3	94.3	93.7	92.8	91.9
320	.60	88.3	89.1	89.9	90.8	91.6	92.4	93.2	94.0	94.8	94.3	93.4	92.6
360	.67	86.1	87.0	87.8	88.6	89.4	90.2	91.0	91.7	92.5	93.3	93.0	92.5

Max Continuous %N1

BLEED CONFIGURATION		PRESSURE ALT	ITUDE (1000 FT)	
BLEED CONFIGURATION	18	16	14	12
ENGINE ANTI-ICE	-0.9	-0.7	-0.7	-0.7
ENGINE & WING ANTI-ICE	-3.2	-3.0	-2.9	-2.7

737 Flight Crew Operations Manual

ENGINE INOP

MAX CONTINUOUS THRUST

Max Continuous %N1 Based on A/C high and anti-ice off 10000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-20	-15	-10	-5	0	5	10	15	20	25	30	35
160	.29	87.0	87.8	88.7	89.5	90.3	91.1	91.9	91.9	91.3	90.4	89.5	88.6
200	.36	86.3	87.2	88.0	88.8	89.6	90.5	91.3	91.7	91.5	90.9	90.0	89.1
240	.43	85.6	86.4	87.3	88.1	88.9	89.7	90.5	91.3	91.4	91.3	90.4	89.4
280	.51	88.2	89.0	89.9	90.7	91.6	92.4	93.2	94.0	94.7	93.9	93.0	92.1
320	.58	87.3	88.2	89.0	89.8	90.7	91.5	92.3	93.1	93.9	94.3	93.4	92.5
360	.65	84.5	85.3	86.1	86.9	87.7	88.5	89.3	90.1	90.9	91.6	92.1	92.1

5000 FT Pressure Altitude

		TAT (°C)												
KIAS	M	-10	-5	0	5	10	15	20	25	30	35	40	45	
160	.26	86.8	87.7	88.5	89.3	90.1	90.9	91.6	91.3	90.4	89.5	88.6	87.6	
200	.33	86.4	87.2	88.1	88.9	89.7	90.5	91.3	91.5	90.9	89.9	88.9	88.0	
240	.40	85.9	86.7	87.6	88.4	89.2	90.0	90.8	91.4	91.3	90.4	89.5	88.5	
280	.46	85.7	86.5	87.3	88.2	89.0	89.8	90.6	91.4	91.6	91.1	90.2	89.3	
320	.53	85.5	86.3	87.1	88.0	88.8	89.6	90.4	91.1	91.9	91.8	91.3	90.5	
360	.59	81.5	82.3	83.1	83.8	84.6	85.4	86.1	86.9	87.6	88.4	88.4	88.4	

3000 FT Pressure Altitude

			TAT (°C)												
KIAS	M	-5	0	5	10	15	20	25	30	35	40	45	50		
160	.26	86.8	87.7	88.5	89.3	90.1	90.9	91.2	90.5	89.6	88.6	87.6	86.6		
200	.32	86.5	87.3	88.1	88.9	89.7	90.5	91.3	90.8	89.9	89.0	88.0	87.0		
240	.38	86.1	86.9	87.7	88.5	89.2	90.0	90.8	91.1	90.4	89.5	88.5	87.5		
280	.45	85.4	86.2	87.0	87.8	88.6	89.4	90.2	91.0	90.7	89.9	89.0	88.1		
320	.51	84.7	85.5	86.3	87.1	87.9	88.6	89.4	90.2	90.9	90.8	90.0	89.3		
360	.57	80.5	81.3	82.0	82.8	83.5	84.2	85.0	85.7	86.4	86.9	86.9	86.9		

1000 FT Pressure Altitude

			TAT (°C)												
KIAS	M	-5	0	5	10	15	20	25	30	35	40	45	50		
160	.25	85.9	86.7	87.5	88.3	89.1	89.9	90.7	90.4	89.6	88.7	87.7	86.7		
200	.31	85.5	86.3	87.1	87.9	88.7	89.5	90.3	90.7	89.9	89.0	88.0	87.0		
240	.37	85.2	86.0	86.8	87.6	88.4	89.1	89.9	90.7	90.3	89.4	88.5	87.5		
280	.43	84.6	85.4	86.2	87.0	87.8	88.5	89.3	90.1	90.6	89.9	89.0	88.1		
320	.49	82.6	83.4	84.2	84.9	85.7	86.5	87.2	88.0	88.7	89.0	88.9	88.6		
360	.55	78.8	79.6	80.3	81.0	81.8	82.5	83.2	83.9	84.6	85.3	85.5	85.5		

Max Continuous %N1

BLEED CONFIGURATION		PRESSURE ALTITUDE (1000 FT)								
BLEED CONFIGURATION	10	5	3	1						
ENGINE ANTI-ICE	-0.6	0.0	0.0	0.0						
ENGINE & WING ANTI-ICE	-2.5	0.0	0.0	0.0						

ENGINE INOP

MAX CONTINUOUS THRUST

Driftdown Speed/Level Off Altitude 100 ft/min residual rate of climb

WEIGHT	(1000 KG)	OPTIMUM	LEVEL C	OFF PRESSURE A	LTITUDE
START DRIFTDOWN	LEVEL OFF	DRIFTDOWN SPEED (KIAS)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C
85	81	253	16800	14200	12300
80	77	246	18600	16600	13400
75	72	239	20300	19000	14800
70	67	231	21900	20800	19000
65	63	223	23700	22600	21300
60	58	215	25500	24500	23400
55	53	206	27600	26700	25600
50	48	197	29900	29000	28200
45	43	188	32200	31700	31200
40	38	178	34600	34200	33800

Includes APU fuel burn.

737 Flight Crew Operations Manual

ENGINE INOP

MAX CONTINUOUS THRUST

Driftdown/LRC Cruise Range Capability Table 1 of 2: Ground to Air Miles Conversion

	AIR D	ISTANCE	(NM)		GROUND		AIR D	ISTANCE	E (NM)	
HE.	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TA	ILWIND	COMPO	NENT (KT	S)
100	80	60	40	20	(NM)	20	40	60	80	100
142	131	121	113	106	100	94	89	84	80	77
284	262	243	226	212	200	188	178	169	161	154
425	392	364	340	318	300	283	268	254	242	231
567	523	485	453	425	400	377	357	339	323	308
707	653	606	566	531	500	472	447	425	404	386
848	783	727	679	637	600	566	537	510	486	464
988	913	848	792	743	700	661	626	595	567	541
1128	1042	969	905	849	800	755	716	681	648	619
1268	1172	1089	1018	955	900	850	806	766	730	697
1407	1301	1210	1131	1061	1000	945	896	851	811	775
1547	1431	1330	1243	1167	1100	1039	985	937	893	853
1686	1560	1451	1356	1273	1200	1134	1075	1022	974	931
1826	1689	1571	1469	1379	1300	1229	1165	1108	1056	1009
1965	1818	1692	1582	1485	1400	1323	1255	1193	1137	1087
2105	1948	1812	1694	1591	1500	1418	1345	1279	1219	1164
2245	2077	1933	1807	1697	1600	1513	1435	1364	1300	1242
2385	2207	2053	1920	1803	1700	1607	1524	1450	1382	1320
2525	2336	2174	2033	1909	1800	1702	1614	1535	1463	1398

Table 2 of 2: Driftdown/Cruise Fuel and Time

AIR					REQUIF						TIME
DIST			WEIGH	T AT ST	ART OF	DRIFTD	OWN (10	000 KG)			(HR:MIN)
(NM)	40	45	50	55	60	65	70	75	80	85	(IIIC.IVIIIV)
100	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0:18
200	0.7	0.7	0.7	0.8	0.8	0.9	0.9	1.0	1.0	1.1	0:36
300	1.1	1.1	1.2	1.3	1.3	1.4	1.5	1.6	1.7	1.8	0:53
400	1.4	1.5	1.7	1.8	1.9	2.0	2.2	2.3	2.4	2.6	1:11
500	1.8	1.9	2.1	2.3	2.4	2.6	2.8	2.9	3.1	3.3	1:28
600	2.1	2.3	2.5	2.7	2.9	3.1	3.3	3.5	3.8	4.0	1:45
700	2.5	2.7	2.9	3.2	3.4	3.6	3.9	4.1	4.4	4.7	2:03
800	2.8	3.1	3.4	3.6	3.9	4.2	4.5	4.7	5.0	5.4	2:20
900	3.2	3.5	3.8	4.1	4.4	4.7	5.0	5.3	5.7	6.0	2:37
1000	3.5	3.9	4.2	4.5	4.9	5.2	5.6	5.9	6.3	6.7	2:54
1100	3.8	4.2	4.6	5.0	5.3	5.7	6.1	6.5	6.9	7.4	3:11
1200	4.2	4.6	5.0	5.4	5.8	6.3	6.7	7.1	7.6	8.0	3:28
1300	4.5	5.0	5.4	5.9	6.3	6.8	7.2	7.7	8.2	8.7	3:45
1400	4.8	5.3	5.8	6.3	6.8	7.3	7.8	8.3	8.8	9.3	4:02
1500	5.2	5.7	6.2	6.7	7.3	7.8	8.3	8.9	9.4	10.0	4:19
1600	5.5	6.1	6.6	7.2	7.7	8.3	8.9	9.4	10.0	10.6	4:36
1700	5.8	6.4	7.0	7.6	8.2	8.8	9.4	10.0	10.6	11.3	4:53
1800	6.2	6.8	7.4	8.0	8.7	9.3	10.0	10.6	11.3	11.9	5:10

Includes APU fuel burn.

Driftdown at optimum driftdown speed and cruise at Long Range Cruise speed.

ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Altitude Capability

100 ft/min residual rate of climb

WEIGHT (1000 KG)		PRESSURE ALTITUDE (FT)	
WEIGHT (1000 KG)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C
85	14700	11800	9100
80	16400	14500	11700
75	18000	16300	14600
70	19600	18000	16500
65	21300	19800	18300
60	23000	21600	20300
55	24900	23400	22200
50	27500	25700	24200
45	30200	28600	27100
40	32700	31800	30700

With engine anti-ice on, decrease altitude capability by 1500 ft.

With engine and wing anti-ice on, decrease altitude capability by 6500 ft.

737 Flight Crew Operations Manual

ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Control

Long Range Cruise Control											
	EIGHT						ITUDE (1	000 FT)			
(10	00 KG)	10	15	17	19	21	23	25	27	29	31
	%N1	87.8	91.7	93.4							
85	MACH	.545	.587	.599							
0.5	KIAS	302	297	292							
	FF/ENG	2674	2647	2625							
	%N1	86.1	90.3	91.8	93.7						
80	MACH	.529	.577	.590	.602						
80	KIAS	293	292	287	282						
	FF/ENG	2512	2508	2487	2471						
	%N1	84.3	88.6	90.2	91.7						
75	MACH	.513	.562	.580	.593						
13	KIAS	284	284	282	277						
	FF/ENG	2352	2357	2348	2328						
	%N1	82.4	86.7	88.4	90.1	91.7					
70	MACH	.496	.545	.565	.582	.595					
/0	KIAS	275	275	275	272	267					
	FF/ENG	2193	2202	2200	2188	2169					
	%N1	80.2	84.6	86.4	88.2	89.8	91.6				
65	MACH	.479	.527	.547	.567	.584	.596				
03	KIAS	265	266	266	265	262	257				
	FF/ENG	2034	2041	2046	2043	2031	2012				
	%N1	77.9	82.4	84.2	86.0	87.8	89.4				
60	MACH	.462	.507	.527	.548	.568	.585				
00	KIAS	255	255	256	256	255	252				
	FF/ENG	1881	1883	1886	1890	1886	1875				
	%N1	75.4	79.9	81.8	83.6	85.4	87.2	88.9			
55	MACH	.444	.486	.505	.526	.547	.567	.585			
33	KIAS	245	245	245	245	245	244	242			
	FF/ENG	1734	1726	1728	1730	1733	1729	1720			
	%N1	72.8	77.2	79.1	81.0	82.8	84.7	86.5	88.3	90.4	
50	MACH	.425	.465	.483	.502	.523	.544	.565	.584	.597	
30	KIAS	235	234	233	234	234	234	233	231	227	
	FF/ENG	1590	1574	1572	1573	1574	1575	1572	1568	1559	
	%N1	70.0	74.3	76.1	78.0	79.9	81.8	83.7	85.6	87.3	89.4
45	MACH	.406	.443	.460	.478	.497	.518	.540	.561	.581	.595
43	KIAS	224	223	222	222	222	222	222	222	220	216
	FF/ENG	1452	1429	1423	1418	1418	1416	1418	1419	1417	1408
	%N1	67.0	71.1	72.9	74.8	76.6	78.5	80.5	82.4	84.3	86.2
40	MACH	.387	.421	.436	.453	.470	.489	.510	.532	.555	.576
40	KIAS	213	211	210	210	210	209	210	210	210	209
	FF/ENG	1328	1286	1281	1271	1265	1262	1260	1262	1265	1264

Includes APU fuel burn.

ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Diversion Fuel and Time Table 1 of 3: Ground to Air Miles Conversion

	AIR D	ISTANCE	(NM)		GROUND		AIR D	ISTANCE	E (NM)	
HE	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TA	ILWIND	COMPON	NENT (K1	TS)
100	80	60	40	20	(NM)	20	40	60	80	100
300	273	249	230	214	200	190	180	172	164	157
605	550	502	463	430	400	380	361	344	328	314
911	828	755	696	645	600	569	540	514	491	470
1219	1107	1010	929	861	800	759	721	686	655	627
1529	1388	1264	1162	1076	1000	948	900	857	818	783
1840	1668	1519	1396	1292	1200	1137	1080	1028	981	939
2153	1951	1775	1630	1508	1400	1327	1259	1198	1143	1094
2468	2235	2032	1865	1724	1600	1516	1439	1369	1306	1250
2785	2520	2289	2100	1940	1800	1705	1618	1540	1469	1406
3104	2806	2547	2335	2157	2000	1895	1798	1710	1631	1561

Table 2 of 3: Reference Fuel and Time Required at Check Point

AIR				PRESS	SURE ALT	ITUDE (10	000 FT)						
DIST	1	0	1	4	1	8	2	2	2	6			
(NM)	FUEL	TIME	FUEL	TIME	FUEL	TIME	FUEL	TIME	FUEL	TIME			
(1111)	(1000 KG)	(HR:MIN)	(1000 KG)	(HR:MIN)	(1000 KG)	(HR:MIN)	(1000 KG)	(HR:MIN)	(1000 KG)	(HR:MIN)			
200	1.2	0:43	1.1	0:41	1.0	0:39	0.9	0:38	0.8	0:37			
400	2.4	1:25	2.3	1:20	2.1	1:16	1.9	1:12	1.8	1:10			
600	3.7	2:06	3.4	1:59	3.2	1:53	3.0	1:47	2.8	1:44			
800	4.9	2:48	4.6	2:39	4.3	2:30	4.0	2:22	3.8	2:17			
1000	6.2	3:31	5.8	3:19	5.4	3:07	5.0	2:57	4.8	2:51			
1200	7.4	4:14	6.9	4:00	6.5	3:45	6.1	3:32	5.7	3:25			
1400	8.6	4:57	8.0	4:40	7.5	4:23	7.1	4:08	6.7	3:59			
1600	9.8	5:41	9.2	5:22	8.6	5:02	8.1	4:44	7.6	4:33			
1800	11.0	6:25	10.3	6:03	9.6	5:41	9.1	5:20	8.6	5:08			
2000	12.1	7:10	11.4	6:45	10.7	6:20	10.0	5:57	9.5	5:42			

Table 3 of 3: Fuel Required Adjustment (1000 KG)

REFERENCE FUEL REQUIRED	W	EIGHT AT (CHECK POI	NT (1000 K	G)
(1000 KG)	40	50	60	70	80
1	-0.1	-0.1	0.0	0.1	0.3
2	-0.3	-0.1	0.0	0.3	0.7
3	-0.4	-0.2	0.0	0.5	1.1
4	-0.6	-0.3	0.0	0.6	1.5
5	-0.7	-0.4	0.0	0.8	1.8
6	-0.9	-0.5	0.0	0.9	2.2
7	-1.0	-0.5	0.0	1.0	2.5
8	-1.2	-0.6	0.0	1.2	2.8
9	-1.3	-0.7	0.0	1.3	3.1
10	-1.5	-0.8	0.0	1.4	3.3
11	-1.6	-0.8	0.0	1.5	3.6
12	-1.8	-0.9	0.0	1.6	3.8
13	-1.9	-1.0	0.0	1.7	4.0
14	-2.1	-1.1	0.0	1.8	4.2

Includes APU fuel burn.

ENGINE INOP MAX CONTINUOUS THRUST

Holding Flaps Up

W	EIGHT			PR	RESSURE A	LTITUDE (F	FT)		
(10	00 KG)	1500	5000	10000	15000	20000	25000	30000	35000
	%N1	75.8	79.2	84.0	88.9				
85	KIAS	244	244	246	247				
	FF/ENG	2360	2370	2400	2450				
	%N1	73.9	77.2	82.2	86.9	93.2			
80	KIAS	237	237	238	239	242			
	FF/ENG	2230	2230	2250	2280	2390			
	%N1	71.9	75.1	80.2	84.9	90.3			
75	KIAS	229	229	230	232	233			
	FF/ENG	2100	2080	2100	2130	2190			
	%N1	69.8	73.0	78.0	82.8	88.0			
70	KIAS	220	222	222	224	225			
	FF/ENG	1970	1950	1960	1970	2010			
	%N1	67.7	70.7	75.6	80.6	85.6			
65	KIAS	211	214	214	215	216			
	FF/ENG	1830	1820	1810	1830	1850			
	%N1	65.4	68.3	73.1	78.2	83.1	88.7		
60	KIAS	204	204	206	206	208	209		
	FF/ENG	1690	1690	1670	1680	1700	1740		
	%N1	63.0	65.9	70.4	75.5	80.6	85.7		
55	KIAS	198	198	198	198	199	200		
	FF/ENG	1570	1550	1540	1540	1550	1570		
	%N1	60.5	63.3	67.7	72.5	77.7	82.7	89.2	
50	KIAS	191	191	191	191	191	191	192	
	FF/ENG	1450	1430	1420	1400	1410	1410	1470	
	%N1	57.8	60.5	64.9	69.6	74.7	79.7	85.0	
45	KIAS	185	185	185	185	185	185	185	
	FF/ENG	1330	1320	1300	1280	1270	1270	1290	
	%N1	55.0	57.5	61.9	66.4	71.3	76.6	81.6	88.4
40	KIAS	178	178	178	178	178	178	178	178
	FF/ENG	1220	1210	1190	1170	1160	1140	1150	1200

This table includes 5% additional fuel for holding in a racetrack pattern. Includes APU fuel burn.

ENGINE INOP

ADVISORY INFORMATION

Gear Down Landing Rate of Climb Available Flaps 15

TAT				RATE O	F CLIMB (FT/MIN)			
TAT (°C)				PRESSU	RE ALTITU	JDE (FT)			
(c)	-2000	0	2000	4000	6000	8000	10000	12000	14500
54	-80	-150							
52	-60	-120							
50	-30	-100	-230						
48	0	-70	-200						
46	30	-40	-160	-310					
44	60	-10	-130	-270					
42	90	20	-100	-230	-390				
40	120	50	-70	-200	-350				
38	150	80	-40	-170	-300	-480			
36	160	110	-10	-140	-260	-460			
34	160	140	10	-110	-230	-440	-570		
32	160	150	30	-90	-210	-420	-550		
30	160	150	50	-70	-190	-390	-530	-690	
20	160	150	50	-50	-150	-260	-410	-580	-770
10	170	150	50	-50	-150	-250	-340	-470	-650
0	160	160	50	-60	-160	-260	-350	-470	-620
-20	170	160	50	-60	-160	-260	-360	-480	-640
-40	170	160	50	-60	-170	-280	-380	-500	-660
-50	170	160	50	-60	-170	-280	-380	-520	-680
-54	170	160	50	-70	-180	-280	-390	-520	-680

Rate of climb capability shown is valid for 65000 kg, gear down at VREF15+5. Decrease rate of climb 100 ft/min per 5000 kg greater than 65000 kg.

Increase rate of climb 150 ft/min per 5000 kg less than 65000 kg.

ENGINE INOP

ADVISORY INFORMATION

Gear Down Landing Rate of Climb Available Flaps 30

				RATE O	F CLIMB (FT/MIN)			
TAT					RE ALTITU				
(°C)	-2000	0	2000	4000	6000	8000	10000	12000	14500
54	-340	-410							
52	-320	-390							
50	-290	-360	-500						
48	-260	-340	-470						
46	-230	-310	-440	-590					
44	-210	-280	-410	-550					
42	-180	-260	-380	-510	-670				
40	-150	-230	-350	-480	-630				
38	-120	-200	-320	-450	-590	-770			
36	-110	-170	-300	-420	-550	-750			
34	-110	-140	-270	-400	-520	-730	-860		
32	-110	-130	-250	-370	-500	-700	-840		
30	-110	-130	-240	-360	-480	-680	-820	-980	
20	-120	-130	-240	-340	-440	-560	-710	-880	-1080
10	-120	-140	-240	-350	-450	-550	-650	-770	-970
0	-130	-140	-250	-360	-460	-560	-660	-780	-940
-20	-130	-150	-260	-370	-480	-580	-680	-810	-970
-40	-140	-160	-270	-390	-500	-610	-710	-840	-1010
-50	-150	-160	-280	-400	-510	-620	-720	-860	-1030
-54	-150	-170	-280	-400	-520	-630	-730	-870	-1040

Rate of climb capability shown is valid for 65000 kg, gear down at VREF30+5. Decrease rate of climb 100 ft/min per 5000 kg greater than 65000 kg. Increase rate of climb 160 ft/min per 5000 kg less than 65000 kg.

Performance Inflight Alternate Mode EEC Chapter PI Section 14

ALTERNATE MODE EEC

Alternate Mode EEC Limit Weight

PERFORMANCE		NO	RMAL	MODE	PERF	ORMAN	NCE LI	MIT W	EIGHT	(1000 I	(G)	
LIMIT	40	45	50	55	60	65	70	75	80	85	90	95
FIELD	39.8	44.8	49.8	54.8	59.8	64.8	69.8	74.9	79.9	84.9	89.9	94.9
CLIMB	39.9	44.9	49.9	54.9	59.9	64.9	69.9	75.0	80.0	85.0	90.0	95.0
OBSTACLE	39.6	44.6	49.6	54.7	59.7	64.7	69.8	74.8	79.8	84.9	89.9	94.9
BRAKE ENERGY	39.1	44.0	49.0	54.0	59.0	64.0	69.0	74.0	79.0	84.0	89.0	94.0

No adjustments to the takeoff speeds for the reduced weight are necessary.

ALTERNATE MODE EEC

Alternate Mode EEC Max Takeoff %N1

Based on engine bleeds for packs on and anti-ice off

		<i>-</i>																
AIRPORT						AIRP	ORT I	PRES	SURE	ALTI	TUDI	E (100	0 FT)					
OAT (°C)	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	14.5
60	85.6	86.1	86.6	86.7	86.2	85.7	85.2	84.8	84.3	83.9	83.5	83.0	82.5	81.6	80.6	79.5	78.6	78.2
55	86.9	87.3	87.7	87.8	87.4	86.9	86.4	85.9	85.5	85.1	84.6	84.2	83.7	82.7	81.8	80.7	79.8	79.4
50	88.0	88.6	89.2	88.8	88.4	88.0	87.5	87.1	86.6	86.2	85.8	85.3	84.8	83.9	83.0	81.9	81.0	80.6
45	88.9	89.5	90.0	89.9	89.5	88.9	88.6	88.2	87.7	87.3	86.9	86.4	86.0	85.0	84.1	83.0	82.2	81.7
40	89.9	90.4	91.0	90.9	90.9	90.6	89.9	89.1	88.7	88.3	88.0	87.5	87.0	86.1	85.2	84.1	83.3	82.8
35	90.7	91.3	91.9	91.9	91.8	91.7	91.6	91.3	90.7	89.7	88.9	88.5	88.1	87.2	86.3	85.3	84.4	84.0
30	90.2	91.5	92.8	92.6	92.6	92.6	92.5	92.4	92.4	92.2	89.8	89.5	89.1	88.2	87.4	86.4	85.6	85.2
25	89.4	90.7	92.0	92.3	92.7	92.8	92.9	93.2	93.0	93.0	90.8	90.4	90.0	89.2	88.4	87.6	86.7	86.3
20	88.6	89.9	91.2	91.5	91.8	92.1	92.5	92.8	93.0	93.1	91.7	91.3	91.0	90.2	89.5	88.7	87.9	87.5
15	87.8	89.1	90.4	90.7	91.0	91.3	91.6	91.9	92.3	92.6	92.7	92.4	92.0	91.2	90.5	89.8	89.0	88.7
10	87.0	88.3	89.6	89.9	90.2	90.5	90.8	91.1	91.5	91.8	92.2	92.6	93.0	92.2	91.6	90.9	90.2	89.9
5	86.2	87.5	88.8	89.1	89.4	89.7	90.0	90.3	90.7	91.0	91.4	91.8	92.2	92.2	92.2	92.0	91.4	91.1
0	85.4	86.7	87.9	88.3	88.6	88.9	89.2	89.5	89.8	90.2	90.6	91.0	91.4	91.4	91.5	91.5	91.5	91.6
-5	84.6	85.8	87.1	87.4	87.8	88.0	88.3	88.7	89.0	89.4	89.8	90.2	90.5	90.6	90.7	90.7	90.7	90.8
-10	83.8	85.0	86.3	86.6	86.9	87.2	87.5	87.8	88.1	88.5	88.9	89.3	89.7	89.8	89.8	89.9	89.9	89.9
-15	83.0	84.2	85.5	85.8	86.1	86.3	86.6	86.9	87.3	87.7	88.1	88.5	88.9	89.0	89.0	89.1	89.1	89.1
-20	82.2	83.4	84.6	84.9	85.2	85.5	85.7	86.1	86.4	86.8	87.3	87.7	88.1	88.1	88.2	88.2	88.3	88.3
-25	81.4	82.6	83.8	84.1	84.4	84.7	84.9	85.2	85.6	86.0	86.4	86.8	87.2	87.3	87.4	87.4	87.4	87.5
-30	80.5	81.8	83.0	83.3	83.6	83.8	84.1	84.4	84.7	85.1	85.5	86.0	86.4	86.5	86.5	86.6	86.6	86.6
-35	79.7	80.9	82.1	82.4	82.7	83.0	83.2	83.5	83.9	84.3	84.7	85.1	85.5	85.6	85.6	85.7	85.8	85.8
-40	78.9	80.1	81.2	81.6	81.8	82.1	82.4	82.7	83.0	83.4	83.8	84.2	84.6	84.7	84.7	84.8	84.9	84.9
-45	78.0	79.2	80.4	80.7	81.0	81.2	81.5	81.8	82.1	82.5	82.9	83.3	83.7	83.8	83.8	83.9	84.0	84.0
-50	77.2	78.3	79.5	79.8	80.1	80.3	80.6	80.9	81.3	81.6	82.0	82.4	82.7	82.8	82.9	83.0	83.1	83.2

		-		•	-														
BLEED						AII	RPOI	RT PI	RESS	URE	ALT	ITUI	DE (1	000	FT)				
CONFIGURATION	ON	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	14.5
PACKS OFF		0.5	0.5	0.6	0.6	0.7	0.8	0.8	0.9	0.9	1.0	1.0	1.0	1.1	1.2	1.4	1.6	1.7	1.8
ENGINE ANTI-I	CE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.2	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6

ALTERNATE MODE EEC

Alternate Mode EEC Max Climb %N1

Based on engine bleed for packs on and anti-ice off

TAT			PRESS	SURE Al	LTITUDI	E (1000 I	FT) / SPE	EED (KI	AS OR M	IACH)		
TAT (°C)	0	5	10	15	20	25	30	33	35	37	39	41
(C)	280	280	280	280	280	280	280	0.78	0.78	0.78	0.78	0.78
60	80.8	81.3	84.0	86.0	88.3	90.3	93.1	94.6	95.7	96.0	95.4	94.7
55	81.6	81.6	83.3	85.3	87.7	89.6	92.4	93.9	94.9	95.2	94.6	94.0
50	82.6	82.5	82.8	84.7	87.0	88.9	91.7	93.1	94.2	94.5	93.9	93.3
45	83.6	83.4	83.6	84.0	86.3	88.2	90.9	92.4	93.5	93.8	93.2	92.6
40	84.5	84.5	84.5	84.3	85.6	87.5	90.2	91.7	92.7	93.0	92.4	91.8
35	85.2	85.5	85.5	85.2	85.2	86.8	89.5	91.0	92.0	92.3	91.7	91.1
30	84.5	86.5	86.5	86.2	85.7	86.1	88.8	90.2	91.2	91.5	91.0	90.4
25	83.8	86.6	87.5	87.1	86.6	87.7	88.0	89.5	90.5	90.8	90.2	89.6
20	83.1	85.8	88.4	88.0	87.5	88.7	89.2	89.1	89.7	90.0	89.4	88.9
15	82.3	85.1	87.8	89.0	88.5	89.8	90.2	90.5	89.6	89.2	88.7	88.1
10	81.6	84.3	87.1	89.4	89.5	90.9	91.1	91.3	91.0	90.0	89.5	88.9
5	80.8	83.6	86.3	88.7	90.6	91.9	91.9	92.0	91.8	91.1	90.7	90.1
0	80.1	82.8	85.5	87.9	89.9	92.9	92.6	92.6	92.3	91.8	91.3	90.6
-5	79.4	82.0	84.7	87.1	89.2	92.7	93.4	93.4	93.1	92.4	91.9	91.2
-10	78.6	81.2	84.0	86.4	88.3	91.9	93.6	94.3	94.0	93.2	92.6	91.8
-15	77.9	80.5	83.2	85.6	87.5	91.1	92.8	94.1	94.8	94.1	93.5	92.7
-20	77.1	79.7	82.4	84.8	86.7	90.2	91.9	93.2	94.4	94.4	93.9	93.1
-25	76.3	78.9	81.5	84.0	85.8	89.4	91.0	92.3	93.4	93.5	93.0	92.2
-30	75.6	78.1	80.7	83.2	85.0	88.5	90.1	91.4	92.5	92.6	92.1	91.3
-35	74.8	77.3	79.9	82.4	84.1	87.6	89.3	90.5	91.6	91.7	91.2	90.4
-40	74.0	76.5	79.0	81.5	83.3	86.7	88.4	89.6	90.7	90.7	90.2	89.5

J	_	0										
BLEED				PR	ESSUR	E ALT	ITUDE	(1000 H	T)			
CONFIGURATION	0	5	10	15	20	25	30	33	35	37	39	41
ENGINE ANTI-ICE	0.0	0.0	-0.6	-0.7	-0.8	-0.9	-1.2	-1.5	-1.8	-2.0	-2.1	-2.1
ENGINE & WING ANTI-ICE	0.0	0.0	-1.5	-1.7	-2.0	-2.1	-2.6	-3.2	-4.0	-4.2	-4.2	-4.2

ALTERNATE MODE EEC

Alternate Mode EEC Go-Around %N1 Based on engine bleed for packs on and anti-ice off

n		_			_			n.m. n					T (1)		-				
REPORTED	TAT					Α.	IRPO	RT P	RESS	URE	ALT	ITUL	DE (10)00 F	T)				
OAT	(°C)	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	14.5
(°C)	()	-2	-1	U	1	2	,	7	3	U	,	O		10	11	12	13	17	14.5
59	60	85.8	86.3	86.8	86.9	86.4	86.0	85.5	85.0	84.6	84.2	83.8	83.3	82.9	81.9	81.0	79.9	79.0	78.6
54	55	87.2	87.6	88.0	88.0	87.6	87.1	86.7	86.2	85.8	85.3	84.9	84.5	84.0	83.1	82.2	81.1	80.2	79.8
49	50	88.1	88.7	89.3	89.0	88.6	88.2	87.8	87.3	86.9	86.5	86.1	85.6	85.1	84.2	83.3	82.3	81.4	81.0
44	45	89.1	89.7	90.2	90.1	89.8	89.1	88.8	88.4	88.0	87.5	87.1	86.7	86.2	85.3	84.4	83.4	82.5	82.1
39	40	90.0	90.6	91.2	91.1	91.0	90.9	90.4	89.6	89.0	88.6	88.2	87.8	87.3	86.4	85.5	84.5	83.6	83.2
34	35	90.8	91.5	92.1	92.1	92.0	91.9	91.8	91.6	91.2	90.3	89.1	88.8	88.3	87.5	86.6	85.6	84.8	84.4
29	30	90.1	91.4	92.7	92.7	92.7	92.7	92.7	92.6	92.6	92.5	90.0	89.7	89.3	88.5	87.7	86.8	85.9	85.5
24	25	89.3	90.6	91.9	92.2	92.5	92.8	92.9	93.1	93.2	93.1	91.0	90.6	90.2	89.5	88.7	87.9	87.1	86.7
19	20	88.5	89.8	91.0	91.4	91.7	92.0	92.3	92.6	92.8	93.0	91.9	91.6	91.2	90.5	89.7	89.0	88.2	87.8
14	15	87.7	89.0	90.2	90.5	90.8	91.2	91.5	91.8	92.1	92.4	92.8	92.6	92.3	91.5	90.8	90.1	89.4	89.0
9	10	86.9	88.2	89.4	89.7	90.0	90.3	90.7	91.0	91.3	91.6	92.0	92.4	92.8	92.5	91.9	91.3	90.6	90.2
4	5	86.1	87.4	88.6	88.9	89.2	89.5	89.9	90.2	90.5	90.8	91.2	91.6	92.0	92.0	92.0	92.1	91.7	91.3
-1	0	85.3	86.5	87.8	88.1	88.5	88.7	89.0	89.3	89.7	90.0	90.4	90.8	91.2	91.2	91.3	91.3	91.3	91.3
-6	-5	84.5	85.7	87.0	87.3	87.6	87.9	88.2	88.5	88.8	89.2	89.6	90.0	90.4	90.4	90.5	90.5	90.5	90.5
-11	-10	83.7	84.9	86.2	86.5	86.8	87.0	87.3	87.6	88.0	88.3	88.8	89.2	89.6	89.6	89.7	89.7	89.7	89.7
-16	-15	82.9	84.1	85.3	85.6	85.9	86.2	86.4	86.8	87.1	87.5	87.9	88.3	88.7	88.8	88.8	88.9	88.9	88.9
-21	-20	82.1	83.3	84.5	84.8	85.1	85.4	85.6	85.9	86.3	86.7	87.1	87.5	87.9	88.0	88.0	88.0	88.1	88.1
-26	-25	81.3	82.5	83.7	84.0	84.3	84.5	84.8	85.1	85.4	85.8	86.2	86.7	87.0	87.1	87.2	87.2	87.2	87.3
-31	-30	80.4	81.6	82.8	83.1	83.4	83.7	83.9	84.2	84.6	85.0	85.4	85.8	86.2	86.3	86.3	86.4	86.4	86.4
-36	-35	79.6	80.8	82.0	82.3	82.6	82.8	83.1	83.4	83.7	84.1	84.5	84.9	85.3	85.4	85.4	85.5	85.6	85.6
-41	-40	78.8	80.0	81.1	81.4	81.7	82.0	82.2	82.5	82.9	83.2	83.6	84.0	84.4	84.5	84.6	84.6	84.7	84.7
-46	-45	77.9	79.1	80.3	80.6	80.9	81.1	81.4	81.7	82.0	82.4	82.7	83.1	83.5	83.6	83.6	83.7	83.8	83.8
-51	-50	77.1	78.2	79.4	79.7	80.0	80.2	80.5	80.8	81.1	81.5	81.8	82.2	82.6	82.7	82.7	82.8	82.9	82.9

BLEED					AII	RPOF	RT PF	RESS	URE	ALT	TTUI	DE (1	000	FT)				
CONFIGURATION	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	14.5
PACKS OFF	0.5	0.5	0.6	0.6	0.7	0.8	0.8	0.9	0.9	1.0	1.0	1.0	1.1	1.2	1.4	1.6	1.7	1.8
A/C HIGH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ENGINE & WING ANTI-ICE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.5	-1.4	-1.5	-1.4	-1.4	-1.5	-1.5
ENGINE & WING ANTI-ICE*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.8	-2.2	-2.3	-2.3	-2.3	-2.4	-2.5

^{*}Single Bleed Source

Performance Inflight Alternate Mode EEC Chapter PI Section 15

ALTERNATE MODE EEC

ENGINE INOP

Alternate Mode EEC Initial Max Continuous %N1 Based on .79M, A/C high and anti-ice off

TAT (9C)]	PRESSURE	ALTITUD	E (1000 FT)		
TAT (°C)	25	27	29	31	33	35	37	39	41
20	88.8	88.5	88.1	88.7	88.0	88.1	88.3	87.7	87.1
15	89.9	89.5	89.1	89.6	89.4	88.4	87.6	87.0	86.4
10	91.0	90.5	90.1	90.5	90.3	89.9	88.7	88.2	87.6
5	91.4	91.4	91.0	91.3	91.2	90.8	90.1	89.6	89.0
0	90.7	91.6	91.8	92.2	92.0	91.6	90.9	90.2	89.4
-5	89.8	90.7	91.7	92.8	92.6	92.3	91.5	90.8	89.9
-10	88.8	89.7	90.8	92.4	93.3	93.1	92.3	91.5	90.6
-15	88.0	88.9	89.9	91.6	92.9	93.9	93.1	92.4	91.5
-20	87.2	88.1	89.1	90.7	92.0	93.3	93.2	92.6	91.7
-25	86.4	87.3	88.3	89.9	91.2	92.3	92.3	91.6	90.7
-30	85.6	86.4	87.4	89.0	90.3	91.4	91.4	90.7	89.8
-35	84.7	85.6	86.5	88.1	89.4	90.5	90.4	89.8	88.9
-40	83.9	84.7	85.7	87.3	88.5	89.6	89.5	88.8	88.0

BLEED CONFIGURATION			PRE	SSURE A	ALTITUI	DE (1000	FT)		
BLEED CONFIGURATION	25	27	29	31	33	35	37	39	41
ENGINE ANTI-ICE	-0.9	-1.0	-1.1	-1.2	-1.5	-1.8	-2.0	-2.1	-2.1
ENGINE & WING ANTI-ICE	-3.3	-3.5	-3.8	-4.1	-4.9	-6.1	-6.3	-6.4	-6.4

737 Flight Crew Operations Manual

ALTERNATE MODE EEC

ENGINE INOP

MAX CONTINUOUS THRUST

Alternate Mode EEC Max Continuous %N1 Based on A/C high and anti-ice off

37000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-55	-50	-45	-40	-35	-30	-25	-20	-15	-10	-5	0
160	.51	87.9	88.8	89.8	90.8	91.8	91.9	91.9	91.9	91.5	90.5	89.5	89.9
200	.63	87.6	88.6	89.6	90.6	91.6	92.5	92.8	92.8	92.4	91.6	90.6	89.7
240	.74	87.1	88.1	89.0	90.0	91.0	91.9	92.9	93.5	93.1	92.1	91.3	90.7
280	.86	85.3	86.2	87.2	88.2	89.1	90.0	91.0	91.9	92.8	92.6	91.8	91.2

35000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-55	-50	-45	-40	-35	-30	-25	-20	-15	-10	-5	0
160	.49	87.9	88.9	89.9	90.9	91.8	92.1	92.1	92.1	92.1	91.4	90.2	90.0
200	.60	87.1	88.1	89.0	90.0	90.9	91.9	92.3	92.3	92.3	92.3	91.4	90.4
240	.71	87.1	88.1	89.1	90.0	90.9	91.9	92.8	93.5	93.4	92.8	92.0	91.3
280	.82	86.0	87.0	87.9	88.9	89.8	90.7	91.6	92.5	93.4	93.2	92.4	91.7

33000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-50	-45	-40	-35	-30	-25	-20	-15	-10	-5	0	5
160	.47	88.9	89.9	90.8	91.8	92.6	92.6	92.6	92.2	91.6	90.8	89.5	89.9
200	.58	88.5	89.4	90.4	91.3	92.2	93.1	93.1	92.6	92.1	91.6	90.9	89.5
240	.68	87.8	88.8	89.7	90.6	91.5	92.4	93.3	93.4	92.8	92.2	91.6	90.6
280	.79	86.7	87.6	88.5	89.4	90.3	91.2	92.1	92.9	93.3	92.6	92.0	91.2
320	.89	85.3	86.3	87.2	88.0	88.9	89.8	90.6	91.5	92.3	93.3	93.1	92.3

31000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-50	-45	-40	-35	-30	-25	-20	-15	-10	-5	0	5
160	.45	88.7	89.7	90.6	91.5	92.4	93.0	92.9	92.5	91.7	90.9	90.0	89.0
200	.55	88.6	89.5	90.4	91.3	92.2	93.1	93.6	93.2	92.3	91.6	91.0	89.8
240	.66	87.7	88.6	89.5	90.4	91.3	92.2	93.1	93.7	93.1	92.2	91.6	90.7
280	.76	86.1	87.0	87.9	88.8	89.7	90.5	91.4	92.2	93.1	92.7	92.1	91.2
320	.85	84.1	85.0	85.9	86.8	87.6	88.5	89.3	90.1	91.0	91.9	92.4	91.7

29000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-45	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10
160	.43	89.0	89.9	90.8	91.8	92.7	92.9	92.3	91.3	90.5	89.8	88.2	87.9
200	.53	88.7	89.6	90.5	91.4	92.3	93.2	93.1	92.2	91.3	90.5	89.4	87.8
240	.63	88.0	88.9	89.8	90.7	91.6	92.5	93.3	92.9	92.0	91.1	90.1	89.0
280	.73	86.1	87.0	87.9	88.8	89.6	90.5	91.4	92.2	92.4	91.6	90.7	89.7
320	.82	84.0	84.9	85.8	86.6	87.5	88.3	89.2	90.0	90.9	91.8	91.1	90.3
360	.91	83.5	84.4	85.3	86.2	87.0	87.9	88.7	89.5	90.4	91.3	92.0	92.0

ALTERNATE MODE EEC

ENGINE INOP

MAX CONTINUOUS THRUST

Max Continuous %N1

BLEED CONFIGURATION		PRESSUE	RE ALTITUDE	(1000 FT)	
BLEED CONFIGURATION	37	35	33	31	29
ENGINE ANTI-ICE	-2.0	-1.8	-1.5	-1.2	-1.1
ENGINE & WING ANTI-ICE	-6.1	-6.0	-4.8	-4.0	-3.7

737 Flight Crew Operations Manual

ALTERNATE MODE EEC

ENGINE INOP

MAX CONTINUOUS THRUST

Max Continuous %N1 Based on A/C high and anti-ice off 27000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-45	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10
160	.41	89.0	90.0	90.9	91.8	92.7	93.5	93.1	91.8	90.9	90.3	89.1	87.1
200	.51	88.2	89.2	90.1	91.0	91.8	92.7	93.3	92.5	91.7	91.0	89.8	88.6
240	.60	87.4	88.3	89.2	90.1	91.0	91.9	92.7	93.4	92.4	91.6	90.6	89.5
280	.70	85.7	86.6	87.5	88.4	89.2	90.1	90.9	91.7	92.7	92.1	91.1	90.0
320	.79	83.8	84.7	85.5	86.4	87.2	88.1	88.9	89.7	90.7	91.6	91.4	90.5
360	.88	82.6	83.5	84.4	85.2	86.1	86.9	87.7	88.5	89.5	90.4	91.1	91.6

25000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15
160	.39	90.1	91.0	91.9	92.8	93.7	93.7	92.4	91.4	90.7	89.7	88.1	86.9
200	.49	89.0	89.9	90.8	91.6	92.5	93.4	93.1	92.1	91.3	90.3	89.1	87.5
240	.58	87.7	88.6	89.4	90.3	91.2	92.0	92.9	92.8	91.9	90.9	89.8	88.6
280	.67	86.2	87.0	87.9	88.8	89.6	90.5	91.3	92.2	92.4	91.5	90.4	89.2
320	.76	84.4	85.3	86.1	87.0	87.8	88.6	89.4	90.4	91.3	91.8	90.8	89.7
360	.85	82.6	83.4	84.3	85.1	85.9	86.7	87.5	88.4	89.3	90.0	90.8	90.2

24000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15
160	.38	89.4	90.3	91.3	92.2	93.0	93.9	92.7	91.7	90.9	89.9	88.7	86.9
200	.48	88.9	89.8	90.7	91.6	92.5	93.4	93.8	92.8	91.8	90.9	89.8	88.6
240	.57	88.1	89.0	89.9	90.8	91.7	92.5	93.4	93.7	92.8	91.8	90.8	89.7
280	.66	86.7	87.6	88.5	89.4	90.2	91.1	91.9	92.7	93.3	92.4	91.4	90.3
320	.75	85.0	85.9	86.8	87.7	88.5	89.3	90.2	91.0	91.8	92.6	91.8	90.8
360	.83	83.2	84.1	85.0	85.8	86.6	87.5	88.3	89.1	89.9	90.6	91.4	91.3

22000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20
160	.37	88.2	89.1	89.9	90.8	91.7	92.0	91.2	90.3	89.4	88.3	87.2	86.5
200	.46	87.9	88.8	89.7	90.6	91.4	92.3	92.2	91.4	90.4	89.3	88.3	87.1
240	.55	88.9	89.8	90.7	91.6	92.4	93.3	94.1	93.8	92.9	92.0	91.0	89.9
280	.63	87.7	88.6	89.5	90.4	91.2	92.1	92.9	93.7	93.5	92.5	91.5	90.5
320	.72	86.2	87.1	87.9	88.8	89.6	90.5	91.3	92.1	92.9	93.0	92.1	91.1
360	.80	84.5	85.4	86.2	87.1	87.9	88.7	89.5	90.3	91.1	91.9	92.4	91.5

ALTERNATE MODE EEC

ENGINE INOP

MAX CONTINUOUS THRUST

Max Continuous %N1 Based on A/C high and anti-ice off 20000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20
160	.35	86.4	87.3	88.2	89.0	89.9	90.7	90.7	89.9	88.9	87.8	86.7	85.9
200	.44	86.0	86.9	87.8	88.6	89.5	90.3	91.1	90.6	89.5	88.4	87.3	86.2
240	.53	88.7	89.6	90.5	91.4	92.3	93.1	94.0	94.7	94.0	93.0	92.0	91.0
280	.61	88.0	88.9	89.8	90.7	91.6	92.4	93.3	94.1	94.8	93.8	92.9	92.0
320	.69	86.6	87.5	88.3	89.2	90.1	90.9	91.7	92.6	93.4	94.2	93.5	92.6
360	.77	85.1	85.9	86.8	87.6	88.4	89.3	90.1	90.9	91.7	92.5	93.3	92.9

Max Continuous %N1

BLEED CONFIGURATION		PRESSUE	RE ALTITUDE	(1000 FT)	
BLEED CONFIGURATION	27	25	24	22	20
ENGINE ANTI-ICE	-0.9	-0.9	-0.8	-0.9	-0.8
ENGINE & WING ANTI-ICE	-3.4	-3.3	-3.3	-3.3	-3.2

ALTERNATE MODE EEC

ENGINE INOP

MAX CONTINUOUS THRUST

Max Continuous %N1 Based on A/C high and anti-ice off 18000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25
160	.34	86.6	87.4	88.3	89.1	89.9	90.7	90.2	89.2	88.1	87.0	85.9	85.1
200	.42	85.9	86.8	87.6	88.4	89.2	90.0	90.5	89.9	88.8	87.6	86.5	85.6
240	.51	88.6	89.4	90.3	91.1	92.0	92.8	93.6	93.8	93.1	92.1	90.9	90.0
280	.59	89.1	90.0	90.8	91.7	92.5	93.3	94.2	95.0	94.9	94.1	93.2	92.4
320	.67	87.8	88.7	89.5	90.4	91.2	92.0	92.8	93.6	94.4	94.6	93.8	92.9
360	.75	86.5	87.3	88.1	88.9	89.8	90.6	91.4	92.2	92.9	93.7	94.1	93.3

16000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25
160	.33	85.9	86.8	87.6	88.4	89.2	90.0	90.5	89.6	88.5	87.3	86.2	85.2
200	.41	85.3	86.1	86.9	87.7	88.5	89.3	90.1	90.0	89.1	87.9	86.8	85.8
240	.49	86.3	87.1	87.9	88.7	89.5	90.3	91.2	92.0	91.9	90.9	89.8	88.7
280	.57	89.0	89.9	90.7	91.6	92.4	93.2	94.0	94.9	95.7	94.9	94.1	93.3
320	.64	87.8	88.7	89.5	90.4	91.2	92.0	92.8	93.6	94.4	95.2	94.7	93.8
360	.72	86.6	87.4	88.3	89.1	89.9	90.7	91.5	92.3	93.1	93.9	94.7	94.2

14000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
160	.31	86.4	87.3	88.1	88.9	89.7	90.5	90.5	89.6	88.5	87.4	86.4	85.3
200	.39	85.8	86.6	87.4	88.2	89.0	89.7	90.5	90.1	89.1	88.0	86.9	85.9
240	.47	85.4	86.2	87.1	87.8	88.6	89.4	90.2	90.9	90.9	89.8	88.8	87.7
280	.54	89.1	90.0	90.8	91.6	92.5	93.3	94.1	94.9	95.2	94.4	93.5	92.6
320	.62	88.3	89.2	90.0	90.8	91.7	92.5	93.3	94.0	94.8	95.0	94.3	93.4
360	.69	86.6	87.5	88.3	89.1	89.9	90.7	91.5	92.3	93.0	93.8	94.2	93.7

12000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-20	-15	-10	-5	0	5	10	15	20	25	30	35
160	.30	87.1	87.9	88.7	89.6	90.4	91.2	91.2	90.4	89.4	88.4	87.4	86.4
200	.38	86.3	87.1	88.0	88.8	89.6	90.4	91.0	90.9	89.9	89.0	88.0	87.0
240	.45	85.5	86.3	87.1	87.9	88.7	89.5	90.3	90.7	90.3	89.5	88.6	87.6
280	.52	88.5	89.4	90.2	91.1	91.9	92.7	93.5	94.3	94.3	93.7	92.8	91.9
320	.60	88.3	89.1	89.9	90.8	91.6	92.4	93.2	94.0	94.8	94.3	93.4	92.6
360	.67	86.1	87.0	87.8	88.6	89.4	90.2	91.0	91.7	92.5	93.3	93.0	92.5

Max Continuous %N1

BLEED CONFIGURATION		PRESSURE ALT	TUDE (1000 FT)	
BLEED CONFIGURATION	18	16	14	12
ENGINE ANTI-ICE	-0.9	-0.7	-0.7	-0.7
ENGINE & WING ANTI-ICE	-3.2	-3.0	-2.9	-2.7

ALTERNATE MODE EEC

ENGINE INOP

MAX CONTINUOUS THRUST

Max Continuous %N1 Based on A/C high and anti-ice off 10000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-20	-15	-10	-5	0	5	10	15	20	25	30	35
160	.29	87.0	87.8	88.7	89.5	90.3	91.1	91.9	91.9	91.3	90.4	89.5	88.6
200	.36	86.3	87.2	88.0	88.8	89.6	90.5	91.3	91.7	91.5	90.9	90.0	89.1
240	.43	85.6	86.4	87.3	88.1	88.9	89.7	90.5	91.3	91.4	91.3	90.4	89.4
280	.51	88.2	89.0	89.9	90.7	91.6	92.4	93.2	94.0	94.7	93.9	93.0	92.1
320	.58	87.3	88.2	89.0	89.8	90.7	91.5	92.3	93.1	93.9	94.3	93.4	92.5
360	.65	84.5	85.3	86.1	86.9	87.7	88.5	89.3	90.1	90.9	91.6	92.1	92.1

5000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-10	-5	0	5	10	15	20	25	30	35	40	45
160	.26	86.8	87.7	88.5	89.3	90.1	90.9	91.6	91.3	90.4	89.5	88.6	87.6
200	.33	86.4	87.2	88.1	88.9	89.7	90.5	91.3	91.5	90.9	89.9	88.9	88.0
240	.40	85.9	86.7	87.6	88.4	89.2	90.0	90.8	91.4	91.3	90.4	89.5	88.5
280	.46	85.7	86.5	87.3	88.2	89.0	89.8	90.6	91.4	91.6	91.1	90.2	89.3
320	.53	85.5	86.3	87.1	88.0	88.8	89.6	90.4	91.1	91.9	91.8	91.3	90.5
360	.59	81.5	82.3	83.1	83.8	84.6	85.4	86.1	86.9	87.6	88.4	88.4	88.4

3000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-5	0	5	10	15	20	25	30	35	40	45	50
160	.26	86.8	87.7	88.5	89.3	90.1	90.9	91.2	90.5	89.6	88.6	87.6	86.6
200	.32	86.5	87.3	88.1	88.9	89.7	90.5	91.3	90.8	89.9	89.0	88.0	87.0
240	.38	86.1	86.9	87.7	88.5	89.2	90.0	90.8	91.1	90.4	89.5	88.5	87.5
280	.45	85.4	86.2	87.0	87.8	88.6	89.4	90.2	91.0	90.7	89.9	89.0	88.1
320	.51	84.7	85.5	86.3	87.1	87.9	88.6	89.4	90.2	90.9	90.8	90.0	89.3
360	.57	80.5	81.3	82.0	82.8	83.5	84.2	85.0	85.7	86.4	86.9	86.9	86.9

1000 FT Pressure Altitude

							TAT	(°C)					
KIAS	M	-5	0	5	10	15	20	25	30	35	40	45	50
160	.25	85.9	86.7	87.5	88.3	89.1	89.9	90.7	90.4	89.6	88.7	87.7	86.7
200	.31	85.5	86.3	87.1	87.9	88.7	89.5	90.3	90.7	89.9	89.0	88.0	87.0
240	.37	85.2	86.0	86.8	87.6	88.4	89.1	89.9	90.7	90.3	89.4	88.5	87.5
280	.43	84.6	85.4	86.2	87.0	87.8	88.5	89.3	90.1	90.6	89.9	89.0	88.1
320	.49	82.6	83.4	84.2	84.9	85.7	86.5	87.2	88.0	88.7	89.0	88.9	88.6
360	.55	78.8	79.6	80.3	81.0	81.8	82.5	83.2	83.9	84.6	85.3	85.5	85.5

Max Continuous %N1

BLEED CONFIGURATION		PRESSURE ALT	TUDE (1000 FT)	
BLEED CONFIGURATION	10	5	3	1
ENGINE ANTI-ICE	-0.6	0.0	0.0	0.0
ENGINE & WING ANTI-ICE	-2.5	0.0	0.0	0.0

Intentionally Blank

Performance Inflight Gear Down

Chapter PI Section 16

GEAR DOWN

Long Range Cruise Altitude Capability Max Cruise Thrust, 100 ft/min residual rate of climb

WEIGHT (1000 V.C.)]	PRESSURE ALTITUDE (FT)
WEIGHT (1000 KG)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C
85	16500	13900	11200
80	18800	16500	13800
75	21500	19000	16500
70	24900	22400	19300
65	27000	25700	23800
60	29100	27900	26700
55	31300	30400	29100
50	33300	32700	32100
45	35600	34900	34500
40	38000	37500	37100

GEAR DOWN

Long Range Cruise Control

VX /	EIGHT				PRESSI	JRE ALT	ITUDE (1	000 FT)			
	000 KG)	10	21	23	25	27	29	31	33	35	37
(10	%N1	79.7		-20				J.	55		5,
	MACH	.466									
85	KIAS	258									
	FF/ENG	1909									
	%N1	77.8	88.0								
	MACH	.453	.559								
80	KIAS	250	251								
	FF/ENG	1789	1834								
	%N1	75.7	86.0	88.1							
	MACH	.439	.541	.564							
75	KIAS	242	242	243							
	FF/ENG	1666	1699	1720							
	%N1	73.6	83.9	85.9	88.1						
	MACH	.424	.524	.546	.568						
70	KIAS	234	234	234	235						
	FF/ENG	1547	1572	1588	1606						
	%N1	71.3	81.8	83.7	85.7	87.8					
	MACH	.408	.506	.526	.549	.572					
65	KIAS	225	226	226	226	226					
	FF/ENG	1431	1452	1458	1474	1491					
	%N1	68.9	79.6	81.4	83.3	85.4	87.5				
	MACH	.393	.488	.507	.528	.551	.574				
60	KIAS	217	218	217	217	218	217				
	FF/ENG	1323	1335	1337	1343	1359	1375				
	%N1	66.4	77.1	79.0	80.8	82.7	84.9	87.1			
	MACH	.376	.468	.487	.507	.528	.552	.574			
55	KIAS	208	209	209	208	208	209	208			
	FF/ENG	1221	1221	1222	1223	1228	1243	1259			
	%N1	63.9	74.3	76.3	78.2	80.1	82.0	84.2	86.3		
	MACH	.360	.447	.466	.485	.505	.527	.551	.574		
50	KIAS	199	199	199	199	199	199	199	199		
	FF/ENG	1121	1105	1108	1109	1108	1112	1127	1144		
	%N1	61.2	71.1	73.2	75.2	77.2	79.1	81.0	83.2	85.4	
45	MACH	.345	.424	.443	.462	.481	.502	.523	.547	.572	
45	KIAS	190	189	189	189	189	189	189	189	189	
	FF/ENG	1023	997	993	996	996	994	998	1011	1028	
	%N1	58.2	67.6	69.7	71.7	73.9	75.9	77.8	79.7	81.8	84.5
40	MACH	.328	.400	.418	.436	.456	.475	.496	.517	.541	.567
40	KIAS	181	178	178	178	179	179	178	178	178	179
	FF/ENG	927	899	887	881	891	886	883	886	895	921

GEAR DOWN

Long Range Cruise Enroute Fuel and Time Table 1 of 3: Ground to Air Miles Conversion

	AIR D	ISTANCE	(NM)		GROUND		AIR D	ISTANCE	E (NM)	
HE.	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TA	ILWIND	COMPO	NENT (K7	ΓS)
100	80	60	40	20	(NM)	20	40	60	80	100
331	294	263	238	218	200	188	178	168	160	153
670	594	528	477	436	400	377	357	338	321	306
1012	896	796	718	655	600	566	534	506	481	459
1359	1200	1065	959	874	800	754	712	675	641	612
1711	1508	1336	1202	1094	1000	943	890	843	801	764
2066	1819	1609	1446	1314	1200	1131	1067	1010	960	915
2427	2133	1883	1690	1534	1400	1318	1244	1178	1118	1066
2792	2449	2159	1934	1755	1600	1507	1421	1345	1276	1216
3162	2769	2437	2180	1976	1800	1694	1598	1511	1434	1366
3538	3093	2716	2427	2198	2000	1882	1774	1677	1591	1515
3919	3420	2999	2676	2420	2200	2069	1950	1843	1748	1664

Table 2 of 3: Reference Fuel and Time Required at Check Point

A ID		PRESSURE ALTITUDE (1000 FT)								
AIR DIST	10		14		20		24		28	
(NM)	FUEL	TIME	FUEL	TIME	FUEL	TIME	FUEL	TIME	FUEL	TIME
(1111)	(1000 KG)	(HR:MIN)	(1000 KG)	(HR:MIN)	(1000 KG)	(HR:MIN)	(1000 KG)	(HR:MIN)	(1000 KG)	(HR:MIN)
200	2.0	0:51	1.8	0:48	1.6	0:45	1.4	0:43	1.3	0:41
400	4.0	1:40	3.7	1:34	3.3	1:27	3.1	1:22	2.9	1:18
600	6.1	2:30	5.6	2:21	5.1	2:09	4.8	2:02	4.5	1:55
800	8.1	3:20	7.5	3:09	6.8	2:52	6.4	2:42	6.0	2:33
1000	10.0	4:12	9.3	3:57	8.5	3:35	8.0	3:23	7.5	3:11
1200	12.0	5:05	11.1	4:46	10.1	4:20	9.5	4:04	9.0	3:49
1400	13.9	5:58	12.9	5:37	11.8	5:05	11.1	4:46	10.5	4:28
1600	15.7	6:53	14.7	6:28	13.4	5:51	12.6	5:28	11.9	5:08
1800	17.6	7:48	16.4	7:20	15.0	6:37	14.1	6:12	13.3	5:48
2000	19.4	8:44	18.1	8:13	16.5	7:25	15.5	6:55	14.7	6:29
2200	21.1	9:42	19.8	9:07	18.1	8:13	17.0	7:40	16.0	7:10

Table 3 of 3: Fuel Required Adjustment (1000 KG)

REFERENCE FUEL REQUIRED	WEIGHT AT CHECK POINT (1000 KG)						
(1000 KG)	40	50	60	70	80		
2	-0.3	-0.1	0.0	0.2	0.6		
4	-0.6	-0.3	0.0	0.5	1.2		
6	-0.9	-0.5	0.0	0.7	1.7		
8	-1.3	-0.6	0.0	0.9	2.2		
10	-1.6	-0.8	0.0	1.2	2.7		
12	-1.9	-1.0	0.0	1.4	3.2		
14	-2.2	-1.1	0.0	1.6	3.6		
16	-2.5	-1.3	0.0	1.8	4.0		
18	-2.8	-1.4	0.0	2.0	4.4		
20	-3.2	-1.6	0.0	2.2	4.7		
22	-3.5	-1.8	0.0	2.4	5.1		

GEAR DOWN

Descent

VREF40+70 KIAS

PRESSURE ALTITUDE (FT)	TIME (MIN)	FUEL (KG)	DISTANCE (NM)
41000	20.8	220	92
39000	20.1	215	87
37000	19.3	210	82
35000	18.6	205	78
33000	17.9	200	73
31000	17.2	195	69
29000	16.4	190	65
27000	15.6	185	60
25000	14.8	179	56
23000	14	173	52
21000	13.2	167	48
19000	12.3	160	44
17000	11.5	153	40
15000	10.6	146	36
10000	8.3	126	26
5000	5.8	103	16
1500	4	84	10

Allowances for a straight-in approach are included.

GEAR DOWN

Holding Flaps Up

WEIGHT (1000 KG)				PR	ESSURE A	LTITUDE (F	FT)		
		1500	5000	10000	15000	20000	25000	30000	35000
	%N1	69.2	72.3	77.1	82.0	86.9			
85	KIAS	233	233	233	233	234			
	FF/ENG	1820	1810	1820	1850	1890			
	%N1	67.5	70.4	75.2	80.1	85.0			
80	KIAS	226	226	226	226	227			
	FF/ENG	1710	1700	1710	1730	1760			
	%N1	65.7	68.5	73.2	78.1	83.0	88.5		
75	KIAS	219	219	219	219	219	221		
	FF/ENG	1600	1600	1590	1610	1630	1690		
	%N1	63.8	66.6	71.1	76.0	81.0	86.1		
70	KIAS	214	214	214	214	214	214		
	FF/ENG	1500	1490	1490	1500	1520	1550		
	%N1	62.0	64.8	69.1	74.0	78.9	83.9		
65	KIAS	210	210	210	210	210	210		
	FF/ENG	1410	1400	1400	1400	1410	1430		
	%N1	60.1	62.8	67.0	71.8	76.8	81.6	87.1	
60	KIAS	204	204	204	204	204	204	204	
	FF/ENG	1320	1310	1310	1300	1300	1320	1360	
	%N1	58.0	60.6	64.9	69.5	74.4	79.4	84.5	
55	KIAS	198	198	198	198	198	198	198	
	FF/ENG	1240	1220	1220	1200	1200	1210	1230	
	%N1	55.9	58.4	62.6	67.1	71.9	77.0	81.9	
50	KIAS	191	191	191	191	191	191	191	
	FF/ENG	1150	1140	1130	1110	1110	1110	1120	
	%N1	53.8	56.2	60.2	64.6	69.3	74.4	79.4	84.6
45	KIAS	185	185	185	185	185	185	185	185
	FF/ENG	1060	1060	1040	1040	1030	1010	1020	1050
	%N1	51.6	53.8	57.6	62.0	66.6	71.6	76.7	81.7
40	KIAS	178	178	178	178	178	178	178	178
	FF/ENG	980	970	950	950	950	920	920	930

This table includes 5% additional fuel for holding in a racetrack pattern.

Intentionally Blank

Performance Inflight Gear Down, Engine Inop Chapter PI Section 17

MAX CONTINUOUS THRUST

Driftdown Speed/Level Off Altitude

100 ft/min residual rate of climb

WEIGHT	(1000 KG)	OPTIMUM	LEVEL OFF ALTITUDE (FT)				
START DRIFTDOWN	LEVEL OFF	DRIFTDOWN SPEED (KIAS)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C		
80	77	225	2400				
75	72	219	4800	3300	1400		
70	67	214	6900	5800	4400		
65	62	209	9200	8200	7000		
60	57	204	11200	10400	9600		
55	53	198	13200	12100	11300		
50	48	191	15500	14100	13000		
45	43	185	18600	16800	14800		
40	38	177	22000	20200	18400		

Includes APU fuel burn.

737 Flight Crew Operations Manual

MAX CONTINUOUS THRUST

Long Range Cruise Altitude Capability 100 ft/min residual rate of climb

WEIGHT	PRESSURE ALTITUDE (FT)					
(1000 KG)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C			
70	2900					
65	5700	4200	1800			
60	8400	7300	5800			
55	11000	10200	9300			
50	13500	12400	11500			
45	16600	14800	13600			
40	20700	18900	16900			

GEAR DOWN ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Control

W	WEIGHT			PF	RESSURE	ALTITUE	E (1000 F	T)		
(1000 KG)		5	7	9	11	13	15	17	19	21
70	%N1	89.7	91.8							
	MACH	.386	.400							
70	KIAS	233	234							
	FF/ENG	3176	3210							
	%N1	87.2	89.2	91.3						
65	MACH	.372	.386	.401						
65	KIAS	225	225	225						
	FF/ENG	2923	2942	2973						
	%N1	84.8	86.6	88.5	90.7					
60	MACH	.359	.371	.385	.400					
60	KIAS	217	217	217	217					
	FF/ENG	2689	2691	2707	2735					
55	%N1	82.3	84.0	85.8	87.7	89.8				
	MACH	.346	.357	.370	.383	.399				
33	KIAS	210	208	208	208	208				
	FF/ENG	2470	2460	2460	2473	2497				
	%N1	79.4	81.3	83.0	84.7	86.6	88.7			
50	MACH	.333	.344	.355	.367	.380	.396			
30	KIAS	201	200	199	198	198	198			
	FF/ENG	2256	2245	2233	2230	2240	2258			
	%N1	76.1	78.1	79.9	81.7	83.4	85.2	87.4	89.7	
45	MACH	.318	.328	.339	.351	.362	.376	.391	.407	
43	KIAS	192	191	191	190	189	188	188	188	
	FF/ENG	2037	2031	2021	2009	2004	2008	2021	2046	
	%N1	72.5	74.4	76.3	78.2	80.0	81.8	83.6	85.6	87.9
40	MACH	.302	.312	.322	.334	.345	.357	.369	.384	.400
40	KIAS	182	182	181	180	179	178	178	178	178
	FF/ENG	1820	1813	1808	1800	1790	1781	1778	1786	1804

Includes APU fuel burn.

737 Flight Crew Operations Manual

GEAR DOWN ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Diversion Fuel and Time Table 1 of 3: Ground to Air Miles Conversion

AIR DISTANCE (NM)					GROUND	GROUND AIR DISTANCE (NM)				
HEADWIND COMPONENT (KTS)					DISTANCE	TAILWIND COMPONENT (KTS)				TS)
100	80	60	40	20	(NM)	20	40	60	80	100
168	149	132	119	109	100	93	88	83	78	75
343	302	267	240	219	200	187	174	164	155	147
518	455	402	361	328	300	280	261	245	231	219
695	610	538	483	438	400	373	348	327	308	292
873	765	674	604	548	500	466	435	408	384	363
1053	922	812	726	659	600	558	521	488	459	435
1233	1079	948	848	769	700	651	608	569	536	507
1415	1237	1086	970	879	800	744	694	650	611	578
1597	1395	1224	1093	989	900	837	780	730	687	650
1782	1555	1363	1216	1100	1000	929	866	810	762	721

Table 2 of 3: Reference Fuel and Time Required at Check Point

AIRDIST (NM)	PRESSURE ALTITUDE (1000 FT)							
	(5	1	0	14			
(14141)	FUEL (1000 KG)	TIME (HR:MIN)	FUEL (1000 KG)	TIME (HR:MIN)	FUEL (1000 KG)	TIME (HR:MIN)		
100	1.0	0:27	0.9	0:26	0.8	0:25		
200	2.2	0:53	2.0	0:51	1.9	0:48		
300	3.3	1:19	3.0	1:15	2.9	1:11		
400	4.4	1:45	4.1	1:40	3.9	1:34		
500	5.5	2:11	5.1	2:05	4.9	1:58		
600	6.5	2:38	6.2	2:30	5.9	2:21		
700	7.6	3:04	7.2	2:55	6.9	2:45		
800	8.6	3:31	8.2	3:21	7.8	3:09		
900	9.7	3:59	9.1	3:46	8.8	3:33		
1000	10.7	4:26	10.1	4:12	9.7	3:58		

Table 3 of 3: Fuel Required Adjustment (1000 KG)

REFERENCE FUEL REQUIRED	WEIGHT AT CHECK POINT (1000 KG)						
(1000 KG)	40	50	60	70	80		
1	-0.2	-0.1	0.0	0.2	0.4		
2	-0.4	-0.2	0.0	0.4	1.0		
3	-0.6	-0.3	0.0	0.6	1.5		
4	-0.7	-0.4	0.0	0.8	1.9		
5	-0.9	-0.5	0.0	1.0	2.4		
6	-1.1	-0.5	0.0	1.2	2.8		
7	-1.3	-0.6	0.0	1.4	3.2		
8	-1.5	-0.7	0.0	1.5	3.5		
9	-1.7	-0.8	0.0	1.7	3.9		
10	-1.9	-0.9	0.0	1.8	4.2		
11	-2.1	-1.0	0.0	1.9	4.5		

Includes APU fuel burn.

MAX CONTINUOUS THRUST

Holding Flaps Up

WEIGHT		PRESSURE ALTITUDE (FT)							
(10	000 KG)	1500	5000	10000	15000	20000			
	%N1	89.9							
85	KIAS	233							
	FF/ENG	3730							
	%N1	87.8	91.5						
80	KIAS	226	226						
	FF/ENG	3480	3530						
	%N1	85.7	89.2						
75	KIAS	219	219						
	FF/ENG	3240	3270						
	%N1	83.5	87.0						
70	KIAS	214	214						
	FF/ENG	3000	3030						
	%N1	81.4	84.8	89.9					
65	KIAS	210	210	210					
	FF/ENG	2810	2820	2880					
	%N1	79.1	82.5	87.4					
60	KIAS	204	204	204					
	FF/ENG	2600	2610	2650					
	%N1	76.5	80.0	85.0					
55	KIAS	198	198	198					
	FF/ENG	2400	2410	2430					
	%N1	73.9	77.3	82.4	87.3				
50	KIAS	191	191	191	191				
	FF/ENG	2210	2220	2230	2260				
	%N1	71.1	74.4	79.6	84.5	90.2			
45	KIAS	185	185	185	185	185			
	FF/ENG	2030	2030	2040	2060	2110			
	%N1	68.3	71.4	76.5	81.6	86.7			
40	KIAS	178	178	178	178	178			
	FF/ENG	1860	1850	1850	1860	1880			

This table includes 5% additional fuel for holding in a racetrack pattern. Includes APU fuel burn.

737-8/LEAP-1B27 FAA **CATB**

Intentionally Blank

BOEING

737 Flight Crew Operations Manual

Performance Inflight
Text

Chapter PI Section 18

Introduction

This chapter contains information to supplement performance data from the Flight Management Computer (FMC). In addition, sufficient inflight data is provided to complete a flight with the FMC inoperative. In the event of conflict between data presented in this chapter and that contained in the approved Airplane Flight Manual, the Flight Manual shall always take precedence.

General

Takeoff Speeds

The speeds presented in the Takeoff Speeds table, as well as FMC computed takeoff speeds, can be used for all performance conditions except where adjustments must be made for anti-skid inoperative, thrust reversers inoperative, improved climb, contaminated runway situations, or brake energy limits.

V1 adjustments are not necessary for equal amounts of clearway and stopway. V1 for takeoff limit weights based on unequal clearway and stopway should be obtained from computerized takeoff speed calculations for the specific takeoff conditions.

These speeds may be used for weights less than or equal to the performance limited weight subject to the restrictions noted above.

The FMC will protect minimum control speeds by increasing V1, VR, and V2 as required. However, the FMC will not compute takeoff speeds for weights where the required speed increase exceeds the maximum certified speed increase. This typically occurs at full rated thrust and light weights. In this case, the message "V SPEEDS UNAVAILABLE" will appear on the FMC scratchpad and the takeoff speed entries will be blank. In this situation, manually verify takeoff speeds using an approved source of takeoff performance information. Upon verifying takeoff speeds, takeoff is permitted. When the selected takeoff speeds cannot be verified, the options are to select a lower flap setting, select derate thrust and/or increase airplane gross weight (e.g. add fuel). Selecting derate thrust is the preferred method as this will reduce the minimum control speeds. Note that the assumed temperature method will not help this condition as the minimum control speeds are determined at the actual temperature and therefore are not reduced by an assumed temperature selection.

BDEING737 Flight Crew Operations Manual

737-8/LEAP-1B27 FAA CATB

Takeoff speeds are determined as follows:

- 1. Determine V1, VR, and V2 from the Takeoff Speeds table (Table 1) with brake release weight.
- 2. Adjust V1, VR, and V2 for temperature and pressure altitude from the V1, VR, V2 Adjustments table (Table 2).
- 3. Adjust V1 for wind and slope from the Slope and Wind V1 Adjustments table (Table 3).
- 4. Determine V1(MCG) from the V1(MCG) table (Table 4).
- 5. If V1 from Step 3 is less than V1(MCG), set V1=V1(MCG).
- 6. If the VR from Step 2 is less than V1(MCG), set VR equal to V1(MCG) and determine a new V2 by adding the difference between the VR from Step 2 and V1(MCG) to the normal V2.

Note: Regulations prohibit scheduling takeoff with a V1 less than minimum V1 for control on the ground, V1(MCG). It is therefore necessary to compare the adjusted V1 to V1(MCG). The V1(MCG) presented in this manual is conservative for all weight and bleed configurations. No takeoff weight adjustment is necessary provided that the actual field length exceeds the minimum field length shown in the Field and Climb Limit Weight table in the chapter Performance Dispatch.

Stabilizer Trim Setting

To find takeoff stabilizer trim setting, enter the Stabilizer Trim Setting table with anticipated brake release weight and center of gravity (C.G. % MAC) and read required stabilizer trim units.

VREF

This table contains flaps 40, 30 and 15 reference speeds for a given weight for a reference pressure altitude of 14500 feet. These data are consistent with the FMC. The FMC uses a reference pressure altitude of 14500 feet to calculate VREF when the origin or destination airports have not been defined. For similar conditions, VREF values at 14500 feet are conservative for lower pressure altitudes.

Flap Maneuver Speeds

This table provides flap maneuver speeds for various flap settings. During flap retraction, selection of the next flap position is initiated when reaching the maneuver speed for the existing flap position. During flap retraction, at least adequate maneuver capability of 30° of bank (15° of bank and 15° overshoot) to stick shaker is provided at the flap retraction speed. Full maneuvering capability of at least 40° of bank (25° of bank and 15° overshoot) is provided when the airplane has accelerated to the recommended maneuver speed for the selected flap position.

During flap extension, selection of the flaps to the next flap position should be made when approaching, and before decelerating below, the maneuver speed for the existing flap position. The flap extension speed schedule varies with airplane weight and provides full maneuver capability of at least 40° of bank (25° of bank and 15° overshoot) to stick shaker at all weights.

Slush/Standing Water Takeoff

Experience has shown that aircraft performance may deteriorate significantly on runways covered with snow, slush, standing water or ice. Therefore, reductions in runway/obstacle limited takeoff weight and revised takeoff speeds are necessary. The tables are intended for guidance in accordance with advisory material and assume an engine failure at the critical point during the takeoff.

The entire runway is assumed to be completely covered by a contaminant of uniform thickness and density. Therefore this information is conservative when operating under typical colder weather conditions where patches of slush exist and some degree of sanding is common. Takeoffs in slush depths greater than 0.5 inches (13 mm) are not recommended because of possible airplane damage as a result of slush impingement on the airplane structure. The use of assumed temperature for reduced thrust is not allowed on contaminated runways. Interpolation for slush/standing water depths between the values shown is permitted.

Takeoff weight is determined as follows:

- 1. Determine the dry field/obstacle limit weight for the takeoff flap setting.
- 2. Enter the Weight Adjustment table (Table 1) with the dry field/obstacle limit weight to obtain the weight reduction for the slush/standing water depth and airport pressure altitude.
- 3. Adjust field length available for temperature by the amount provided in the notes below the V1(MCG) Limit Weight table (Table 2).

Ø BOEING

737-8/LEAP-1B27 FAA CATB

737 Flight Crew Operations Manual

- 4. Enter the V1(MCG) Limit Weight table (Table 2) with the adjusted field length and pressure altitude to obtain the slush/standing water limit weight with respect to minimum field length required for V1(MCG) speed.
- 5. The maximum allowable takeoff weight in slush/standing water is the lesser of the limit weights found in steps 2 and 4.

Takeoff speed determination:

- 1. Determine takeoff speeds V1, VR and V2 for actual brake release weight using the Dry Runway Takeoff Speeds tables in this section.
- 2. If V1(MCG) limited, set V1=V1(MCG). If not limited by V1(MCG) considerations, enter the V1 Adjustment table (Table 3) with actual brake release weight to determine the V1 reduction to apply to V1 speed. If the adjusted V1 is less than V1(MCG), set V1=V1(MCG).

Dry Snow Runway Takeoff

In addition to slush/standing water, the data are provided for dry snow covered runways. Takeoff in dry snow depths greater than 4.0 inches (100 mm) is not recommended. The tables provided are used in the same manner as the Slush/Standing Water Takeoff tables.

Wet Snow Runway Takeoff

In addition to slush/standing water and dry snow, data are provided for wet snow covered runways. The tables provided are used in the same manner as the Slush/Standing Water Takeoff tables.

Slippery Runway Takeoff

Airplane braking action is reported as good, medium or poor, depending on existing runway conditions. If braking action is reported as good, conditions should not be expected to be as good as on clean, dry runways. The value "good" is comparative and is intended to mean that airplanes should not experience braking or directional control difficulties when stopping. The performance level of good is the same as used by the FAA and EASA to define wet runway rejected takeoff performance. A braking action of good to medium (interpolation between good and medium) is representative of a runway covered with compacted snow. Similarly, poor braking action is representative of a runway covered with ice. Performance is based on reversers operating and a 15 ft screen height at the end of the runway. The tables provided are used in the same manner as the Slush/Standing Water tables.

One Thrust Reverser Inoperative

Wet runway takeoff performance presented for all brakes operating is based on the use of one thrust reverser during deceleration. When operating with a thrust reverser inoperative, the runway/obstacle limited takeoff weight and V1 speed must be reduced to account for the reduced deceleration capability.

A simplified method which conservatively accounts for this is to reduce the normal wet runway/obstacle limited weight by 1250 kg and the V1 associated with the reduced weight by two knots.

If the resulting V1 is less than V1(MCG), takeoff is permitted with V1 set equal to V1(MCG) provided the accelerate stop distance available corrected for wind and slope exceeds approximately 4500 ft.

Anti-Skid Inoperative

When operating with anti-skid inoperative, the field limit weight and V1 must be reduced to account for the effect on accelerate-stop performance. Anti-skid inoperative is only allowed on a dry runway. A simplified method which conservatively accounts for the effects of anti-skid inoperative is to reduce the normal dry field/obstacle limited weight by 8700 kg and the V1 associated with the reduced weight by the amount shown in the table below.

ANTI-SKID INOPERATIVE V1 ADJUSTMENTS				
FIELD LENGTH (FT)	V1 ADJUSTMENT (KIAS)			
6000	-23			
8000	-19			
10000	-16			
12000	-14			
14000	-12			

If the resulting V1 is less than V1(MCG), takeoff is permitted with V1 set equal to V1(MCG) provided the dry accelerate-stop distance available adjusted for wind and slope exceeds approximately 6600 ft.

Detailed analysis for the specific case from the Airplane Flight Manual may yield a less restrictive penalty.

Takeoff %N1

To find Max Takeoff %N1 based on normal engine bleed for air conditioning packs on, enter Takeoff %N1 Table with airport pressure altitude and airport OAT and read %N1. Apply %N1 adjustments as provided when applicable.

Assumed Temperature Reduced Thrust

Regulations permit the use of up to 25% takeoff thrust reduction for operation with assumed temperature reduced thrust. Use of assumed temperature reduced thrust is not allowed with anti-skid inoperative or on runways contaminated with standing water, ice, slush, or snow. Use of assumed temperature reduced thrust is not recommended if potential windshear conditions exist.

To find the maximum allowable assumed temperature enter the Maximum Assumed Temperature table with airport pressure altitude and OAT. Compare this temperature to that at which the airplane is performance limited as determined from available takeoff performance data. Next, enter the Maximum Takeoff %N1 table with airport pressure altitude and the lower of the two temperatures previously determined, to obtain a maximum takeoff %N1. Do not use an assumed temperature less than the minimum assumed temperature shown. Enter the %N1 Adjustment table with OAT and the difference between the assumed and actual OAT to obtain a %N1 adjustment. Subtract the %N1 adjustment from the maximum takeoff %N1 found previously to determine the assumed temperature reduced thrust %N1.

Apply %N1 adjustments as provided when applicable.

Max Climb %N1

This table shows Max Climb %N1 for a 280/.78 climb speed schedule. Enter the table with airport pressure altitude and TAT and read %N1. Apply %N1 adjustments as provided when applicable.

Go-Around %N1

To find Go-Around %N1, enter the Go-Around %N1 table with airport pressure altitude and reported OAT or TAT and read %N1. Apply %N1 adjustments as provided when applicable.

Flight with Unreliable Airspeed/ Turbulent Air Penetration

Information is provided for use in all phases of flight in the event of unreliable airspeed/Mach indications resulting from blocking or freezing of the pitot system. Loss of radome or turbulent air may also cause unreliable airspeed/Mach indications. The cruise table in this section may also be used for turbulent air penetration. These speeds provide ample protection from stall and high speed buffet, while also providing protection from exceeding the structural limits. For climb, cruise, and descent these tables are based on a speed schedule of 280 KIAS below crossover altitude and .76 Mach above crossover altitude.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

Pitch attitude and power setting are shown in bold type to emphasize pilot action. Altitude and/or vertical speed indications may also be unreliable.

All Engines

Long Range Cruise Maximum Operating Altitude

These tables provide the maximum operating altitude in the same manner as the FMC. Maximum altitudes are shown for a given cruise weight and maneuver capability. Note that these tables consider both thrust and buffet limits, providing the more limiting of the two. Any data that is thrust limited is denoted by an asterisk and represents only a thrust limited condition in level flight with 100 ft/min residual rate of climb.

For FAA operators adhering to EASA standards, refer to the data for buffet limits corresponding to a maneuver margin of 1.3g (39° bank).

Flying above these altitudes with sustained banks in excess of approximately 13° may cause the airplane to lose speed and/or altitude. The altitudes shown in the table are limited to the maximum certified altitude of 41000 ft.

Long Range Cruise Control

This table provides target %N1, Long Range Cruise Mach number, IAS and standard day fuel flow per engine for the airplane weight and pressure altitude. As indicated by the shaded area, at optimum altitude, .79 Mach approximates the Long Range Cruise Mach schedule.

APU Operation During Flight

For APU operation during flight, increase fuel flow according to the table in the Engine Inoperative text section.

Long Range Cruise Enroute Fuel and Time

Long Range Cruise Enroute Fuel and Time tables are provided to determine remaining time and fuel required to destination. The data is based on Long Range Cruise and .78/280/250 descent. Tables are presented for low altitudes for shorter trip distances and high altitudes for longer trip distances.

To determine remaining fuel and time required, first enter the Ground to Air Miles Conversion table (Table 1) to convert ground distance and enroute wind to an equivalent still air distance. Next, enter the Reference Fuel and Time table (Table 2) with air distance from Table 1 and the desired altitude and read reference fuel and time required. Lastly, enter the Fuel Required Adjustment table (Table 3) with the reference fuel and the actual weight at checkpoint to obtain fuel required to destination.

Long Range Cruise Wind-Altitude Trade

Wind is a factor which may justify operations considerably below optimum altitude. For example, a favorable wind component may have an effect on ground speed which more than compensates for the loss in air range.

Using this table, it is possible to determine the break-even wind (advantage necessary or disadvantage that can be tolerated) to maintain the same range at another altitude and long range cruise speed. The tables make no allowance for climb or descent time, fuel or distance, and are based on comparing ground fuel mileage.

Descent at .78/280/250

Distance and time for descent are shown for a .78/280/250 descent speed schedule. Enter the table with top of descent pressure altitude and read distance in nautical miles and time in minutes. Data is based on flight idle thrust descent in zero wind. Allowances are included for a straight-in approach with gear down and landing flaps at the outer marker.

Holding

Target %N1, indicated airspeed and fuel flow per engine information is tabulated for holding with Flaps Up based on the FMC optimum holding speed schedule. This is the higher of the maximum endurance speed and the maneuvering speed. Small variations in airspeed will not appreciably affect the overall endurance time. Enter the table with weight and pressure altitude to read %N1, IAS and fuel flow per engine.

Advisory Information

Runway Surface Condition Correlation

When landing on slippery runways or runways contaminated with ice, snow, slush, or standing water, the reported braking action must be considered. A table is provided that correlates runway condition code to runway surface condition description and reported braking action that can then be used to determine the appropriate Normal Configuration Landing Distance or Non-Normal Configuration Landing Distance.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

Normal Configuration Landing Distance

Tables are provided as advisory information for normal configuration landing distances on dry runways and runways with good, good to medium, medium, medium to poor, and poor reported braking action. Landing distances (reference distances plus adjustments) are 115% of the actual landing distance. The Normal Configuration Landing Distance tables should be used enroute to make a landing distance assessment for time of arrival.

The reference landing distance is the distance from threshold to complete stop. It includes an air distance allowance from threshold to touchdown associated with a flare time of 7 seconds. The reference distance is based on a reference landing weight and speed at sea level, standard day, zero wind, zero slope, two engine detent No. 2 reverse thrust, and auto or manual speedbrakes.

To use these tables, determine the reference landing distance for the selected braking configuration and reported braking action. Adjust this reference distance for landing weight, altitude, wind, slope, temperature, approach speed, and the number of operative thrust reversers. Each correction is applied independently to the reference landing distance.

Use of the autobrake system commands the airplane to a constant deceleration rate. In some conditions, such as a runway with "poor" reported braking action, the airplane may not be able to achieve these deceleration rates. In these cases, runway slope and inoperative reversers influence the stopping distance. It cannot be determined quickly when this will become a factor, therefore it is appropriate to add the effects of slope and inoperative reversers when using the autobrake system.

Non-Normal Configuration Landing Distance

Advisory information is provided to support non-normal configurations that affect landing. Landing distances and adjustments are provided for dry runways and runways with good, good-to-medium, medium, medium-to-poor, and poor reported braking action. Landing distances (reference distances plus adjustments) are representative of the actual landing distance, and are not factored. The Non-Normal Configuration Landing Distance tables should be used enroute to make a landing distance assessment for time of arrival.

The reference landing distance is the distance from threshold to complete stop. It includes an air distance allowance from threshold to touchdown associated with a flare time of 7 seconds. The reference distance is based on a reference landing weight and speed at sea level, standard day, zero wind, zero slope, and maximum available reverse thrust.

Boeing Proprietary. Copyright © Boeing. May be subject to export restrictions under EAR. See title page for details.

Tables for Non-Normal Configuration Landing Distance in this section are similar in format and used in the same manner as tables for the Normal Configuration Landing Distance previously described.

For an engine inoperative landing, check the rate of climb capability shown in Gear Down Landing Rate of Climb Available tables to ensure adequate climb performance.

Recommended Brake Cooling Schedule

Advisory information is provided to assist in avoiding problems associated with hot brakes. For normal operation, most landings are at weights below the AFM quick turnaround limit weight.

Use of the recommended cooling schedule will help avoid brake overheat and fuse plug problems that could result from repeated landings at short time intervals or a rejected takeoff.

Enter the Reference Brake Energy table (Table 1) with the airplane weight and brakes on speed, adjusted for wind, at the appropriate temperature and altitude condition. Instructions for applying wind adjustments are included below the table. Linear interpolation may be used to obtain intermediate values. The resulting number is the reference brake energy per brake in millions of foot-pounds, and represents the amount of energy absorbed by each brake during a rejected takeoff.

To determine the energy per brake absorbed during landing, enter the Event Adjusted Brake Energy table (Table 2) for no reverse thrust or 2 engine reverse thrust with the reference brake energy per brake and the type of braking used during landing (Max Manual, Max Auto, or Autobrake). The resulting number is the adjusted brake energy per brake and represents the energy absorbed in each brake during the landing. The recommended cooling time is found in the final table (Table 3) by entering with the adjusted brake energy per brake. Times are provided for ground cooling and inflight gear down cooling.

Brake Temperature Monitor System (BTMS) indications are also shown. If brake cooling is determined from the BTMS, use the hottest brake indication 10 to 15 minutes after the airplane has come to a complete stop, or inflight with gear retracted to determine recommended cooling schedule.

Engine Inoperative

Initial Max Continuous %N1

The Initial Max Continuous %N1 setting for use following an engine failure is shown. The table is based on the typical all engine cruise speed of .79 Mach to provide a target %N1 setting at the start of driftdown. Once driftdown is established, the Max Continuous %N1 table should be used to determine %N1 for the given conditions.

Max Continuous %N1

Power setting is based on one engine operating with one A/C pack operating and all anti-ice bleeds off. Enter the table with pressure altitude, TAT, and IAS or Mach to read %N1. Power settings may be interpolated for intermediate airspeeds. %N1 bleed corrections are provided per pressure altitude.

It is desirable to maintain engine thrust level within the limits of the Max Cruise thrust rating. However, where thrust level in excess of Max Cruise rating is required, such as for meeting terrain clearance, ATC altitude assignments, or to attain maximum range capability, it is permissible to use the thrust needed up to the Max Continuous thrust rating. The Max Continuous thrust rating is intended primarily for emergency use at the discretion of the pilot and is the maximum thrust that may be used continuously.

Driftdown Speed/Level Off Altitude

The table shows optimum driftdown speed as a function of cruise weight at start of driftdown. Also shown are the approximate weight and pressure altitude at which the airplane will level off considering 100 ft/min residual rate of climb.

The level off altitude is dependent on air temperature (ISA deviation).

Driftdown/LRC Cruise Range Capability

This table shows the range capability from the start of driftdown. Driftdown is continued to level off altitude. As weight decreases due to fuel burn, the airplane is accelerated to long range cruise speed. Cruise is continued at level off altitude and long range cruise speed.

To determine fuel required, enter the Ground to Air Miles Conversion table (Table 1) with the desired ground distance and correct for anticipated winds to obtain air distance to destination. Then enter the Driftdown/Cruise Fuel and Time table (Table 2) with air distance and weight at start of driftdown to determine fuel and time required. If altitudes other than the level off altitude is used, fuel and time required may be obtained by using the Engine Inoperative Long Range Cruise Diversion Fuel and Time table.

Long Range Cruise Altitude Capability

The table shows the maximum altitude that can be maintained at a given weight and air temperature (ISA deviation), based on LRC speed, Max Continuous thrust, and 100 ft/min residual rate of climb.

Long Range Cruise Control

The table provides target %N1, engine inoperative Long Range Cruise Mach number, IAS and fuel flow for the airplane weight and pressure altitude. The fuel flow values in this table reflect single engine fuel burn.

APU Operation During Flight

For APU operation during flight, increase fuel flow according to the following table. These increments include the APU fuel flow and the effect of increased drag from the APU door.

PRESSURE ALTITUDE	APU FUEL FLOW
(1000 FT)	(KG/HR)
39	45
35	45
31	50
25	60
20	65
15	75
10	85
5	95

Long Range Cruise Diversion Fuel and Time

Tables are provided for crews to determine the fuel and time required to proceed to an alternate airfield with one engine inoperative. The data is based on single engine Long Range Cruise speed and .78/280/250 descent.

To determine the remaining fuel and time required, first enter the Ground to Air Miles Conversion table (Table 1) to convert ground distance and enroute wind to an equivalent still air distance. Next, enter the Reference Fuel and Time table (Table 2) with air distance from Table 1 and the desired altitude and read reference fuel and time required. Lastly, enter the Fuel Required Adjustment table (Table 3) with the reference fuel and the actual weight at checkpoint to obtain fuel required to destination.

Holding

Single engine holding data is provided in the same format as the all engine holding data and is based on the same assumptions.

Gear Down Landing Rate of Climb Available

Rate of climb data is provided as guidance information in the event an engine inoperative landing (manual or autoland) is planned. The tables show gear down rate of climb available for Flaps 15 and Flaps 30. Enter the table with TAT and pressure altitude to read rate of climb available. Apply adjustments shown to correct for weight.

Alternate Mode EEC

Introduction

This section contains performance data for airplane operation with the Electronic Engine Control (EEC) in the alternate mode (ALTN EEC switch illuminated) for applicable thrust ratings. The data includes engine bleed effects for normal air conditioning operation i.e., two packs on at normal flow all engines operating.

Operation with assumed temperature reduced thrust is not permitted with the EEC in the alternate mode.

Limit Weight

A simplified method which conservatively accounts for the effects of EEC in the ALTERNATE mode is to reduce the normal mode performance limited weights. The Limit Weight table provides takeoff field, climb, obstacle, tire speed and brake energy weights. No adjustment is necessary for weight limits not shown. To determine limit weights for operations with the EEC in the ALTERNATE mode, enter the table with each of the limit weights for normal mode EEC operation and read the associated limit weight for each performance condition. The most limiting of the takeoff weights must be used.

Derated or reduced takeoff thrust takeoffs are not allowed with the EEC in the ALTERNATE mode. Adjustments to the limit weights provided in this section are not valid for takeoffs using improved climb. Likewise, adjustments to the limit weights are not valid for takeoffs with a contaminated runway. Analysis from the Airplane Flight Manual - Digital Performance Information may yield less restrictive limit weights.

Takeoff Speed Adjustment

Takeoff speeds computed for the reduced weight need no further adjustment.

Max Takeoff %N1

To find alternate mode EEC Max Takeoff %N1 based on normal engine bleed for air conditioning packs on, enter the Alternate Mode EEC Max Takeoff %N1 table with airport pressure altitude and airport OAT and read %N1. Apply %N1 adjustments as provided when applicable.

Max Climb %N1

To find alternate mode EEC Max Climb %N1 based on normal engine bleed for air conditioning packs on, enter the Alternate Mode EEC Max Climb %N1 table with airport pressure altitude and TAT and read %N1. Apply %N1 adjustments as provided when applicable.

Go-Around %N1

Go-Around power setting for ALTERNATE MODE EEC operation is presented for bleed packs on (AUTO) and anti-ice off. Go-Around %N1 may be read directly from the tables for the desired pressure altitude and airport OAT.

The ALTERNATE MODE EEC schedule provides equal or greater thrust than the normal mode for the same lever position. Thrust protection is not provided in the ALTERNATE mode and maximum rated thrust is reached at a thrust lever position less than full forward. As a result, thrust overboost can occur at full forward thrust lever positions.

Alternate Mode EEC, Engine Inoperative

Initial Max Continuous %N1

Initial Max Continuous %N1 settings for use following an engine failure are presented. The table is based on the typical all engine cruise speed of .79 Mach to provide a target %N1 setting at the start of driftdown. Once driftdown is established, the Max Continuous %N1 table should be used to determine %N1 for the given conditions.

Max Continuous %N1

Power setting is based on one engine operating with one A/C pack operating and all anti-ice bleeds off. Enter the table with pressure altitude, TAT, and IAS or Mach to read %N1. Power settings may be interpolated for intermediate airspeeds. %N1 bleed corrections are provided per pressure altitude.

It is desirable to maintain engine thrust level within the limits of the Max Cruise thrust rating. However, where thrust level in excess of Max Cruise rating is required, such as for meeting terrain clearance, ATC altitude assignments, or to attain maximum range capability, it is permissible to use the thrust needed up to the Max Continuous thrust rating. The Max Continuous thrust rating is intended primarily for emergency use at the discretion of the pilot and is the maximum thrust that may be used continuously.

Gear Down

This section contains performance for airplane operation with the landing gear extended for all phases of flight.

Note: The Flight Management System (FMS) does not contain special provisions for operation with landing gear extended. As a result, the FMS will generate inaccurate enroute speed schedules, display non-conservative predictions of fuel burn, estimated time of arrival (ETA), maximum altitude, and compute overly shallow descent path. An accurate estimated time of arrival is available if current speed or Mach is entered into the VNAV cruise page. Estimates of fuel remaining at waypoints or the destination may be computed by the crew based on current fuel flow indications, but should be updated frequently.

Tables for gear down performance in this section are identical in format and used in the same manner as tables for the gear up configuration previously described.

Gear Down, Engine Inoperative

This section contains performance for airplane operation with the landing gear extended for use following an engine failure.

The caution provided in the Gear Down section for use of the FMS in a gear down situation is still applicable.

Tables for gear down, engine inoperative performance in this section are identical in format and used in the same manner as tables for the gear up, engine inoperative configuration previously described.